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ABSTRACT Haemophilus and Aggregatibacter are two of the most common bacterial 
genera in the human oral cavity, encompassing both commensals and pathogens of 
substantial ecological and medical significance. In this study, we conducted a metapan
genomic analysis of oral Haemophilus and Aggregatibacter species to uncover genomic 
diversity, phylogenetic relationships, and habitat specialization within the human oral 
cavity. Using three metrics—pangenomic gene content, phylogenomics, and average 
nucleotide identity (ANI)—we first identified distinct species and sub-species groups 
among these genera. Mapping of metagenomic reads then revealed clear patterns of 
habitat specialization, such as Aggregatibacter species predominantly in dental plaque, 
a distinctive Haemophilus parainfluenzae sub-species group on the tongue dorsum, and 
H. sp. HMT-036 predominantly in keratinized gingiva and buccal mucosa. In addition, we 
found that supragingival plaque samples contained predominantly only one out of the 
three taxa, H. parainfluenzae, Aggregatibacter aphrophilus, and A. sp. HMT-458, suggest
ing independent niches or a competitive relationship. Functional analyses revealed the 
presence of key metabolic genes, such as oxaloacetate decarboxylase, correlated with 
habitat specialization, suggesting metabolic versatility as a driving force. Additionally, 
heme synthesis distinguishes H. sp. HMT-036 from closely related Haemophilus haemo
lyticus, suggesting that the availability of micronutrients, particularly iron, was impor
tant in the evolutionary ecology of these species. Overall, our study exemplifies the 
power of metapangenomics to identify factors that may affect ecological interactions 
within microbial communities, including genomic diversity, habitat specialization, and 
metabolic versatility.

IMPORTANCE Understanding the microbial ecology of the mouth is essential for 
comprehending human physiology. This study employs metapangenomics to reveal that 
various Haemophilus and Aggregatibacter species exhibit distinct ecological preferen
ces within the oral cavity of healthy individuals, thereby supporting the site-specialist 
hypothesis. Additionally, it was observed that the gene pool of different Haemophi
lus species correlates with their ecological niches. These findings shed light on the 
significance of key metabolic functions in shaping microbial distribution patterns and 
interspecies interactions in the oral ecosystem.

KEYWORDS Haemophilus, Aggregatibacter, pangenomics, metagenomics, metapange
nomics, tropism, site-specialists

T he human oral microbiome comprises bacteria that have specifically evolved to 
inhabit the oral environment. Bacteria that dominate in the human mouth are 

generally rare in the gut or on the skin, and vice versa (1–3), and many oral species have 
strong preferences for specific habitats within the mouth, such as the hard surfaces of 
teeth or soft tissues of the tongue (4–6). These habitats, together with disturbances from 
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oral hygiene and dietary practices, shape the distribution, interactions, and specializa
tions of bacterial taxa, resulting in distinct microbial profiles tailored to each niche 
(7).

Among the numerous bacterial genera found in the human oral cavity, Haemophilus 
and Aggregatibacter are two of the most common, accounting for a significant propor
tion of bacteria at most oral sites (7–9). These genera, belonging to the family Pasteur
ellaceae, encompass both commensals and pathogens with substantial ecological and 
medical significance (10). For example, Haemophilus parainfluenzae is one of the most 
abundant and transcriptionally active species in the human oral cavity (11). Conversely, 
Haemophilus influenzae is a significant opportunistic pathogen associated with various 
respiratory infections and is renowned for its role in numerous scientific advancements 
(10). Certain species of Aggregatibacter, such as Actinobacillus actinomycetemcomitans, 
have been strongly linked to periodontitis, a chronic inflammatory disease involving 
the loss of connective tissue and bone around teeth (12). Understanding the genomic 
diversity, habitat specialization, and metabolic versatility of Haemophilus and Aggregati
bacter within natural communities will be important for deconstructing the ecological 
interactions of the human oral microbiome.

The family Pasteurellaceae has undergone extensive taxonomic expansion and 
reorganization with the advent of molecular methods. Previously, Pasteurellaceae species 
were classified into three genera based on limited phenotypic markers: Haemophilus for 
species relying on growth factors in blood and Pasteurella or Actinobacillus for species 
without such dependence (13, 14). Certain species, such as Haemophilus influenzae and 
Haemophilus haemolyticus, require both haemin (X-factor) and nicotinamide adenine 
dinucleotide (V-factor), while others, such as H. parainfluenzae, only require V-factor. 
These growth requirements are often used for species differentiation, but recent studies 
suggest that molecular methods provide more accurate identification (10, 15). Contem
porary molecular methods have revealed significant genetic diversity within Haemo
philus, leading to the establishment of the genus Aggregatibacter to accommodate 
Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, and Haemophilus segnis 
as a group primarily associated with humans (16).

Presently, the Human Oral Microbiome Database (HOMD; www.ehomd.org) 
recognizes twelve Haemophilus species and four Aggregatibacter species. Among them 
are two recently isolated and unnamed species currently referred to as Human Microbial 
Taxon (HMT) 036, and HMT-458. Oligotyping using 16S rRNA gene sequences indicated 
that HMT-458 is a prevalent species present in multiple oral habitats (8). Conversely, 
oligotyping suggested that HMT-036 is a habitat specialist predominantly found on 
keratinized gingiva (8). However, drawing conclusions about ecological relationships 
based solely on short sequences of 16S rRNA is intrinsically limited. The increasing 
availability of whole genome sequences enables a more reliable analysis of taxonomic 
relationships and ecological distribution patterns.

In this study, we employ metapangenomics (5, 9), an innovative approach that 
combines metagenomics and pangenomics to comprehensively analyze the distribution, 
genetic diversity, and functional roles of Haemophilus and Aggregatibacter within the 
human oral microbiome. Specifically, we aim to investigate whether Haemophilus and 
Aggregatibacter species exhibit habitat specificity or have a broader range in the human 
oral cavity. We then aimed to identify core gene functions that may contribute to the 
oral site preferences of Haemophilus and Aggregatibacter species. By leveraging genomic 
and metagenomic information, we identified specific oral niches that provide favorable 
conditions for the growth of Haemophilus and Aggregatibacter species, shedding light on 
their metabolic pathways, their interactions with other members of the oral microbiome, 
and their overall contribution to the ecology of this microbial ecosystem.
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MATERIALS AND METHODS

The following analyses were conducted primarily using the Anvi’o v7.1 (17) platform with 
Python v3.7.9 (18). Figures were generated using R v4.1.2 (19) and manually edited using 
Inkscape v1.2.2 (20).

Haemophilus and Aggregatibacter reference genomes

To establish a reference genome collection representing Haemophilus and Aggregati
bacter populations in the human oral microbiome, we obtained publicly available RefSeq 
genomes from the National Center for Biotechnology Information (NCBI) database 
(downloaded on August 15, 2022) for Haemophilus and Aggregatibacter species that 
were isolated from human hosts. Out of the 1226 genome assemblies obtained, 1018 
were identified by the NCBI as Haemophilus and 208 as Aggregatibacter. Further details 
about the genomes, such as their genus, species, strain, BioSample, BioProject, isolation 
host, isolation site, RefSeq status, type strain, disease association, and submitter ID, can 
be found in Table S1.

We then performed quality control and dereplication steps to ensure that each 
genome in the collection had a completeness of at least 90%, had a contamination 
level below 5% as estimated by CheckM (21), and had no more than 98% average 
nucleotide identity (ANI) with any other genome (22). This process resulted in a set of 
188 high-quality reference genomes belonging to 17 species representing the diversity 
of Haemophilus and Aggregatibacter found in the human oral microbiome, as well as 14 
genomes that were only categorized to the genus level. In total, we used 202 genomes to 
construct the Haemophilus and Aggregatibacter pangenome.

Constructing an oral Haemophilus and Aggregatibacter pangenome

To construct the pangenome, we adapted previously developed methods (4–6, 9). First, 
we removed all contigs from each reference genome that were less than 300 nt and 
replaced non-canonical nucleotide letters with “N. We then converted each genome 
into an Anvi'o-compatible contigs database using anvi-gen-contigs-db. Open reading 
framesereafter referred to as genes, were identified in each genome using Prodigal 
(v2.6.3) (23). Functional annotation of genes was achieved using multiple Anvi'o scripts, 
including anvi-run-hmms to find bacterial single-copy genes (Bacteria71 SCG set) (24, 25) 
with hidden Markov Model (HMM) profiles, anvi-run-ncbi-cogs using blastp (v2.10.1+) to 
annotate with the cluster of orthologous genes (COGs) database (version COG20) (26), 
and anvi-run-pfams and anvi-run-kegg-kofams with hmmscan from HMMER (v3.3.1) (27) 
to functionally annotate with Pfams (v34.0) (28) and KOfams/ KEGG Modules (v97.0) (29), 
respectively. We then used anvi-pan-genome to construct the annotated pangenome 
using BLASTP to calculate the amino acid-level identity between all possible gene pairs, 
with weak matches removed using the minbit criterion of 0.5. The anvi-pan-genome 
program uses a Markov Cluster Algorithm to group genes into putatively homologous 
groups called “gene clusters.” We set the mcl-inflation parameter to 10 as suggested 
by Anvi’o for comparing very closely related genomes (https://merenlab.org/2016/11/08/
pangenomics-v2/). Amino acid sequences within gene clusters were aligned with 
MUSCLE (v3.8.1551) (30). Finally, we performed hierarchical clustering across gene 
clusters and genomes using Euclidean distance and Ward linkage. This resulted in a 
pangenome showing the distribution of core and accessory genes across the reference 
genomes.

Phylogeny, ANI, and comparison with GTDB

We constructed a phylogenetic tree based on the amino acid sequences of 71 bacterial 
single-copy core genes (24, 25). We first used the Anvi’o program anvi-get-sequences-for-
hmm-hits to align protein sequences using MUSCLE (v3.8.1551) (30), concatenate gene 
sequences, return only the most significant hit, and output amino acid sequences. Only 
genes that occurred in at least 50% of the genomes were used for the analysis, which 
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in this case included all 71 genes. We trimmed alignments using trimAl (31) with the 
setting “-gt 0.5” to remove all positions that were gaps in more than 50% of sequences. 
Maximum likelihood phylogenetic trees were then computed using IQ-TREE (32) with 
the WAG model (33) and 1000 bootstrap replicate support. We included a type strain 
genome for Escherichia coli (strain ATCC 11775; GCA_003697165.2) to root the trees. 
To estimate pairwise whole genome ANI between the selected reference genomes in 
the pangenome, we used the Anvi’o program anvi-compute-genome-similarity with the 
parameters “--program pyANI” and “--method ANIb.” To compare genomes against the 
classification in GTDB, we used GTDB-Tk (version 2.3.0) (34) with classify_wf and the R214 
reference data release.

Distribution of Haemophilus and Aggregatibacter genomes across human oral 
sites

We analyzed the distribution of natural populations of Haemophilus and Aggregatibacter 
species across human oral sites by mapping shotgun metagenomic sequences from the 
National Institutes of Health Human Microbiome Project (HMP) (35, 36) to our curated 
set of genomes. To obtain data from the HMP portal (https://portal.hmpdacc.org/), we 
searched for metagenomes using the following parameters: oral sites (buccal mucosa, 
supragingival plaque, subgingival plaque, dorsum of tongue, hard palate, palatine tonsil, 
throat, and saliva), Healthy Human Study (HHS), fastq files (FASTQ), and whole genome 
sequencing (wgs_raw_seq_set). The metagenomes consisted of ~100 bp paired-end 
reads that were sequenced from samples collected from nine oral sites in phases I and II 
of the HMP.

We performed quality filtering using iu-filter-quality-minoche,(37) which is based on 
recommendations from Minoche, Dohm, and Himmelbauer (38) for Illumina sequencing 
data. This resulted in a total of 2.5 billion quality-filtered metagenomic short reads from 
686 samples across nine different oral sites, including three main sites in the oral cavity 
with large sample sizes (the buccal mucosa (n = 183), supragingival plaque (n = 210), and 
tongue dorsum (TD) (n = 220)) and six other sites with smaller sample sizes (subgingival 
plaque (n = 19), keratinized gingiva (n = 14), hard palate (n = 1), palatine tonsil (n = 19), 
throat (n = 13), and saliva (n = 7)).

We competitively mapped individual quality-filtered metagenomic samples to a 
concatenated file of the selected reference genomes in the pangenome using bowtie2 
v2.4.1 (39) with the “--very-sensitive,” “--end-to-end,” and “--no-unal” flags. Competitive 
mapping assigns each mapped read to a single genome that provides the best match. 
BAM files were generated from the read alignment data using Samtools v1.9 (40), and 
the Anvi’o program anvi-single-profile was used to create a profile database containing 
coverage data for each metagenome. Profiles were then merged for each oral site using 
anvi-merge. We then extracted the mean depth of coverage and breadth of coverage 
for reads aligned to each genome using anvi-summarize. We classified a genome as 
detected in a metagenomic sample when the breadth of coverage was at least 50%. We 
then calculated the relative abundance of each detected genome by averaging its depth 
of coverage across nucleotide positions in which coverage was within the interquartile 
range (Q2Q3) and dividing by the total mean depth of Q2Q3 coverage for all reference 
genomes. We use the Q2Q3 quartiles of the mean depth of coverage to filter out outliers 
in coverage caused by mobile elements or other highly similar sequences shared among 
different taxa in the community. Only metagenomes in which at least one reference 
genome was detected were included in the calculation of relative abundance.

Functional analysis of detected Haemophilus and Aggregatibacter genomes 
across human oral sites

We analyzed the distribution of functional annotations from the NCBI COG, KEGG, and 
Pfam databases across genomes detected at various oral sites. We started by predicting 
the metabolic capabilities of each reference genome using the Anvi'o script anvi-
estimate-metabolism (with parameters: --kegg-output-modes modules). This function 
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determines the enzymes present in a genome using KEGG Orthologs (KOs). We used 
the default module completion threshold of 0.75, which scores a metabolic pathway 
(module) as “complete” within a genome when at least 75% of the KOs in a module are 
present. We then used the Anvi’o script anvi-compute-metabolic-enrichment to identify 
complete modules significantly enriched in one set of genomes compared to another. 
This script uses a generalized linear model with a logit link function to obtain enrichment 
scores and adjusted q-values for each combination of pairwise group comparisons. We 
also used the Anvi’o script anvi-compute-functional-enrichment to identify significantly 
enriched functional annotations from NCBI COG, KEGG, and Pfam, independent of 
metabolic pathway completeness. To determine whether the identified genes of interest 
were represented in oral metagenomes as well as in the reference genomes, we used 
anvi-get-split-coverages and a custom R script adapted from Utter et al. (9) to inspect the 
nucleotide coverage of these genes.

RESULTS

Oral Haemophilus and Aggregatibacter pangenome

The pangenome (Fig. 1) organized genomes based on hierarchic clustering of shared 
gene content. This clustering produced groups substantially concordant with the 
taxonomic names assigned by NCBI (illustrated in Fig. 1 through the color-coded 
genome layers), as well as the names assigned to genomes in the Genome Taxonomy 
Database (GTDB) (see Table S2), and the species of Haemophilus and Aggregatibacter 
recognized in the human oral cavity by HOMD. However, disparities were also evi
dent. One major group contained the entire Aggregatibacter genus plus Haemophilus 

FIG 1 Human oral Haemophilus and Aggregatibacter species pangenome constructed from (n = 202) NCBI RefSeq genomes. For all genomes, open reading 

frames (ORFs) were predicted, and NCBI blastp was used to calculate amino acid sequence similarity between all possible gene pairs, and a Markov Cluster 

Algorithm was used to cluster similar sequences to identify homologous genes (i.e., gene clusters). Gene clusters are colored by species and arranged based on 

their presence or absence across the genomes. Genomes are hierarchically clustered based on gene cluster frequency (i.e., the number of representatives of each 

gene cluster present in each genome), which is shown by the dendrogram on the left. This pangenomic analysis results in distinct groups by species and predicts 

the species identities of the unnamed Haemophilus genomes (H. sp.; colored gray) and Aggregatibacter genomes (A. sp.; colored tan).
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parahaemolyticus, Haemophilus paraphrohaemolyticus, Haemophilus sputorum, and 
Haemophilus ducreyi. The H. parainfluenzae group included two genomes potentially 
misclassified as H. influenzae, one Haemophilus pittmaniae genome, and seven Haemo
philus genomes identified in the NCBI only to the genus level as H. sp. Another group 
was composed primarily of H. haemolyticus genomes but also included a subgroup 
of H. seminalis, H. sp. HMT-036, one genome misclassified as H. influenzae and four 
Haemophilus genomes identified in the NCBI only to genus level. Genomes identified as 
H. influenzae clustered together.

Phylogenetic analysis based on single-copy core genes (SCG) was broadly concordant 
with the pangenomic groupings, although the arrangement of some genomes within 
specific groups differed slightly between the two methods of genomic organization (Fig. 
2A). One exception of a single H. influenzae genome was notable, where it appears 
differently positioned in the phylogenomic tree compared to the pangenomic tree. Upon 
examining the concatenated amino acid sequences for this genome, we discovered that 
69 out of the 71 extracted amino acid sequences presented an unusually high number 
of gaps, leading to its unusual placement between H. parainfluenzae and H. haemolyti
cus. This observation underscores the complexities and limitations of relying solely on 
phylogenomic approaches for determining genomic relationships and highlights the 
need for incorporating complementary methods, such as pangenomic analyses and 
average nucleotide identity assessments. Phylogenetic analysis was complemented by 
pairwise comparisons of genomic sequences using ANI. As depicted in Fig. 2B (also 
see Table S3), the overall ANI clustering pattern was congruent with both pangenomic 
and phylogenomic grouping. A threshold of 95% ANI appropriately delineated most 

FIG 2 (A) Phylogenomic and pangenomic tree comparisons of Haemophilus and Aggregatibacter reference genomes cluster genomes into the same 

species-level groups. Rectangle color indicates species. The phylogenomic tree was constructed using maximum likelihood with concatenated single-copy 

core genes. The pangenomic tree was constructed using the gene frequencies present in each genome. Lines connect rectangles that represent the same 

genome. (B) Average nucleotide identity (ANI) comparison of Haemophilus and Aggregatibacter reference genomes included in the pangenome. ANI represents 

genome-level similarity at the nucleotide level between any two genomes and reveals distinct species, corroborating the results of pangenome clustering. 

Rectangle color indicates species, as in panel A. The color scale denotes genome percent similarity: 100% is red, 95% is white, and 90% and below is blue.

Research Article Microbiology Spectrum

April 2024  Volume 12  Issue 4 10.1128/spectrum.04017-23 6

https://doi.org/10.1128/spectrum.04017-23


species boundaries, but disparities were also evident. For example, many H. parainfluen-
zae genomes had intraspecies ANI values below the 95% ANI threshold, suggesting the 
existence of distinct sub-species groups. Although no one measure of genomic similarity 
is without limitation, the three metrics taken together serve to provide a foundation for 
understanding the genomic relationships within the Haemophilus and Aggregatibacter 
genera.

Distribution of Haemophilus and Aggregatibacter genomes across human oral 
sites

Distinct taxa often exhibit varying ecological preferences and distributions within the 
human oral ecosystem. The presence or absence of sets of shared gene clusters 
characterizes these taxonomic groupings, and by mapping metagenomic reads, we can 
evaluate the distribution of these groups across sampled oral habitats. Pangenomic 
groups displayed markedly different distributions among oral sites (Fig. 3). Notably, 
Aggregatibacter genomes were detected solely or primarily in dental plaque, including A. 
aphrophilus, A. sp. HMT-458, A. segnis, and Aggregatibacter kilianii. The two genomes 
classified as A. sp. HMT-458 were detected in nearly 60% of supragingival plaque 
samples, highlighting the importance of this unnamed species of Aggregatibacter. One 
A. kiliani genome (strain PN491) and a Haemophilus massiliensis genome that clustered 
with Aggregatibacter genomes based on gene content, yet were highly divergent from all 
other genomes based on ANI and phylogeny, were undetected in any samples. Similarly, 
the periodontal disease-associated A. actinomycetemcomitans was also undetected in 
any sample, which was expected given that our samples were obtained from healthy 
subjects.

FIG 3 Detection plot of Haemophilus and Aggregatibacter species and strains in 686 Human Microbiome Project (HMP) metagenomic samples from nine major 

oral sites. Each row displays the detection of a genome across all samples. A genome is detected (cyan) if at least 50% of its nucleotides have at least 1X coverage. 

If the genome is not detected in a sample, it is represented by a black bar. Samples are ordered by oral site and then by the decreasing number of reads mapped 

to the set of genomes. From left to right, oral sites are supragingival plaque (SUPP; n = 210), subgingival plaque (SUBP; n = 19), keratinized gingiva (KG; n = 14), 

(TD; n = 220 samples), palatine tonsil (PT; n = 19), throat (TH; n = 13), saliva (SV; n = 7), hard palate (HP; n = 1), and buccal mucosa (BM; n = 183). Additional data 

are shown for “total reads” in each sample, the number of “reads mapped” per sample, and “percent reads mapped” per sample.
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The landscape of the human oral cavity harbors diverse habitats that may ena
ble species- or strain-level habitat specializations. Patterns of site-specialization were 
particularly evident for H. parainfluenzae, which, while generally prevalent across all 
oral sites, had pangenomic subgroups with clear habitat preferences (Fig. 3). One H. 
parainfluenzae subgroup was detected in 89% of TD samples and was nearly absent 
from other major oral sites, such as dental plaque and buccal mucosa. A second H. 
parainfluenzae subgroup was primarily detected in supragingival plaque samples and a 
third subgroup in keratinized gingiva. Conversely, two H. parainfluenzae genomes, one 
of which is potentially misclassified in NCBI as H. influenzae, were detected throughout 
most oral sites, suggesting a fourth subgroup of habitat generalists. This pattern of H. 
parainfluenzae subgroup habitat specialization is further supported by the inspection 
of the whole genome mean depth of coverage (Fig. S1). These findings are consistent 
with a prior study that demonstrated similar patterns of habitat specialization for H. 
parainfluenzae within the oral microbiome (9).

Another apparent habitat specialist is the H. sp. HMT-036 group, which was detected 
in 44% of buccal mucosa samples and 36% of keratinized gingiva samples, but less than 
10% of samples from other habitats. The closely related H. haemolyticus group had a 
similar distribution to that of the H. sp. HMT-036 group but was much less prevalent, 
detected in less than 4% of samples from buccal mucosa. The putative pathogens H. 
influenzae, H. aegyptius, and H. ducreyi were not detected in any samples, with the 
exception of H. influenzae, which was detected in two throat samples.

While the detection of specific microbial genomes provides insights into presence 
or absence patterns, the relative abundance metric identifies dominant versus low-abun
dance taxa and provides additional information about their distribution within microbial 
communities. For example, the relative abundance results, as depicted in Fig. 4, show 
that a single subgroup of H. parainfluenzae dominates the TD, where it constituted 
over 50% of the Haemophilus or Aggregatibacter taxa abundance in more than 90% of 
the samples and was largely absent or at low abundance in dental plaque or buccal 
mucosa. Except for A. kilianii, which exhibits a distinct distribution pattern, other taxa 
that are highly abundant in supragingival plaque, such as A. aphrophilus, also tend 
to show high abundance in subgingival plaque, without any clear distinction in the 
distribution patterns between strains. This observation suggests adaptation of these 
taxa to environments that are common to both supra- and sub-gingival plaques. In 
many metagenomic samples, an interesting phenomenon emerges—the dominance 
of a single Haemophilus or Aggregatibacter species. For example, keratinized gingiva 
contains either H. sp. HMT-036 or a subgroup of H. parainfluenzae as the most prevalent 
taxon. In supragingival plaque, there appears to be a three-way reciprocal relationship 
among H. parainfluenzae, A. sp. HMT-458, and A. aphrophilus (Fig. S2), in which only 
one of the three taxa is in high abundance in any given sample. The significance of 
this reciprocal three-way relationship is supported through a permutation test (P-value 
= 0.0384; 95% CI = (0.0353, 0.0414); see Supplemental Materials: Permutation test for 
three-way reciprocal relationship).

To comprehensively understand microbial communities, it is critical to not only 
consider genome-level metrics but also examine individual gene-level coverage. This 
allows us to assess the array of genes that are exclusive to the isolates and not found 
in the environment, as well as iscover genes that are abundant in one specific habitat 
but scarce or absent in others. We focused on two isolates with habitat tropisms at 
the genome level: A. sp. HMT-458 in supragingival plaque and H. parainfluenzae strain 
M1C142-1 in the TD. We classified a gene as detected in a sample if at least 90% of 
its nucleotides had at least 1X coverage. Using a threshold of 90%, rather than 100%, 
allowed for the detection of genes that differed slightly between reference genomes 
and environmental genomes. We then created a binary gene detection map for the 
30 metagenomic samples with the greatest median coverage for each of the three 
main oral sites (supragingival plaque, TD, and buccal mucosa). Fig. 5 shows that for 
these two genomes a greater proportion of genes were detected within only one of 
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the three major oral habitat types of dental plaque, TD, and buccal mucosa. For A. sp. 
HMT-458, the proportion of genes detected in supragingival plaque samples was nearly 
six-fold greater than those of TD and buccal mucosa. Similarly, for H. parainfluenzae strain 
M1C142-1, a nearly five-fold higher proportion of genes was detected in TD samples 
compared to supragingival plaque or buccal mucosa. For a third reference genome, H. 
parainfluenzae strain NCTC-7857, gene detection was distributed more evenly across oral 
sites, indicating a more generalized distribution. Gene detection maps also revealed a 
small proportion of genes that attracted metagenomic reads from multiple habitats. 
Many of these genes were annotated with highly conserved functions or annotated as 
transposable elements. Read recruitment to such genes may represent cross-mapping 
to different taxa that share high similarity in these genes or share elements that have 
been horizontally acquired. Overall, gene-level coverage analysis confirmed the habitat 
tropisms suggested by whole genome-level coverage analysis and extended the analysis 
by identifying individual genes present in specific oral habitats.

Functional analysis of H. parainfluenzae genomes across human oral sites

To identify functions that might drive the distribution of H. parainfluenzae subgroups to 
TD or supragingival plaque, we conducted a gene functional enrichment analysis, 
focusing particularly on the TD and supragingival plaque subgroups because they 
demonstrated sufficient prevalence to be analyzed in their respective environmental 

FIG 4 Heatmap shows the relative abundance of Haemophilus and Aggregatibacter species concerning the set of reference 

genomes across nine major oral sites: supragingival plaque (SUPP), subgingival plaque (SUBP), keratinized gingiva (KG), 

tongue dorsum (TD), palatine tonsils (PT), throat (TH), saliva (SV), hard palate (HP), and buccal mucosa (BM). Relative 

abundance for each species represents the sum of relative abundances of each reference genome from that species, 

calculated from the mean depth of coverage across nucleotide positions in the 2nd and 3rd quartiles (the Q2Q3 interquartile 

range) after nucleotides were ranked by their depth of coverage and then divided by the sum of mean coverages of all 

genomes within a metagenomic sample. The rows and columns correspond to individual species and Human Microbiome 

Project metagenomic samples, respectively. Only metagenomes in which at least one reference genome was detected (i.e., at 

least 50% of its nucleotides have at least 1X coverage) were included. The number of samples for each oral site at which a 

species was detected is listed in the figure. For clearer visualization, we inflated the width of oral sites with small sample sizes. 

Species (y-axis) and samples within oral sites (x-axis) are hierarchically clustered based on Bray–Curtis distances.
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metagenomes (Fig. 4; Table S4). This analysis showed that both the tongue-resident and 
the dental plaque-resident H. parainfluenzae had unique pathways. The H. parainfluenzae 
SUPP subgroup had significantly enriched metabolic pathways for biotin biosynthesis 
(KEGG module ID M00577, M00123, and M00572), histidine biosynthesis (KEGG module 
ID M00026), and a thiamine salvage pathway (KEGG module ID M00899). These pathways 
were consistently incomplete in the TD subgroup (Table S5). Further functional enrich
ment analysis using data from the NCBI COG20, Pfam, and KEGG databases supported 
these findings and revealed that the BioA and BioF genes were exclusive to the H. 
parainfluenzae SUPP subgroup. In contrast, the completeness of the thiamine salvage 
and histidine biosynthesis pathways varied, with a small fraction of the H. parainfluenzae 
TD subgroup having complete pathways.

The H. parainfluenzae TD subgroup exclusively possessed three genes from the 
biotin-dependent Oad gene operon (OadA1, OadB, and OadG), corroborating a previous 
study (9). These genes encode the three subunits of a sodium-dependent oxaloacetate 
decarboxylase enzyme, which performs the conversion of oxaloacetate to pyruvate while 
simultaneously translocating two sodium ions from the cytoplasm to the periplasm, 
providing a shunt to gluconeogenesis and establishing a potentially useful Na +gradient 
(41, 42). In contrast, no complete oxaloacetate decarboxylase operon was detected in 
any of the other H. parainfluenzae genomes, and no additional functions were exclusively 
present in the TD-associated subgroup.

FIG 5 Gene-level detection diagrams for select Haemophilus and Aggregatibacter genomes illustrate patterns of site-specialization. Here, we display radial 

gene-level detection maps for three genomes showing the detection of genes across a subset of the top 30 metagenomic samples ranked by median coverage 

from three oral sites (supragingival plaque (red), buccal mucosa (green), and tongue dorsum (magenta)). A. sp. HMT-458 and H. parainfluenzae strain M1C142-1 

represent the most abundant species based on mean coverage within their respective preferred oral sites. H. parainfluenzae strain NCTC-7857 illustrates a more 

generalized distribution pattern in which the proportion of genes detected is relatively even across oral sites. A gene was classified as detected within an oral site 

(colored red, green, or magenta, respectively) when at least 90% of the nucleotides of the gene had at least 1X coverage. Genes are ordered according to their 

detection frequencies, and samples within each oral site are ordered from inward to outward based on the proportion of genes detected. The outermost layer for 

each diagram indicates whether a gene is core (brick red) or accessory (black) for each respective species. A group of ribosomal genes translated using Hidden 

Markov Models through the Anvi’o program anvi-run-hmms are indicated in bright green.
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To determine whether these functions, characteristic of the cultivated isolates of 
these subgroups, were also characteristic of the community in the oral habitats, 
we inspected the average coverage of each gene in the three most prevalent oral 
sites (TD, supragingival plaque, and buccal mucosa). All three Oad genes exhibited 
substantially greater coverage in TD samples in comparison to supragingival plaque 
and buccal mucosa samples. Moreover, the coverage per sample corresponded with 
the H. parainfluenzae species-level coverage averaged across all 54 H. parainfluenzae 
genomes (Fig. S3 to S5). Similarly, the coverage of biotin biosynthesis genes (BioA and 
BioF) enriched in the supragingival plaque subgroup was markedly low in TD samples 
compared to supragingival plaque and buccal mucosa samples, averaging less than 1X 
depth of coverage at the species level (Fig. S6 and S7). The differential coverage patterns 
of these specific genes across various oral habitats underscore the niche-specific genetic 
adaptations and metabolic capabilities of H. parainfluenzae subgroups within the human 
oral cavity.

Functional analysis of the H. sp. HMT-036 group

To identify functions that could differentiate HMT-036 genomes from H. haemolyticus 
genomes, we conducted a gene functional enrichment analysis. The HMT-036 group 
exhibited significant enrichment in metabolic pathways for heme biosynthesis (KEGG 
module ID M00926, M00121) and siroheme biosynthesis (KEGG module ID M00846) 
compared to the H. haemolyticus genomes (Table S7). Every HMT-036 genome possessed 
a complete heme biosynthesis pathway, incorporating the HemABCDEGHKNL genes 
essential for heme synthesis from L-glutamate (43). Additionally, these genomes possess 
the CysG gene encoding uroporphyrin-III C-methyltransferase, which, when combined 
with the HemBCD genes, facilitates the creation of siroheme, a key component for both 
nitrite and sulfite reductases. In contrast, the thiamine salvage pathway (KEGG module 
ID M00899) was prevalent in H. haemolyticus genomes (28 of 42 genomes possessing a 
full pathway) but was absent in HMT-036 genomes. Furthermore, our research identified 
seven additional COG20 functions present across all HMT-036 genomes but missing 
in H. haemolyticus (Table S6). These include a peroxiredoxin (Tpx), 6-pyruvoyl-tetrahy
dropterin synthase (QueD), an adenosine deaminase (Add), soluble cytochrome b562 
(CybC), sucrose-6-phosphate hydrolase (SacC), an ABC-type transport enzyme (YpjD), 
and an undefined membrane protein (YqgA). It is worth noting that all Haemophilus 
and Aggregatibacter genomes in our pangenomic study contained at least one gene 
encoding for peroxiredoxin, adenosine deaminase, and several ABC-type transporters. 
However, cytochrome b562 appeared only in a minor group of Haemophilus species, 
while sucrose-6-phosphate hydrolase was distinctly absent in the H. haemolyticus and 
H. influenzae genomes. This comparative genomic analysis underscores the distinct 
metabolic capabilities of HMT-036, potentially reflecting evolutionary adaptations that 
distinguish it from H. haemolyticus and offering insights into its unique biological 
functions and ecological niche.

DISCUSSION

Metapangenomic analysis of Haemophilus and Aggregatibacter genera revealed habitat 
specialization, metabolic versatility, and insights into taxonomic classifications. Notably, 
our data support that Aggregatibacter species predominantly inhabit dental plaque. 
In contrast, an as-yet-unnamed Haemophilus species, designated HMT-036, shows an 
affinity for the buccal mucosa and keratinized gingiva. Furthermore, strains within H. 
parainfluenzae appear to be uniquely adapted to different oral habitats. These findings 
bolster the site-specialist hypothesis of the human oral microbiome, which posits that 
distinct regions within the mouth support profoundly different microbial communities 
(7). Historically, the foundation for this hypothesis has largely rested on 16S rRNA gene 
sequence data (8, 44, 45). However, this method often cannot distinguish between 
closely related species and strains. As such, genome-wide analysis is indispensable when 
trying to identify habitat specialization in complex natural microbial communities that 

Research Article Microbiology Spectrum

April 2024  Volume 12  Issue 4 10.1128/spectrum.04017-2311

https://doi.org/10.1128/spectrum.04017-23


consist of closely related taxa. By harnessing the enhanced clarity offered by whole-
genome sequencing data, we determined the preferred habitats of Aggregatibacter and 
Haemophilus species, further strengthening the validity of the site-specialist hypothesis.

The potential three-way reciprocal relationship among closely related species, H. 
parainfluenzae, A. aphrophilus, and A. sp. HMT-458, where one of the three dominates 
in each supragingival plaque sample, is an interesting pattern. This pattern may result 
from microbial warfare, in which bacteria secrete compounds such as bacteriocins that 
inhibit the growth of competitors. We are unaware of any study of the production of 
bacteriocins by H. parainfluenzae, A. aphrophilus, or A. sp. HMT-458, but there is strong 
evidence that the production of bacteriocins by H. influenzae and H. haemolyticus plays 
an important role in their colonization in host tissues through direct negative effects on 
other competing species (46, 47). An alternative explanation for the dominance of one of 
the three species in each sample may be that microenvironments are heterogeneously 
distributed throughout dental plaque, and these three species might exhibit preferences 
for different microenvironments. For example, recent evidence from spectral imaging 
fluorescence in situ hybridization shows that H. parainfluenzae is distributed in loose 
clusters adjacent to streptococci in coccus-rich plaque (48), whereas a different member 
of the Pasteurellaceae, possibly A. sp. HMT-458, is present in multi-species “Corncob” 
structures in filament-rich “hedgehog” structures of plaque (49, 50). Thus, the presence 
or absence of corncob and hedgehog structures in a dental plaque sample may explain 
the concomitant presence or absence of A. sp. HMT-458. The dominance of a single 
species at a given time may also be due to temporal fluctuations in growth rates or 
environmental conditions that favor one species over the others, and the observed 
dominance might be a snapshot of an ongoing microbial succession. Finally, differences 
between human subjects in their oral hygiene practices, diet, or genetics may influence 
environmental factors, such as pH, oxygen levels, nutrient availability, and temperature, 
that could favor the growth of one species over the others.

One important factor in determining bacterial colonization is the availability of 
micronutrients, such as inorganic cofactors (e.g., iron) and coenzymes, that maintain 
normal metabolism. The human oral cavity has an exceptionally limited supply of free 
iron, with most of the iron bound to host-produced proteins (51). In response, Haemophi
lus and Aggregatibacter species have evolved a variety of ways to acquire iron from the 
host environment, including the secretion of siderophores that solubilize and bind to 
an external source of iron with high affinity, as well as the production of iron–porphyrin 
heme that can later be broken down to release iron (52–54). Our mapping data showed 
that Haemophilus species that lack the ability to synthesize heme, including H. influenzae, 
H. aegyptius, and H. haemolyticus, were undetected or consistently rare in the healthy 
human oral microbiome. Conversely, Haemophilus and Aggregatibacter species capable 
of independent heme biosynthesis were highly abundant throughout the human oral 
cavity. These results agree with a recent comparative genomics study proposing that the 
shared ancestor of present-day H. haemolyticus and H. influenzae lost heme biosynthesis 
genes during their evolution away from H. parainfluenzae, possibly due to adapting to 
specific ear, nose, and throat environments (15). This pattern complements a growing 
body of literature that highlights the pivotal role of micronutrients in shaping microbial 
community structures (4, 55–57).

The ability of an organism to metabolize a variety of substrates as energy sources 
gives it a competitive advantage in diverse habitats or under fluctuating environmen
tal conditions. Metabolically versatile organisms possess the enzymatic machinery to 
shift between different metabolic pathways. Central to bacterial metabolic versatility is 
their ability to toggle between glycolysis, a catabolic pathway breaking down glucose 
to yield ATP, and gluconeogenesis, its anabolic counterpart synthesizing glucose from 
non-carbohydrate precursors, especially during fasting or low carbohydrate intake (58). 
A key link between glycolysis, gluconeogenesis, and the tricarboxylic acid (TCA) cycle 
is the PEP–pyruvate–oxaloacetate node, a crucial switch point directing the carbon flux 
in response to environmental conditions (59). In TD samples, we previously discovered 
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a unique sub-species group of H. parainfluenzae equipped with genes for oxaloacetate 
decarboxylase (OAD), which was absent in their counterparts from supragingival plaque. 
This enzyme plays a significant role in converting oxaloacetate, an intermediary in the 
TCA cycle, to pyruvate (60), a precursor for several metabolic pathways. Such capability 
suggests that this H. parainfluenzae subgroup can efficiently toggle between metabolic 
pathways, adapting to the variable nutrient availability on the tongue. Conversely, in 
the relatively stable environment of the supragingival plaque, constantly exposed to 
dietary sugars, such enzymatic flexibility might be less critical. Additionally, OAD’s role 
in sodium ion transport (60) might serve a dual purpose, facilitating energy production 
and maintaining intracellular pH under the variable conditions on the tongue. Overall, 
the presence of this enzyme in H. parainfluenzae tongue specialists illuminates the 
sophisticated evolutionary adaptations that allow bacteria to specialize and thrive in the 
distinct niches of the oral ecosystem.

Another important factor that may influence bacterial ecology is the ability to 
synthesize vitamins that are difficult to obtain in a habitat. Our findings indicate that 
H. parainfluenzae tongue specialists lack the ability to synthesize the vitamin biotin 
de novo. Biotin is an enzyme cofactor that is necessary for the survival of all living 
organisms, including bacteria (61). According to the Kyoto Encyclopedia of Genes and 
Genomes (KEGG; www.kegg.jp), there are five pathway modules associated with biotin 
biosynthesis, where each module represents a series of reactions to produce specific 
end-products. All Haemophilus and Aggregatibacter genomes in our data set are missing 
the genes for the enzymes BioI, BioU, and BioW, effectively ruling out three pathways 
that lead to biotin biosynthesis. This leaves two non-mutually exclusive pathways; the 
M00572 pathway that converts pimelic acid to pimeloyl-ACP catalyzed by BioC and BioG, 
and the M00123 pathway that converts pimeloyl-ACP-CoA to biotin catalyzed by BioA, 
BioB, BioD, BioF, and BioG. The H. parainfluenzae TD specialists lack several key genes in 
both pathways, including BioA, BioC, BioF, and BioG, indicating their inability to synthe
size biotin de novo. In our data set, all other Haemophilus and Aggregatibacter genomes 
have the required genes to synthesize biotin, suggesting the loss of biotin biosynthesis 
genes in this group of H. parainfluenzae, likely due to specialized adaptation to the TD. 
The evolutionary loss of costly genes required to produce biotin is expected where an 
organism could obtain biotin or its precursors through other less costly means (62). Thus, 
it is likely that TD H. parainfluenzae specialists scavenge biotin or its precursors from the 
environment, potentially highlighting important interactions with other bacterial taxa. 
Further experimental research is needed to validate these findings.

Traditional classifications of human oral Haemophilus and Aggregatibacter species are 
challenged by recent genomic analysis, emphasizing the pivotal role of whole-genome 
sequencing in taxonomy. For example, our phylogenomics results suggest that H. sp. 
HMT-036 is a distinct lineage within the H. influenzae/H. haemolyticus clade. Pangenom
ics further revealed that the H. sp. HMT-036 genomes possess several functional traits 
that distinguish this species from H. influenzae and H. haemolyticus. Additionally, our 
mapping results indicate that H. sp. HMT-036 is a common member of the healthy 
oral microbiome, showing distinct distribution patterns, and is particularly prevalent 
in the soft tissues of keratinized gingiva and buccal mucosa. Past attempts to classify 
genomes closely related to H. influenzae and H. haemolyticus have faced challenges 
due to the high sequence similarity of conserved marker genes (63). However, a recent 
comparative genomics study of the Haemophilus genus revealed strains provisionally 
named “H. intermedius” group to be haemin-independent H. haemolyticus (15). Therefore, 
H. sp. HMT-036 might correspond to the unofficially named species “H. intermedius,” 
first proposed in 1989 (10). Considering these findings, it is increasingly evident that 
genomic-scale analyses are an invaluable resource for taxonomy, refining our under
standing of the nuanced differences between closely related species.

Metapangenomics can also reveal potential species misclassifications of reference 
genomes that can distort our interpretations of the genetic relationships, evolutionary 
histories, and functional traits of bacterial species. Our analysis revealed similarities in 
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gene content and distribution patterns of multiple reference genomes, indicating that 
they are potentially misclassified to species level in NCBI. For example, two genomes 
identified in NCBI as H. influenzae clustered with H. parainfluenzae within the pangenome 
and followed a similar distribution pattern in the human oral cavity as H. parainfluenzae. 
Phylogenomics and ANI further indicate that these reference genomes are significantly 
divergent from other H. influenzae genomes, strongly suggesting that they are misclassi
fied. In addition to misclassification, for many years there has been a controversy about 
whether H. aegyptius should be classified separately from H. influenzae.(10) Our results 
based on phylogenomics and ANI support the argument that they do not merit separate 
species rank. Uncovering such misclassifications can lead to a more accurate and refined 
understanding of biodiversity, evolution, and ecological interactions.

Conclusion

Metapangenomics can provide information on the ecological distribution and genetic 
variation among bacterial species and strains in natural habitats. Leveraging this 
methodology, we explored the ecological niche partitioning of Haemophilus and 
Aggregatibacter species across various habitats within the human oral cavity, establishing 
evidence of distinctive site-specialization patterns, such as Aggregatibacter species in 
dental plaque, a distinct subgroup of H. parainfluenzae on the TD, throat, and tonsils, 
and the recently discovered H. sp. HMT-036 on keratinized gingiva and buccal mucosa. 
Additionally, we found evidence of a tripartite reciprocal relationship among closely 
related taxa residing in dental plaque, with one species dominant in each sample. 
Beyond characterizing the habitat tropism of species, our method permits analysis 
of gene distribution and abundance across genomes and oral samples. Namely, the 
systematic analysis of unique or over-represented genes and functions within site-spe
cific H. parainfluenzae genome groups identified genes associated with biotin biosyn
thesis and oxalacetate decarboxylase that may facilitate the adaptation of various H. 
parainfluenzae sub-species groups to their respective oral niches.
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