
 | Host-Microbial Interactions | Research Article

Chitosan oligosaccharide improves intestinal homeostasis to 
achieve the protection for the epithelial barrier of female 
Drosophila melanogaster via regulating intestinal microflora
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ABSTRACT Chitosan oligosaccharide (COS) is a new type of marine functional 
oligosaccharide with biological activities such as regulating intestinal microflora and 
improving intestinal immunity. In this study, female Drosophila melanogaster was used as 
a model organism to evaluate the effect of COS on intestinal injury by H2O2 induction, 
and its mechanism was explored through the analysis of intestinal homeostasis. The 
results showed that 0.25% of COS could effectively prolong the lifespan of stressed 
female D. melanogaster by increasing its antioxidant capacity and maintaining intes­
tinal homeostasis, which included protecting the mechanical barrier, promoting the 
chemical barrier, and regulating the biological barrier by affecting its autophagy and the 
antioxidant signaling pathway. Additionally, the protective effect of COS on the intestinal 
barrier and homeostasis of D. melanogaster under oxidative stress status is directly 
related to its regulation of the intestinal microflora, which could decrease excessive 
autophagy and activate the antioxidant system to promote health.

IMPORTANCE The epithelial barrier plays an important role in the organism’s health. 
Chitosan oligosaccharide (COS), a new potential prebiotic, exhibits excellent antioxidant 
capacity and anti-inflammatory effects. Our study elucidated the protective mechanisms 
of COS on the intestinal barrier of Drosophila melanogaster under oxidative stress, which 
could provide new insights into COS application in various industries, such as food, 
agriculture, and medicine.

KEYWORDS chitosan oligosaccharide, Drosophila melanogaster, oxidant stress, 
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I ntestinal health relies on the establishment of homeostasis, a dynamic state formed 
by the interaction of the hosts (ZO-1, occludin, enterocytes, intestinal mucosa, and 

immune barrier), the intestinal environment (gut microbiota), nutrients, and metabolites, 
which are more pronounced in dietary habits (1). The integrity of the epithelial barrier 
and intestinal microbiota has been demonstrated to play important roles in intestinal 
homeostasis and the pathogenesis of certain diseases (2). When the body ingests toxic 
compounds, the number of dead intestinal epithelial cells increases, and intestinal stem 
cells proliferate excessively (3), which causes an imbalance in intestinal homeostasis. An 
imbalance between proliferative homeostasis and regenerative capacity is a hallmark of 
aging and age-related diseases (4).

To maintain long-term homeostasis in the barrier epithelia, gut immune function 
must be balanced with microbiota (5). Maintaining a healthy commensal population by 
preserving innate immune homeostasis in such epithelial cells is a promising approach 
to promoting health and longevity (6, 7). However, a reasonable composition of intestinal 
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microorganisms can promote the integrity of intestinal barrier function and reduce the 
disordered proliferation of intestinal stem cells (8). Therefore, dietary ingredients could 
regulate intestinal homeostasis via the microflora affecting the intestinal barrier.

Chitosan oligosaccharide (COS), which is obtained by physical, enzymatic, or chemical 
hydrolysis (9, 10), is a derivative of chitosan composed of glucosamine linked by the 
β-(1→4)-glycosidic bonds and has shorter chain lengths, with less than 20% degree 
of polymerization (DP) (11) and physicochemical properties, including low viscosity, 
high water solubility (12), and nontoxicity (13). Due to the properties of COS, it has 
been regarded as a new potential prebiotic that exhibits excellent regulatory effects on 
intestinal bacteria and has been applied in various industries, such as food, agriculture, 
and medicine (14). For instance, COS shows antioxidant capacity by nourishing beneficial 
bacteria such as Lactobacillus and Lactococcus (15), and its anti-inflammatory effect is 
related to the enrichment of Akkermansia, which promotes the repair of inflammatory 
regions in mice (16). Additionally, COS treatment reduces the population of the bacterial 
community as a whole and increases the production of acetic acid. One in vivo study 
demonstrated that in mice, COS treatment promoted the population of Bacteroidetes 
but inhibited the Proteobacteria phylum. In the diabetic db/db mouse model, COS 
relieved gut dysbiosis by promoting Akkermansia and suppressing Helicobacter (17). 
However, the effect of COS on gut homeostasis remains unknown.

With its genetic amenability, strong conservation of cellular signaling pathways that 
regulate immune responses, and relatively simple composition of enteric microbes, 
the intestine of the Drosophila melanogaster is an ideal model system for investigat­
ing intestinal homeostasis (18). In this experiment, COS was fed on female D. mela­
nogaster after the H2O2 challenge to evaluate the physiological status including the 
lifespan and structural and chemical immune homeostasis. The composition of intestinal 
microflora was examined to evaluate microorganism homeostasis for the H2O2-induced 
D. melanogaster. Finally, RNAi, sterile, and gnotobiotic stressful D. melanogaster were 
cultured to explore their relative mechanisms.

RESULTS

The effects of COS on the lifespan and antioxidant capacity of normal D. 
melanogaster under oxidative stress status

After 84 h of H2O2 treatment, the survival rate of female fruit flies in the Z-H2O2 group 
decreased to 56.25% (Fig. 1A), whereas those fed 0.0625%, 0.125%, 0.25%, and 0.5% 
COS were 68.75%, 82.50%, 86.25%, and 57.50%, respectively. Compared with the Z-H2O2 
group, the mean lifespan of female flies fed COS increased by 17.68% (P < 0.01), 22.22% 
(P < 0.01), 25.76% (P < 0.01), and 0.38% (P > 0.05); the median lifespan significantly 
increased by 20.00% (P < 0.05), 23.33% (P < 0.05), 25.00% (P < 0.05), and 1.67% (P > 0.05); 
and the maximum lifespan increased by 17.50% (P < 0.01), 12.50% (P < 0.05), 37.50% (P < 
0.001), and 2.50% (P > 0.05) (Fig. 1B). Therefore, 0.25% COS in the medium (COS-3) group 
could effectively alleviate the induced injury in female D. melanogaster by H2O2 and was 
used as the experimental group in the subsequent study. Compared with the Z-H2O2 
group, the superoxide dismutase (SOD) activity in the tissues of female D. melanogaster 
fed 0.25% COS increased by 46.42% (P < 0.05), the catalase (CAT) activity increased by 
136.41% (P < 0.05), and the malondialdehyde (MDA) content decreased by 55.37% (P < 
0.0001) (Fig. 1C).

The effects of COS on the intestinal mechanical barrier of structural homeo­
stasis of female D. melanogaster under oxidative stress status

The Smurf test showed the lower intestinal leakage of D. melanogaster in the Z-SUC 
group (Fig. 2A), but compared with the Z-H2O2 group, the leakage rate of the COS-3 
group showed a 58.8% (P < 0.001) reduction in Smurf flies according to the average 12%, 
28%, and 68% leakage rate of Z-SUC, Z-H2O2, and COS-3 group, respectively (Fig. 2B). The 
intestinal tract of healthy fruit flies was long and symmetrical in the Z-SUC group (Fig. 
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2C), and the average intestinal length of D. melanogaster in the Z-SUC group was 
3135 µm and that in the COS-3 group was 2415 µm, which was prolonged by 44.1% (P < 
0.001) in contrast to the 1677-µm intestinal length in the Z-H2O2 group (Fig. 2D). The 
fluorescence density showed that, compared with the Z-H2O2 group, COS significantly 
reduced the number of dead intestinal epithelial cells stained by 7-ADD with 52.50% (P < 
0.01) in Fig. 2E, and the difference could be found in Fig. 2G according to the red 
fluorescent brightness between the two groups. Compared with that in the Z-H2O2 
group, the dlg1 protein content in the COS-3 group was significantly increased by 
45.45% (P < 0.05) in Fig. 2F with the difference of green fluorescent brightness of the two 
groups (Fig. 2H). These results indicated that COS plays an important role in protecting 
the intestinal mechanical barrier.

The regulating effects of COS on the intestinal stem cell (ISC) proliferation 
and differentiation of structural homeostasis of female D. melanogaster 
under oxidative stress status

The esg-Gal4;UAS-GFP and upd-Gal4;UAS-GFP D. melanogaster, respectively, carried 
green fluorescent protein (GFP) reporter genes in the genome of precursor cells and 
intestinal cells including enteroblast (EB) and enterocyte (EC) cells. The number of GFP-
positive cells, precursor cells, in the COS-3 group was significantly lower than that in the 

FIG 1 The effect of COS on the lifespan and antioxidant capacity of female D. melanogaster induced by H2O2. (A, B) Survival curve and mean lifespan, median 

lifespan, and maximum lifespan of female flies from the Z-SUC, Z-H2O2, 0.0625%, 0.125%, 0.25%, and 0.5% COS groups. (C) SOD and CAT activities and the MDA 

content of female flies from Z-H2O2, Z-SUC, and COS-3 (0.25%) groups. The results are expressed as the mean ± SEM (n = 3), and ns, *, **, ***, and **** indicate P > 

0.05, P < 0.05, P < 0.01, P < 0.001, and P < 0.0001, respectively.
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FIG 2 The effect of COS on intestinal structural homeostasis in D. melanogaster induced by H2O2. (A, B) Smurf staining and percentage of intestinal leakage. (C, 

D) The shape diagram and length of the intestine. (E, G) The fluorescence density and brightness of dead cells on the intestinal epithelium stained by 7-ADD. (F, 

H) The fluorescence intensity and brightness of dlg1 protein between the intestinal cells stained by anti-Dlg1 protein. The results are expressed as the mean ± 

SEM (n = 3), and *, **, ***, and **** indicate P > 0.05, P < 0.05, P < 0.01, P < 0.001, and P < 0.0001, respectively.
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Z-H2O2 group by 34.1% (P < 0.001) in Fig. 3C according to the green fluorescent bright­
ness of the two groups (Fig. 3A). The number of GFP-positive cells, intestinal cells in the 
COS-3 group, was significantly lower than those in the Z-H2O2 group by 23.9% (P < 0.001) 
in Fig. 3D according to the green fluorescent brightness of the two groups (Fig. 3B). 
Additionally, compared with the Z-H2O2 group, the gene expression levels of Spitz, 
Keren, and Vein ligands of epidermal growth factor receptor (EGFR) signaling pathway in 
the COS-3 group significantly decreased by 30.32% (P < 0.001), 44.69% (P < 0.01), and 
46.49% (P < 0.01), respectively, and those of JAK and STAT in the JAK/STAT signaling 
pathway and its ligands Upd1, Upd2, and Upd3 were significantly decreased by 22.31% 
(P < 0.01), 28.06% (P < 0.05), 33.13% (P < 0.001), 43.34% (P < 0.01), and 41.87% (P < 0.001) 
in the COS-3 group, respectively (Fig. 3E). Compared with the Z-H2O2 group, the tran­
scription level of the target gene, Scos-36E, of the JAK/STAT signaling pathway also 
decreased by 48.75% (P < 0.05). The addition of COS can reduce the expression of related 
genes in the EGFR and JAK/STAT signaling pathways, which can decrease the prolifera­
tion and differentiation of intestinal stem cells.

The effects of COS on intestinal chemical immune homeostasis of female D. 
melanogaster under oxidative stress status

Compared with the Z-H2O2 group, the level of reactive oxygen species (ROS) in D. 
melanogaster fed COS decreased by 56.9% (P < 0.01) in Fig. 4A, and there is a significant 
difference in Fig. 4C according to the red fluorescent brightness of the two groups 
with dihydroethidium (DHE) staining, which indicated that COS has a positive effect 
on scavenging excess ROS caused by oxidative stress. In the Z-SUC group, there were 
fewer lysosomes in the intestinal tract of D. melanogaster based on the green fluorescent 
brightness in Fig. 4B, and the height of the column in Fig. 4D, but the lysosomal content 
in the intestinal cells increased after the stimulation with H2O2 in the Z-H2O2 group (Fig. 
4B). Compared with the Z-H2O2 group, the average fluorescence density of lysosomes 

FIG 3 The effect of COS on stem cell homeostasis in female D. melanogaster induced by H2O2. (A, B) Green fluorescence images of precursor cells and intestinal 

cells, which respectively contained the GFP genes in the genome. (C, D) Average green fluorescence density of precursor cells and intestinal cells. (E) The 

expression levels of ligand genes in the EGFR and JAK/STAT signaling pathway. The results are expressed as the mean ± SEM (n = 3), and *, **, ***, and **** 

indicate P > 0.05, P < 0.05, P < 0.01, P < 0.001, and P < 0.0001, respectively.
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in the COS-3 group decreased by 56.34% (P < 0.0001) in Fig. 4D, indicating that COS 
can effectively alleviate H2O2-induced intestinal damage in female D. melanogaster. H2O2 
treatment significantly increased the expression of the intestinal immune deficiency 
(IMD) signaling pathway (Fig. 4E). Compared with the Z-H2O2 group, the expression 
of the Attacin A, Cecropin C, Defensin, Diptercin, IMD, and Relish genes significantly 
decreased by 70.11% (P < 0.01), 46.79% (P < 0.05), 29.52% (P < 0.05), 91.81% (P < 0.0001), 
36.78% (P < 0.05), and 32.72% (P < 0.05), respectively, in the COS-3 group (Fig. 4E), 
indicating that COS could reduce the expression of antibacterial peptide genes in D. 
melanogaster induced by H2O2.

The regulation of COS on the intestinal microflora of female D. melanogaster 
under oxidative stress status

According to the α-diversity analysis, the Shannon (Fig. 5A) and Simpson indices (Fig. 
5B) in the COS-3 group increased by 17.14% (P < 0.05) and 23.65% (P < 0.001), respec­
tively, compared with those in the Z-H2O2 group. β-Diversity analysis using non-metric 
multidimensional scaling (NMDS) showed that there were separated regions between 
the Z-SUC and COS-3 groups (Fig. 5C), and the Z-H2O2 group had a wider distribution 
range of intestinal microorganisms, which indicated that COS could significantly change 
the distribution pattern of intestinal microflora.

According to the linear discriminant analysis effect size (LEfSe) analysis (Fig. 5D), 
the dominant microorganisms in the COS-3 group included Cocuria, Micrococcales, 
and Lactobacillus plantarum, and the dominant microorganisms of the Z-H2O2 group 
included Collins, Coriobacteriaceae, Brevibacillus, and Phyllobacterium. Compared with 
those in the Z-H2O2 group, the intake of COS decreased the relative abundance of 
Proteobacteria from 83.07% to 72.57% (P < 0.05), respectively, and increased the 

FIG 4 The effect of COS on ROS and lysosome content in the intestinal cells and gene expression of the IMD signaling pathway of female D. melanogaster 

induced by H2O2. (A, C) DHE staining and average fluorescence density of ROS in the intestinal cells. (B, D) LysoTracker Red staining and average fluorescence 

density of lysosomes in the intestinal cells. (E) The gene expression level of the IMD signaling pathway. The results are expressed as the mean ± SEM (n = 3), and *, 

**, ***, and **** indicate P > 0.05, P < 0.05, P < 0.01, P < 0.001, and P < 0.0001, respectively.
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abundance of Firmicutes and Bacteroides from 9.30% to 13.06% (P < 0.05) and 1.13% 
to 1.37% (P > 0.05) at the phylum level (Fig. 5E). At the family level (Fig. 5F), Burkholde­
ria, Pseudomonas, Anaplamataceae, Caulobacteraceae, Comamonia, and Lactobacilliaceae 
dominated the system, and the abundance of Lactobacilliaceae had a significant change 
with COS supplement. Compared with the Z-H2O2 group, Lactobacilliaceae abundance 
increased by 166.07% (P < 0.01) in the COS-3 group. The above results indicated that 
the COS intake could significantly regulate the intestinal microflora and promote the 
colonization of beneficial bacteria.

The role of intestinal microflora in alleviating intestinal injury in female D. 
melanogaster under oxidative stress status

The 16S rRNA sequencing analysis showed that dietary supplementation with COS 
increased the intestinal microbial diversity of female flies. However, there were no 
significant differences in the survival curve (Fig. 6A1), lifespan (Fig. 6A2), intestinal 
leakage (Fig. 6A3), length (Fig. 6A4), epithelial cell mortality (Fig. 6A5), SOD activity, (Fig. 
6A6), CAT activity (Fig. 6A7), or MDA content (Fig. 6A8) of sterile D. melanogaster between 
the Z-H2O2 and COS-3 groups. Additionally, according to the gnotobiotic D. melanogaster 
experiment, there were significant differences in the survival curve (Fig. 6B1), lifespan 
(Fig. 6B2), intestinal leakage (Fig. 6B3), length (Fig. 6B4), epithelial cell mortality (Fig. 6B5), 
SOD activity (Fig. 6B6), CAT activity (Fig. 6B7), and MDA content (Fig. 6B8) between the 
Z-H2O2 and COS-3 groups. Therefore, it is suggested that the intestinal microflora plays 
an important role in protecting the intestines of female flies induced by H2O2.

The effect of COS on the intestinal signaling pathway of female D. mela­
nogaster under oxidative stress status

Compared with those of the Z-H2O2 group, the expression levels of the AMPKα, Atg1, 
Atg5, and Atg8a genes were significantly downregulated by 31.12% (P < 0.05), 56.85% 
(P < 0.0001), 53.42% (P < 0.001), and 53.44% (P < 0.01), respectively, in female D. 
melanogaster treated with H2O2 in the COS-3 group (Fig. 7A), which indicated that COS 
could alleviate excessive autophagy in the intestine. Compared with those in the Z-H2O2 
group, the expression levels of the GCL, GSTS, Nrf2, and SOD genes in the COS-3 group 
were increased by 39.51% (P < 0.05), 36.01% (P < 0.05), 55.65% (P < 0.01), and 65.13% 
(P < 0.01), respectively (Fig. 7B). There was no significant difference in the survival curve 
(Fig. 7C1 and D1), lifespan (Fig. 7C2 and D2), and intestinal leakage (Fig. 7C3 and D3) of 
AMPKɑ/Nrf2-RNAi flies between the Z-H2O2 and COS-3 groups.

DISCUSSION

The intestinal barrier can be divided into mechanical, chemical, and biological compo­
nents that form the basis of intestinal homeostasis. The mechanical barrier consists 
of intact intestinal mucosal epithelial cells and tight junction proteins, which can 
prevent the invasion of bacteria and macromolecules (19), and the homeostasis of 
mucosal epithelial cells is based on the delicate regulation of epithelial proliferation 
and differentiation. The chemical immune barrier refers to the intestinal fluid, associated 
proteases, and large amounts of organic acids produced by diverse gut microbiota (20) 
and includes ROS, AMP, and lysosomes in epithelial cells. The biological barrier consists 
of anaerobic bacteria in the intestinal tract that can withstand colonization by both 
pathogenic and exogenous bacteria, collectively referred to as gut microbiota (21). In 
the experiment, when the female D. melanogaster suffered from oxidative stress via the 
digestive tract, its lifespan was significantly affected, in contrast to that in the Z-SUC 
group. A certain concentration of COS could significantly extend the lifespan of female 
D. melanogaster in oxidative stress status with improving antioxidant capacity (Fig. 1). 
However, it is necessary to elucidate how COS ameliorates intestinal stress because H2O2 
induction can seriously damage the intestine.

First, COS had a significant protective effect on the mechanical barrier of the 
intestine in D. melanogaster treated with H2O2. COS reduced the intestinal leakage of D. 
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melanogaster under oxidative stress and increased the length of the damaged intestinal 
tract (Fig. 2B and D), indicating that intestinal injury under the action of COS was 
relatively light, which was reflected in the mortality of intestinal cells and the increased 
content of dlg1 protein among intestinal cells (Fig. 2E and F), while the intestinal barrier 
was maintained at the level of cell connection, including adhesive connection and spacer 
connection, which had been tested and consistent with the reported conclusion that 
the loss of dlg1 protein in D. melanogaster represents the failure of barrier function 
(22). A more complete intestinal barrier could have an intimate relationship with the 
proliferation and differentiation homeostasis of intestinal ISCs. According to a previous 
report, the oxidative burst induced by the host consecutive to Ecc15 infection is a 
major inducer of ISC activation, and infection with this bacterium activates both the 
JAK-STAT and c-Jun NH2 terminal kinase (JNK) pathways in ISCs to promote proliferation 
(23). Additionally, the excessive generation of ROS with aging may contribute to the 
excessive proliferation and differentiation of intestinal stem cells, thereby impairing gut 
homeostasis and affecting the lifespan (24). In this experiment, the addition of COS 

FIG 5 The effect of COS on the intestinal microflora in female D. melanogaster induced by H2O2. (A, B, C) Shannon and Simpson indices, and the NMDS analysis. 

(D) LEfSe diagram. (E, F) The phylum and family levels. The results are expressed as the mean ± SEM (n = 3), and ns, * and *** indicate P > 0.05, P < 0.05, and P < 

0.001, respectively.
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FIG 6 The effect of COS on the lifespan, intestinal structure, and oxidation level of sterile (A) and 

gnotobiotic (B) D. melanogaster. (A1, B1) Survival curve. (A2, B2) Mean, median, and maximum lifespan. 

(A3, B3)The percentage of intestinal leakage with Smurf trial. (A4, B4) Intestinal length. (A5, B5) The 

fluorescence density of dead cells on the intestinal epithelium. (A6, B6) SOD activity. (A7, B7) CAT activity. 

(A8, B8) MDA content. The results are expressed as the mean ± SEM (n = 3), and ns, *, **, ***, and **** 

indicate P > 0.05, P < 0.05, P < 0.01, P < 0.001, and P < 0.0001, respectively.
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reduced the expression of genes related to the EGFR and JAK/STAT signaling pathways 
(Fig. 3E), which could decrease the activity of intestinal stem cells (Fig. 3C). At the same 
time, the number of precursor cells and enteroblast cells progressively showed a low 
level of stem cell proliferation and differentiation in the intestine of D. melanogaster in 
the COS-3 group (Fig. 3D), which promoted intestinal structural homeostasis to protect 
the intestinal mechanical barrier of D. melanogaster under oxidative stress. COS had a 
significant protective effect on the chemical barrier of the intestine in D. melanogaster 
treated with H2O2.

Second, studies have shown that innate immunity is crucial for maintaining intestinal 
homeostasis and is conserved between invertebrates and vertebrates (25, 26). COS 

FIG 7 The effect of COS on the gene expression of the intestinal signaling pathway of induced female D. melanogaster, and physiological performance of female 

AMPKɑ and Nrf2-RNAi D. melanogaster induced by H2O2. (A, B) The gene expression of autophagy and antioxidant signaling pathway in the regular female flies. 

(C1, D1) Survival curve of female AMPKɑ and Nrf2-RNAi flies. (C2, D2) The lifespan of female AMPKɑ and Nrf2-RNAi flies. (C3, D3) Percentage of intestinal leakage 

with Smurf+ trial for female AMPKɑ and Nrf2-RNAi flies. The results are expressed as the mean ± SEM (n = 3), and ns, *, **, ***, and **** indicate P > 0.05, P < 0.05, P 

< 0.01, P < 0.001, and P < 0.0001, respectively.
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reduced the expression of antimicrobial peptide (AMP)-related genes (Fig. 4E) and 
lysosome numbers (Fig. 4D) and increased the scavenging of excess ROS (Fig. 4C) in 
D. melanogaster induced by H2O2. AMPs, as well as ROS produced by dual oxidase 
(DUOX), are key substances in the innate immune system (27). In D. melanogaster, the 
Toll and IMD pathways are two major signaling pathways involved in innate immune 
responses (28), which could control the expression of AMPs (29). Usually, the Gram-
negative bacterial infection results in the expression of another set of AMPs, such 
as Attacin A, Cecropin C, Defensin, and Diptercin through activating the IMD signaling 
pathway (30). Additionally, lysosomes are single membrane-bound organelles containing 
acid hydrolysates as the products of cell autophagy, which is a process that removes 
the damaged proteins and organelles from cells under oxidative stress and plays an 
important role in maintaining intestinal homeostasis (31). Therefore, the lysosome 
reduction suggests that COS can effectively alleviate H2O2-induced intestinal injury in 
female D. melanogaster by decreasing the autophagy intensity.

Finally, COS had a significant regulatory effect on the biological barrier of the intestine 
in D. melanogaster treated with H2O2. The intestinal microflora participates in host food 
digestion, metabolic adaptation, and immune system regulation (32). According to the 
16S rDNA sequencing analysis, COS promoted the diversity of intestinal microflora (Fig. 
5A and B) and concentrated them in relatively compact areas (Fig. 5C), indicating that 
COS could significantly change the distribution pattern of intestinal microflora. In the 
LEfSe diagram, the dominant flora of the COS-3 group was Lactobacillus plantarum 
(Fig. 5D), which can produce bacteriostatic substances, such as lactic acid, acetic acid, 
and AMPs (33, 34). The dominant bacteria in the Z-H2O2 group included the genus 
Collins, the family Coriobacteriaceae, the genus Brevibacilli, and the genus Phyllobacte­
rium (Fig. 5D). Vandeputte et al. reported that the genus Collins is highly abundant in 
the intestines of constipated people (35). Coriobacteriaceae has been shown to be related 
to obesity-related metabolic parameters (33, 36). At the phylum level, COS can reduce 
the relative abundance of Proteobacteria while increasing the abundance of Firmicutes 
and Bacteroides (Fig. 5E). When the abundance of Proteus increases, the probability 
of intestinal microflora disorders could lead to inflammatory reactions (37). Firmicutes 
can decompose some dietary fibers, which play an important role in health (38, 39). 
At the same time, the increase in Firmicutes could promote the content of secondary 
bile acids, thereby playing an immunomodulatory role (40). Additionally, Bacteroides 
are anaerobic bacteria that can produce short-chain fatty acids that provide energy for 
intestinal repair, protect intestinal barriers, and inhibit inflammatory responses (41). At 
the family level, the abundance of Lactobacilli significantly increased after ingestion of 
COS (Fig. 5F), which is the most common indicator to determine whether the intestinal 
tract is healthy (42). The above results indicated that the intake of COS can increase 
the colonization of beneficial bacteria in the intestinal tract while reducing the harmful 
bacteria in the intestine of female D. melanogaster under oxidative stress to maintain 
intestinal homeostasis. Furthermore, sterile and gnotobiotic D. melanogaster exposed to 
oxidative stress verified that COS supplementation plays a key role by regulating the 
composition of intestinal microorganisms, affecting the intestinal structure and oxidative 
level (Fig. 6A and B).

Collectively, H2O2 can cause intestinal epithelial damage and increase cell death 
by stimulating the intestinal tract of D. melanogaster, which shortens the lifespan of 
fruit flies. However, promoting intestinal homeostasis and reducing epithelial barrier 
dysfunction contribute to lifespan extension (43, 44), and enhancing ROS scavenging 
improves intestinal homeostasis, which could promote body health and retard aging 
(45). Nrf2 is considered to be an important factor in maintaining the redox balance 
of cells (46), and it has been reported that H2O2-induced oxidative stress adaptation 
strongly depends on the increase in the 20S proteasome mediated by the Nrf2 
transcription factor (47, 48). Therefore, the Keap1-Nrf2 signaling pathway can enhance 
their resistance to external stress (49). Additionally, the autophagy signaling pathway 
could maintain energy homeostasis by decomposing intracellular components (50). 
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While excessive autophagy can also cause adverse effects on biological individuals, 
its balance is important for maintaining intestinal homeostasis (51). In the experiment, 
the gene expression levels of autophagy and Keap1-Nrf2 signaling pathway indicated 
a significant difference between the COS-3 and Z-H2O2 groups (Fig. 7A and B), which 
showed that COS could downregulate the autophagy signaling pathway and promote 
the Keap1-Nrf2 signaling pathway. These results may be due to the regulation of 
gut microbiota and activation of antioxidant pathways with COS supplement, which 
alleviates the damage caused by H2O2, while the reduction of damage could down­
regulate the expression of autophagy genes. Furthermore, AMPKα and Nrf2-RNAi D. 
melanogaster did not exhibit higher survival rate in the AMPKα and Nrf2-RNAi-COS-3 
groups in contrast with those in the AMPKα and Nrf2-RNAi-Z-H2O2 groups (Fig. 7C and 
D). The above results have progressively proven that COS can activate the antioxidant 
defense system and repress autophagy signaling to maintain intestinal homeostasis.

In conclusion, the 0.25% COS in the medium significantly prolonged the lifespan 
of D. melanogaster  by improving the intestinal structure, regulating chemical 
immunity, inhibiting the proliferation and differentiation of intestinal stem cells,  and 
enhancing the activity of antioxidant enzymes in the body. The protective effect of 
COS on the intestinal barrier of D. melanogaster  under oxidative stress is directly 
related to its regulation of the intestinal microflora, which could decrease excessive 
autophagy and activate the antioxidant system to promote intestinal homeostasis. 
These results provide new insights into the mechanisms through which prebiotics 
affect intestinal homeostasis.

MATERIAL AND METHODS

Oligosaccharide and chemicals

COS with deacetylation degrees greater than 95% came from Dalian Glycobio Co., 
Ltd. (Dalian, China). Glucosamine was the only monosaccharide, and two to eight DP 
oligomers (Mw ≈856 Da) comprised 33.6% disaccharides, 16.9% trisaccharides, 15.8% 
tetrasaccharides, 12.4% pentasaccharides, 8.3% hexasaccharides, 7.1% heptasaccharides, 
and 5.9% octasaccharides. Reagents for culture medium included sucrose, maize flour, 
AGAR powder, and yeast powder (Hangzhou Best Biological Technology Co., Ltd). 
Chemicals of analytical grade in the experiment included the 4',6-diamidino-2-phenylin­
dole (DAPI, Beijing Solarbio Science & Technology Co., Ltd.), DHE and Lyso-Tracker Red 
(LTR, Shanghai 4A Biotech Co., Ltd), enoglaucine disodium salt (Sigma Co., Ltd, USA), 
anhydrous ethanol (Shanghai Cloud Chemical Co., Ltd.), propionate, and glacial acetic 
acid (Hangzhou Gaojing Fine Chemical Co., Ltd.). Antibodies included mouse anti-Dlg1 
protein (4F3 Discs86 large, 1:200, Abcam) and anti-mouse Alexa Fluor-48887 (ab150113, 
Abcam). The antioxidant assay kits included SOD, CAT, and MDA (Nanjing Jiancheng 
Bioengineering Co., Ltd). The gene-detecting kits included TB Green Premix Ex Taq, 
RNAiso Plus, and PrimeScript RT with gDNA Eraser (Beijing Subsection of TAKARA BIO 
Inc.).

D. melanogaster strains and maintenance

D. melanogaster of CS lines (Drosophila Stock Center, Shanghai Academy of Life 
Sciences, Chinese Academy of Sciences), NP3084-gal4 flies (Number: DGRC113094, 
Drosophila Genetics Resource Center), UAS-AMPK/Nrf2 (CncC)-RNAi flies (Number: 
THU5248/TH04336.N, Tsinghua University Drosophila Stocks Center), esg-Gal4;UAS-
GFP/CyO (Number: TB00044, Fungene Biotechnology Co., Ltd.), and upd3-GAL4;UAS-
GFP/CyO (Number: THJ0199, Fungene Biotechnology Co., Ltd.) flies were cultured in the 
environment of 25°C and 55% relative humidity with a 12 h light/12 h dark cycle. AMPKɑ/
Nrf2-RNAi, sterile, and gnotobiotic flies were prepared according to our previous method 
(52).
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Female D. melanogaster model of oxidative stress and its lifespan and 
antioxidant capacity

The anesthetized flies (within 8 h of birth) were randomly divided into the Z-SUC 
and Z-H2O2 and COS-1, COS-2, COS-3, and COS-4 groups and cultured on basal diets 
supplemented with 0 and COS at different concentrations of 0.0625%, 0.125%, 0.25%, 
and 0.5% to produce experimental flies. Two hundred newborn flies, respectively, from 
the Z-SUC, Z-H2O2, and each COS group were collected into a tube with filter paper 
containing 5% SUC, 5% SUC +3% H2O2, and 5% SUC +3% H2O2 + 0.0625%, 0.125%, 
0.25%, and 0.5% COS solution. The survival rate, lifespan, and antioxidant capacity were 
examined according to our previous method (52).

The mechanical barrier assay of female D. melanogaster intestine

The intestinal length, permeability, and survival rate of intestinal cells were examined 
according to our previous method (53). Immunostaining for the dlg1 protein assay was 
implemented as described previously with some modifications (54). Intestinal samples 
fixed with 4% paraformaldehyde for 30 min were rinsed with PBS + 0.5% Triton (PBS-Tx) 
for 5 min three times. Blocking was performed with 3% BSA in PBS-Tx for 30 min. 
Primary antibody (mouse anti-dlg1 protein, the Developmental Studies Hybridoma 
Bank) was added 1:200 in 3% BSA in PBS-Tx and incubated at 4°C overnight. The 
intestinal samples were rinsed three times with PBS-Tx for 5 mins. For the secondary 
antibody incubation, anti-mouse AlexaFluor-488 (ab150113, Abcam) was added 1:4,000 
in 3% BSA in PBS-Tx for 10 h at 4°C. Samples were rinsed five times with PBS-Tx for 
5 min and were stained with DAPI (1 µg/ml) for 6–7 min at room temperature. The 
samples were washed four times with PBS-Tx for 3 min. The intestines were mounted 
and observed under a fluorescence microscope. ImageJ was used to quantify the dlg 
protein intensity. Intestinal stem cell proliferation and differentiation were detected in 
esg-Gal4;UAS-GFP/CyO and upd3-GAL4;UAS-GFP/CyO flies. The intestines were dissected 
and immediately fixed in 4% paraformaldehyde. The cells were then washed three times 
with PBS. The intestines were then washed with PBS three times, stained with 1 µg/ml 
DAPI, washed with PBS five times, and observed under a fluorescence microscope. 
ImageJ software was used to measure the fluorescence of the GFP+ cells.

The chemical immune homeostasis of assay of female D. melanogaster 
intestine

The ROS were examined using our previous DHE method (53). LTR was used to achieve 
specific fluorescent labeling of the lysosomes. Briefly, the intestinal samples were fixed 
with 4% paraformaldehyde for 30 min. PBS solution was used to wash the samples three 
times. LTR (50 nM) needs to be preheated at 37°C for 10 min before use. After combining 
with LTR for 5 min, the intestines were washed three times with PBS. Next, the intestines 
were stained with DAPI (1 µg/ml) for 7–8 min, washed five times with PBS, and mounted 
with 70% glycerol. Finally, they were observed using a fluorescence microscope, and 
ImageJ software was used to quantify the fluorescence intensity.

Determination of gene expression and 16S rDNA analysis of microorganisms 
in the intestine

Total RNA was prepared and reversely transcribed into the cDNA template, and RT-PCR 
and Primer sequences were performed according to our previous method (53). DNA 
samples were extracted, and the V3-V4 regions were amplified according to our previous 
method (53). The 16S rDNA sequencing of the amplicon pools was executed on a 
NovaSeq PE250 platform by Library Quantification Kit for Illumina (Kapa Biosciences, 
USA), and the size and quantity were assessed using an Agilent 2100 Bioanalyzer 
(Agilent, USA). QIIME2 and R language (v3.5.2) were, respectively, used to evaluate α- 
and β-diversity and draw the figures.
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Statistical analysis

The data statistics and images were, respectively, analyzed using GraphPad Prism 
9.0 (GraphPad Software, San Diego, USA) and ImageJ (National Institutes of Health, 
Bethesda, USA). Differences were determined using the one-way analysis of variance and 
Tukey’s multiple comparison test. All data are indicated as mean ± SEM and based on 
three replicates in each group, and statistical significance was set at P < 0.05.
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