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ABSTRACT Identification and the time since deposition (TsD) estimation of body fluid 
stains from a crime scene could provide valuable information for solving the cases and 
are always difficult for forensics. Microbial characteristics were considered as a promising 
biomarker to address the issues. However, changes in the microbiota may damage the 
specific characteristics of body fluids. Correspondingly, incorrect body fluid identification 
may result in inaccurate TsD estimation. The mutual influence is not well understood 
and limited the codetection. In the current study, saliva, semen, vaginal secretion, and 
menstrual blood samples were exposed to indoor conditions and collected at eight time 
points (from fresh to 30 days). High-throughput sequencing based on the 16S rRNA 
gene was performed to characterize the microbial communities. The results showed 
that a longer TsD could decrease the discrimination of different body fluid stains. 
However, the accuracies of identification still reached a quite high value even without 
knowing the TsD. Correspondingly, the mean absolute error (MAE) of TsD estimation 
significantly increased without distinguishing the types of body fluids. The predictive TsD 
of menstrual blood reached a quite low MAE (1.54 ± 0.39 d). In comparison, those of 
saliva (6.57 ± 1.17 d), semen (6.48 ± 1.33 d), and vaginal secretion (5.35 ± 1.11 d) needed 
to be further improved. The great effect of individual differences on these stains limited 
the TsD estimation accuracy. Overall, microbial characteristics allow for codetection of 
body fluid identification and TsD estimation, and body fluids should be identified before 
estimating TsD in microbiome-based stain analyses.

IMPORTANCE Emerged evidences suggest microbial characteristics could be consid
ered a promising tool for identification and time since deposition (TsD) estimation of 
body fluid stains. However, the two issues should be studied together due to a poten
tial mutual influence. The current study provides the first evidence to understand the 
mutual influence and determines an optimal process for codetection of identification 
and TsD estimation for unknown stains for forensics. In addition, we involved aged 
stains into our study for identification of body fluid stains, rather than only using fresh 
stains like previous studies. This increased the predictive accuracy. We have prelimi
nary verified that individual differences in microbiotas limited the predictive accuracy 
of TsD estimation for saliva, semen, and vaginal secretion. Microbial characteristics 
could provide an accurate TsD estimation for menstrual blood. Our study benefits 
the comprehensive understanding of microbiome-based stain analyses as an essential 
addition to previous studies.
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B ody fluid identification and determination of the time since deposition (TsD) are 
crucial complements for forensics to assess the relevance of stains from crime 

scenes and are helpful for crime scene investigation and reconstruction (1, 2). Body fluid 
identification is commonly performed in forensic labs with conventional approaches 
by testing a chemical reaction of specific enzyme catalysis (3). The tests are fast and 
visually detected but have a high error rate. Furthermore, the methods can not provide 
any information about TsD of body fluids. Spectroscopy, chromatography, and electron 
spin resonance have been explored for TsD determination of blood stains (4) but are 
useless for determining TsD of white or nearly colorless body fluids such as saliva, semen, 
and vaginal secretion. In recent years, several novel approaches by measuring gene 
expression of messenger RNA (mRNA) (5–8), microRNA (miRNA) (9, 10), and epigenetic 
markers (11, 12) have been reported to be used for body identification. The degradation 
patterns of mRNA examined through quantitative PCR could be used to predict the TsD 
of body fluids (13, 14).

In addition, microbiome-based stain analyses have emerged as a new research area 
to demonstrate microbial characteristics to identify body fluids and estimate the TsD 
of stains (15). The number of microbial cells is greater than that of human cells in the 
human body (16). These microbiotas contain abundant genomic information and even 
exceed the human genome (17). The results suggested that microbiotas from body fluids 
can still be detectable when human DNA or RNA are in low biomass or degraded.

Metagenomic information varies across body habitats (18). Therefore, the human 
microbiome is considered a potential tool to recognize the original body sites of 
biological materials. Hanssen et al. (19) collected large bacterial 16S sequencing data 
sets from the American Gut Project and the Human Microbiome Project (HMP) to verify 
the feasibility of using microbial composition data for body fluid identification. The 
results suggested that the optimal prediction accuracy was close to 98%. López et al. 
(20) trained deep learning networks containing sequencing data of 1,636 skin, oral, and 
vaginal samples from the HMP to classify these tissues. The values of the area under 
the curve were above 0.99. Most of the aged mock casework samples could still be 
correctly identified in the study of López et al. (20), although the prediction accuracy 
decreased in the aged mock casework samples compared with fresh samples (20). In 
another study, skin, saliva, vaginal fluid, menstrual blood, and semen samples were 
exposed to indoor conditions for 30 days, and the results showed that these samples 
were grouped by body site mainly based on the microbial community (21). Nevertheless, 
a few outliers that could not be correctly identified were observed in the study. These 
two studies suggested that specific microbial characteristics of tissue or fluid can be 
maintained for a period of time after tissue or fluid leaves the body. This provides us with 
a microbiome tool for recognizing body fluid stains left at crime scenes. The TsD of stains 
seems to have some effects on the microbial characteristics of specific tissues or fluids, 
causing a reduction in the accuracy of identification. However, previous studies were still 
insufficient to assess the exact effect of the TsD on body fluid identification based on 
microbial characteristics.

On the other hand, the microbiome was also considered a promising tool for 
predicting the TsD of body fluid stains. Environmental changes and the breeding of 
environmental microorganisms may alter the microbial community structure of the body 
fluid that leaves the original body site. Wang et al. (1) analyzed 16S rRNA gene sequenc
ing data of saliva stains exposed to indoor conditions for up to 20 days, and the results 
suggested that the mean absolute deviation of TsD prediction was 1.41 days. Salzmann 
et al. (22) examined RNA sequencing data from blood, menstrual blood, saliva, semen, 
and vaginal secretion ranging from fresh to 1.5 years. They found that environmental 
bacteria altered the microbial composition of body fluid stains. The changing microbial 
community could be evaluated for TsD prediction. These studies predicted the TsD of 
stains under the condition that the type of body fluid was known. In fact, the type of 
body fluid at the crime scene is often unknown. Microbial successions of various body 
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fluids might be very different. The effect of body fluid identification on TsD prediction is 
still unclear.

In summary, body fluid identification and TsD estimation of stains based on 
microbial characteristics were investigated separately in previous studies. The feasibil
ity of simultaneous body fluid identification and TsD estimation has not been well 
explored. In addition, changes in the microbial community of stains provide a chance to 
predict TsD but may damage the specific characteristics used for body fluid identification 
simultaneously. Incorrect body fluid identification may also result in inaccurate TsD 
estimation. Their mutual influence needs further exploration. This problem determines 
which process should take precedence in microbiome-based stain analyses for forensics.

To investigate the problem, saliva, semen, vaginal secretion, and menstrual blood 
samples were exposed to indoor conditions ranging from fresh to 1 month. Micro
bial communities of body fluid stains were characterized by targeted 16S rRNA gene 
high-throughput sequencing at eight different time points. The mutual influences 
between body fluid identification and TsD prediction were measured to provide a 
reliability assessment and determine an optimal process for microbiome-based analyses 
for unknown stains at crime scenes.

RESULTS

Microbial community compositions of various body fluids at different TsD 
values

In the current study, a total of 192 samples of body fluids were sequenced and produced 
14,990,142 high-quality (above Q20) sequences. We identified 12,347 amplicon sequence 
variants (ASVs) from these sequences. The sequence of each sample was rarified to 
an even depth of 44,676 (using “single_rarefaction.py” script in QIIME1 based on the 
minimum value of all samples) to normalize the ASV table.

We investigated the microbial compositions of four body fluids at eight time points at 
the phylum (Fig. S1) and genus (Fig. 1) levels. Firmicutes was the dominant taxon in the 
four body fluids at the phylum level. The highest relative abundance of Firmicutes was 
observed in vaginal secretion. Actinobacteria, Bacteroidetes, and Proteobacteria were 
important taxa in saliva, semen, and menstrual blood. In these three body fluids, a higher 
relative abundance of Proteobacteria and lower relative abundances of Actinobacteria 
and Bacteroidetes were observed in fresh body fluids than in aged stains (from Day 1 to 
Day 30).

FIG 1 Relative abundance of bacterial genera in saliva (A), semen (B), vaginal secretion (C), and menstrual blood (D) across 30 days of exposure.
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Streptococcus was the dominant genus in saliva (Fig. 1A). Fresh saliva contained the 
lowest relative abundances of Streptococcus, Actinomyces, and Prevotella and the highest 
relative abundances of Haemophilus and Neisseria. Semen contained the most genera 
and lacked an obvious dominant genus in the microbial community composition (Fig. 
1B). Lactobacillus was the obvious dominant genus in vaginal secretion, and its mean 
relative abundance reached 89.74%. A significant increase was observed in Escherichia-
Shigella (Wilcoxon test, P = 0.041) and Staphylococcus (Wilcoxon test, P = 0.004) in 
vaginal secretion at Day 30 compared with the fresh fluids (Fig. 1C). The clearest trend of 
microbial succession was observed in menstrual blood (Fig. 1D). Escherichia-Shigella and 
Staphylococcus decreased (Kruskal–Wallis test, P < 0.001), while Anaerococcus, Corticibac
terium, Finegoldia, Peptoniphilus, Porphyromonas, and Prevotella increased (Kruskal–Wallis 
test, P < 0.001) in relative abundance from the fresh stage to aged stages. Lactobacillus 
first increased and then decreased, and its highest relative abundance was observed at 
Day 3.

The effects of different factors on the microbial community compositions of 
body fluids

The result of nonmetric multidimensional scaling (NMDS) showed that samples clustered 
mainly based on their original body sites rather than the TsD of body fluids. Semen 
samples were more heterogeneous than other types of body fluids. Menstrual blood 
and vaginal secretion were very similar compared with the two other body fluids (Fig. 
2A). The result of PERMANOVA showed that original body sites explained most of the 
variation (R2 = 0.694, P < 0.001) in the microbial community of body fluids. TsD had a 
small but significant effect (R2 = 0.012, P < 0.001) on the microbial community structure 
of body fluids. In addition, the interaction of original body sites and TsD explained 0.039 
(P < 0.001) of the variation (Table 1).

The Bray–Curtis distances between samples of the same body fluid were significantly 
(P < 0.001) lower than those of different body fluids for each sampling time point. A 
similar result was observed in the merged data that included all samples from different 

FIG 2 The effects of body fluid origins and TsD on microbial community structures of body fluid stains. NMDS of Bray–Curtis distances between samples is 

shown in A. Bray‒Curtis distances of samples from the same type and from different types of body fluids for all time points (without distinguishing TsD) and each 

time point are shown in B. Bray–Curtis distances of samples with the same TsD and with different TsD for all types of body fluids (without distinguishing types of 

body fluids) and each type of body fluid are shown in C. Statistical differences were analyzed using the Wilcoxon tests.

Research Article Microbiology Spectrum

April 2024  Volume 12  Issue 4 10.1128/spectrum.02480-23 4

https://doi.org/10.1128/spectrum.02480-23


time points (Fig. 2B). This suggested that we could still identify the body fluids effectively 
without distinguishing time points. Significant differences (P < 0.001) in Bray–Curtis 
distance were observed between samples from the same day and different days for each 
type of body fluid. However, the Bray–Curtis distances of samples from the same day and 
different days almost overlapped without distinguishing the types of body fluids (Fig. 
2C). This suggested that we could not distinguish whether the samples were from the 
same day without knowing the type of body fluids.

We also investigated the Bray–Curtis distance between pairwise types of body fluids 
varying in TsD (Fig. 3). The results showed that the distance of the microbial community 
between vaginal secretion and menstrual blood decreased from fresh to Day 2 and 
then increased from Day 2 to Day 30. The greatest value was observed at Day 30 
(Fig. 3F). The changing pattern was very different from other combinations of pairwise 
comparisons. The smallest value was observed at Day 30 for those comparisons (Fig. 
3A through E). This suggested that exposure for 30 days decreased (Wilcoxon tests, P 
< 0.001) the discrimination between different body fluids except for between vaginal 
secretion and menstrual blood. In addition, the Bray–Cutis distances between vaginal 
secretion and menstrual blood were smaller (Wilcoxon tests, P < 0.001) than those of 
other comparisons.

The effect of TsD on the microbial community structure for each body fluid was 
investigated in our study. In addition, the effect of individual differences (ID) was also 
measured. The results showed that individual differences explained a greater variation 
in microbial variation than TsD in saliva, semen, and vaginal secretion. In contrast, TsD 

FIG 3 Pairwise comparisons (Bray–Curtis distance) between different types of body fluids across 30 days of exposure.

TABLE 1 PERMANOVA tests of the effects of type of body fluid, TsD, and their interaction on microbial beta 
diversity between samples

Factors R2 P

Type 0.689 <0.001
TSD 0.024 <0.001
Type: TsD 0.068 <0.001
Residual 0.217

Research Article Microbiology Spectrum

April 2024  Volume 12  Issue 4 10.1128/spectrum.02480-23 5

https://doi.org/10.1128/spectrum.02480-23


explained more variation than individual differences in the microbial community of 
menstrual blood (Table 2; Fig. S2).

Significant (P < 0.001) linear relationships between similarities of microbial communi
ties and intervals of TsD were observed in all four body fluids (Fig. S3). This suggested 
that the microbial communities of these body fluids changed with a regular pattern 
and provided a potential chance to predict TsD. The steepest slope was observed in 
menstrual blood, suggesting the fastest rate of microbial succession.

Body fluid identification and TsD prediction based on microbial community 
characteristics

The random forest algorithm was used to construct initial predictive models and select 
microbial biomarkers. Training sets were used to construct the models, and both training 
and testing sets were used to test the accuracies of the models. The results showed 
that the accuracies of body fluid identification reached an extreme value (training sets: 
100.00%; testing sets: 98.43%) even without knowing the TsD (Fig. 4A). In addition, 
fresh body fluids (Day 0) were used to train the model to recognize the types of 
aged body fluid stains (from Day 1 to Day 30). The results showed that the predictive 
accuracies for samples collected from Day 1 to Day 14 reached 100.00%. Then, the 
accuracies decreased at Day 21 (95.83%) and Day 30 (83.33%). This suggested that the 
model that was only constructed with fresh body fluid data was insufficient to reach 
a high identification accuracy for aged body fluid stains (Fig. 4B). The accuracies of 
TsD prediction significantly decreased without distinguishing the types of body fluids, 
regardless of whether training sets (Wilcoxon test, P = 0.004) or testing sets (Wilcoxon 
test, P = 0.032) were used (Fig. 4C).

Therefore, the data used to construct the model of body fluid identification should 
be collected from various TsD values. However, the TsD prediction model should be 
constructed separately for each body fluid. Microbial biomarkers were selected based 
on the minimum error of 10-fold cross-validation with five repeats to construct final 
prediction models. Finally, 24 ASVs were selected as the optimal biomarker set to 
construct the model of body fluid identification (Fig. 5A; Fig. S4). Among these biomark
ers, ASV_189 belonging to Actinomyces was the most important taxon for classification, 
followed by ASV_8 belonging to Corynebacterium and ASV_11 and ASV_42 belonging to 
Anaerococcus. The highest and lowest relative abundances of these taxa were observed 
in menstrual blood and saliva, respectively. ASV_3 and ASV_14, belonging to Streptococ
cus, had the highest relative abundance in saliva (Fig. 5A).

In addition, 9 ASVs, 677 ASVs, 296 ASVs, and 48 ASVs were selected as the optimal 
biomarker sets to construct the models of TsD prediction for saliva, semen, vaginal 
secretion, and menstrual blood, respectively. The most important taxa of the top 20 are 
ranked. ASV_61 belonging to Fusobacterium, ASV_376 belonging to Clostridium sensu 
stricto 1, and ASV_1172 belonging to Dialister were the most important taxa to predict 
TsD of saliva (Fig. S5A), semen (Fig. S5B), and vaginal secretion (Fig. S5C), respectively. 
These taxa decreased from fresh to Day 30 in the corresponding body fluids. ASV_78, 
belonging to Porphyromonas, was the most important taxon to predict TsD of menstrual 
blood. Interestingly, all of the most important taxa ranked in the top 20 increased from 
fresh to Day 30 in menstrual blood (Fig. S5D).

TABLE 2 PERMANOVA test of the effects of type of TsD, ID, and their interaction on microbial beta diversity 
between samples for saliva, semen, vaginal secretion, and menstrual blood, respectively

Factors
Saliva Semen Vaginal secretion Menstrual blood

R2 P R2 P R2 P R2 P

TSD 0.077 <0.001 0.036 0.026 0.046 0.034 0.427 <0.001
ID 0.471 <0.001 0.212 <0.001 0.519 <0.001 0.021 1.000
TSD:ID 0.058 0.380 0.095 0.400 0.042 0.642 0.013 1.000
Residual 0.395 0.657 0.393 0.539
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FIG 4 The accuracies of predictive models for body fluid identification (A and B) and TsD estimation (C). The predictive accuracies for body fluid identification 

performed with samples of all time points (without distinguishing TsD) and each time point are shown in A. The accuracies of predictive models constructed 

with fresh samples to recognize aged body fluids are shown in B. The predictive accuracies for TsD estimation performed with samples of all types of body fluids 

(without distinguishing types of body fluids) and each type of body fluid are shown in C.
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Then, the optimal biomarker sets were used to construct the final predictive model. 
The results showed that the accuracies of the final model in recognizing body fluids were 
the same as those of the initial model (training set: 100%, testing set: 98.43%; Fig. 5B). For 
the models for predicting TsD, the predictive results of the final models showed that the 
MAEs (mean ± SE) of menstrual blood (training set: 0.81 ± 0.13 d, testing set: 1.54 ± 
0.39 d; Fig. 6D) were the lowest, followed by vaginal secretion (training set: 1.75 ± 0.26 d, 
testing set: 5.35 ± 1.11 d; Fig. 6C). The MAEs of saliva (training set: 2.27 ± 0.35 d, testing 
set: 6.57 ± 1.17 d; Fig. 6A) and semen (training set: 2.45 ± 0.68 d, testing set: 6.48 ± 1.33 d; 
Fig. 6B) were relatively higher, especially for the predictive results of the test sets.

DISCUSSION

Microbiome-based stain analyses have attracted the attention of the forensics com
munity as a promising tool for body fluid identification and TsD prediction (1). These 
two questions were investigated separately in previous studies. However, these two 
questions are not isolated but affect each other. Our current study provides the first 
assessment of the mutual influence between body fluid identification and TsD predic
tion and determines an optimal process for microbiome-based analyses that allows for 
identifying body fluids and estimating the TsD of stains simultaneously.

The compositions of the microbial community varied obviously among samples from 
different types of body fluids. The type of body fluids had a greater effect on the 
compositions of microbial communities in body fluid stains compared with TsD during 
the exposure experiment of 30 days. Furthermore, significant differences could still 

FIG 5 The optimal biomarkers were selected to construct final predictive models for body fluid identification and TsD estimation. The optimal biomarkers 

selected for body fluid identification are shown in A. The predictive accuracies for body fluid identification performed with optimal biomarkers are shown in B.
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be observed after exposure for 30 days, although there were shifts in the microbial 
community for each body fluid.

Most of the test body fluid samples presented a taxonomic composition dominated 
by the Firmicutes phylum, in agreement with most previous studies (1, 21, 23–25). Only 
the microbial taxonomic profiles of semen were inconsistent with the research results 
(dominated by Proteobacteria) of Salzmann et al. (22). However, most studies on seminal 
microbiotas support our results (23, 26, 27). Of course, this does not mean that the result 
of Salzmann et al. (22) is incorrect. Human semen microbiome diversity shows spatial 

FIG 6 The predictive accuracies of TsD estimation performed with optimal biomarkers for saliva (A), semen (B), vaginal secretion (C), and menstrual blood 

(D) were shown using graph of predicted value versus true value. The line represents a perfect prediction of TsD. The cyan points represent the predictive results 

of train sets, and the pale red points represent the predictive results of test sets.
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heterogeneity (28). Study populations from different regions may explain the difference 
in seminal microbial taxonomic compositions.

At the genus level, Streptococcus was the dominant taxon in the fresh salivary 
microbiome, followed by Neisseria, Haemophilus, Rothia, and Prevotella. In previous 
studies, these genera were considered common taxa in the saliva of healthy adults (29–
31). These genera maintained their predominance throughout the duration of indoor 
exposure. Streptococcus, Actinomyces, and Prevotella increased and Haemophilus and 
Neisseria decreased along with TsD in relative abundance. These shifts were significant 
but slight. There was a lack of an obvious dominant genus in seminal microbiotas. Great 
variations in microbial compositions between individuals were observed. This result is in 
agreement with a previous study (23). It was difficult to observe a consistent shift at the 
genus level across the exposure experiment.

Lactobacillus was absolutely dominant at the genus level in vaginal secretion. The 
predominance was maintained across 30 days of exposure. Large amounts of Lactoba
cillus breeding in the vagina may produce an acidic environment to maintain vaginal 
health (32). Therefore, Lactobacillus was one of the dominant genera in fresh menstrual 
blood. Menstrual blood is a mixture of vaginal secretion and blood (25). The NMDS 
results showed that menstrual blood was most similar to vaginal secretion. However, 
there are still obvious variations between these two body fluids to distinguish them. The 
study of Song et al. (33) suggested that the relative abundance of Lactobacillus in the 
vagina decreased during menses (33). This is consistent with our results. Our samples of 
menstrual blood were collected from days 2–5 of menstrual cycle. Though, the previous 
study showed that the vaginal microbiome of most women remained relatively stable 
throughout the menstrual cycle (34), we are still unable to determine whether menstrual 
blood could be distinguished from vaginal secretion at the beginning or end of menses. 
The question will be explored in our further studies. In addition, the most obvious and 
regular succession of the microbial community was observed in the menstrual blood.

The Bray–Curtis distance between vaginal secretion and menstrual blood increased 
after exposure for 30 days, and the trend was completely contrary to other pairwise 
comparisons. In addition to cervical mucus (the main component of vaginal secretion), 
menstrual blood contains more blood (35). Although vaginal secretion and menstrual 
blood are excreted through the vagina, quite different nutrient substances determine 
different directions of succession of microbiology communities. Apart from that, 
exposure for 30 days diminished the uniqueness of microbial characteristics for each 
body fluid. The effects of the unique habitat for microbial communities disappeared, and 
the same exposure conditions and environmental microbial community might be related 
to convergence on microbial communities of body fluids (36). The previous studies 
showed that the microbial communities in different body parts of cadavers became 
similar during the decay process (37). In fact, deposition of body fluids could also be 
considered a decay process.

However, Bray–Curtis distances of pairwise comparisons at Day 30 still reached a 
high value to distinguish different body fluids. Dobay et al. (21) exposed body fluids 
(skin, saliva, peripheral blood, menstrual blood, vaginal fluid, and semen) to indoor 
conditions for 30 days, while the same samples were processed directly after extraction 
for comparison. They found that both types of samples were grouped by body site. 
PCA was performed separately for fresh and aged samples (21). Whether aged samples 
can be grouped with fresh samples from the same body site is unclear. The question 
is important. In actual cases, it is difficult to know exactly when the body fluid was 
deposited. Most studies use the microbial community of fresh body fluids to train a 
predictive model (2, 19, 20). In our study, the accuracies decreased at Day 21 and Day 
30 when only fresh body fluids were used as training data. López et al. (20) trained a 
deep learning network with data from the HMP and found that the predictive accuracy 
decreased in aged mock casework samples compared with fresh samples. This suggested 
that the TsD of body fluids had an effect on the accuracy of body fluid identification 
based on microbial characteristics.
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Therefore, the predictive model for body fluid identification constructed only with 
fresh samples may not be an optimal solution. Of course, this does not mean that an 
exact TsD must be known in advance before body fluid identification. The Bray–Curtis 
distances between samples from different types of body fluids were still significantly 
greater than those from the same type of body fluids without discriminating TsD. The 
model was constructed with the integrated data containing fresh and aged samples 
and reached a high identification accuracy. In other words, we can still recognize body 
fluids exactly even if we do not know the TsD. In turn, the Bray–Curtis distances between 
samples from different TsD values are almost completely coincident with the differences 
between samples from the same TsD without discriminating sample types. However, the 
differences were significant in each comparison of a specific body fluid. The accuracies 
of TsD prediction significantly decreased without discriminating the types of body 
fluids. This suggests that body fluids should be identified before estimating the TsD 
in microbiome-based stain analyses for forensics.

In addition, the predictive TsD of menstrual blood was more accurate than that of 
other body fluids. The predictive accuracies for saliva, semen, and vaginal secretion 
need to be further improved. Asaghiar et al. (38) evaluated two hypoxia-sensitive RNA 
markers based quantitative PCR (qPCR) to develop a predictive model of TsD for blood, 
saliva, and semen, resulting in an MAE of 4.2, 2.1, and 5 days of within 28 days of 
degrading at room temperature, respectively (38). Wang et al. (37) regressed a random 
forest model with salivary microbiota to predict TsD, resulting in an MAE of 1.41 days 
within 20 days of exposure (1). The models of these two studies were tested with training 
data. The predictive accuracies of our study were closed to or even better than those 
of the previous studies if we used the training sets for testing. However, the accuracies 
decreased significantly when the testing sets were tested. In general, the data used for 
validation should be distinguished from the training sets to avoid overfitting (39). A 
sustainable effect of individual difference was observed in the microbial communities 
of these three types of body fluids throughout the entire process of exposure. The 
variations in microbial communities caused by individual differences were even higher 
than those caused by TsD. A stable individual variation in the microbial community is 
adverse to TsD prediction but beneficial to individual identification.

The current study still lacked mock casework samples to test our conclusion. The 
complex environment of the crime scene may cause a deviation from our result. In 
addition, a longer study may produce a varying result. The predictive accuracies of TsD 
for saliva, semen, and vaginal secretion need further improvement by including a larger 
sample size or other biomarkers, such as mRNA. In addition, mixed bodily fluids with one 
or more body fluids are commonly encountered in crime scenes. However, mixed body 
fluids were not involved in the current study. Microbial source-tracking methods such 
as SourceTracker (40) and FEAST (41) can be applied to forensic science and provide a 
potential solution to identified mixed body fluids. These questions will be explored in our 
further study. However, the current study provided the first evidence to understand the 
mutual influence between body fluid identification and TsD prediction in microbiome-
based stain analyses. Our study supplied a potential solution to recognize body fluid and 
estimate the TsD of stains simultaneously based on microbial characteristics for forensics 
and determined a relatively optimal process for codetection.

MATERIALS AND METHODS

Sample collection

Body fluid samples (including saliva, semen, vaginal secretion, and menstrual blood) 
were collected on sterile cotton swabs from health volunteers. All volunteers were 
recruited from Shanxi Medical University in March and provided written informed 
consent. Exclusion factors included taking antibiotics within 1 month. The study 
was ethically approved by the Medicine Institutional Review Board of Shanxi Medi
cal University (No. 2021GLL049) according to the guidelines of the World Medical 
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Association and the Declaration of Helsinki. Saliva and semen samples were first 
self-collected into sterile tubes and then transferred to sterile cotton swabs. Vaginal 
secretion and menstrual blood samples were self-collected from the vagina directly on 
sterile cotton swabs.

Then, all samples were placed on a lab bench and exposed to indoor conditions 
(temperature, 18.4–19.4°C; humidity, 30%–40%). Eight sampling time points (fresh, Day 1, 
Day 2, Day 3, Day 7, Day 14, Day 21, and Day 30) were set in our experiment. Each body 
fluid at each time point included six biological replicates corresponding to six volunteers. 
Saliva samples were collected from three males and three females. In total, 192 samples 
of body fluid stains were collected. All samples were collected and stored at −80°C before 
further processing.

DNA extraction, library preparation, and sequencing

Total genomic DNA was extracted from body fluid stains using the DNeasy Power
Soil Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. Universal 
primers (505F- GTGCCAGCMGCCGCGGTAA and 806R- GGACTACHVGGGTWTCTAAT) to 
the variable region 4 of the 16S rRNA gene, which contained Illumina adapters and 
barcode sequences for sequencing, were amplified. The amplification products were 
quantified using QuantStudio5.0 (Applied Biosystems, Foster City, USA) and pooled 
in equimolar concentrations. The pooled sequencing libraries were sequenced using 
the Illumina NovaSeq platform. Negative controls consisting of six sterile swabs were 
included during DNA extraction and sequencing.

Data analysis

We obtained a cluster density of 1,130 k/mm2 and a passing filter of 88.9%. Totally, 
16,335,500 sequences were generated. More than 97.07% of the bases have a Phred 
score above Q30. Raw data were quality filtered using fastp software (42). Then, the 
clean data were merged and dereplicated using VSEARCH (43) and USEARCH (44). The 
UCHIME algorithm (45) was applied to remove chimeric sequences. After trimming and 
filtering, 14,990,142 reads remained. USEARCH-UNOISE3 (46) was used to identify ASVs. 
The taxonomic annotation of the ASV sequence was obtained by alignment with the 
Silva (v138) database using BLAST (47).

The statistics in our study were analyzed using the R software platform (v3.6.0; 
http://www.r-project.org/). The taxonomic compositions of the samples were shown 
at the phylum and genus levels using the “ggplot2” package (48). Wilcoxon test was 
performed for the comparison between bacterial compositions of two groups, and the 
Kruskal–Wallis test was performed for the comparison between multiple groups. NMDS 
using the “vegan” package (49) was performed and visualized to assess the effects 
of body fluid origins and TsD on microbial community structures of body fluid stains. 
Permutational multivariate analysis of variance (PERMANOVA) based on Bray–Curtis 
distance was used to verify the result of NMDS in statistics. Within-group variation 
and between-group variation were calculated and compared based on the Bray–Curtis 
distance to test the discrimination of different grouping manners for samples. The 
Wilcoxon test with P values adjusted according to the Benjamini–Hochberg method 
(50) was performed to test the significance of differences in beta diversities among 
various groups. The correlation of microbial community similarities (a value of 1 minus 
Bray–Curtis distance was ln-transformed) with intervals between pairwise time points 
was tested by fitting a linear regression.

To measure the effect of the TsD of stain on body fluid identification, classification 
models for body fluid identification were constructed using the data that included all 
time points and the data of each time point. Then, the accuracies of the two classification 
models were compared. Similarly, regression models for TsD prediction were constructed 
using the data that included all types of body fluids and the data of each body fluid. 
The accuracies of the regression models were measured by using the MAE. The stratified 
random sampling method was employed to divide the data into training and testing 

Research Article Microbiology Spectrum

April 2024  Volume 12  Issue 4 10.1128/spectrum.02480-2312

http://www.r-project.org/
https://doi.org/10.1128/spectrum.02480-23


sets at a proportion of 2:1 using the “sampling” package (51). The initial models were 
constructed with a training set using the random forest algorithm from the “randomFor
est” package (52). The value of “ntree” was set to 1,000. Bacterial ASVs were ranked in 
order of their feature importance. Furthermore, the random forest algorithm was used 
to select the optimal biomarker sets according to the order of importance based on 
the minimum error of 10-fold cross-validation by 100 iterations with five repeats. Each 
subset of training sets was partitioned based on individual for cross-validation. The final 
prediction models were constructed using the optimal biomarker sets.
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