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Deep learning (DL) refers to the use of deep artificial
neural networks to analyze complex data. DL is the
most widely used artificial intelligence (AI) method and
is increasingly employed across various sectors of our
society, including clinical and translational research.[1]

Specifically, DL methods have substantial capabilities in
the handling of complex and unstructured data, such as
medical images and text data.

Primary liver cancer, with HCC encompassing about
80%–90% of cases, is a substantial global health
burden and there is a critical need for improved early
detection, proper prognostication, and treatment
algorithms.[2] Recent evidence suggests that DL could
support liver cancer management from early diagnosis
to patient stratification and treatment selection.[1,3]

However, research results cannot be directly used in
clinical routine. Integrating AI into liver cancer treatment
is complex because it must address both chronic liver
disease and cancer. The evolving nature of these
diseases often leads to discrepancies between AI
training data and real-world applications, posing a
challenge to the effective deployment of AI
applications.[4] AI methods are medical devices that
require clearance or approval by the Food and Drug
Administration (FDA) in the United States of America,
and Conformité Européenne (CE)-marking after assess-
ment under theMedical Device Regulation (for radiology-
based approaches) or In Vitro Diagnostics Regulation

(for histopathology-based approaches) in the European
Union. The European Commission has recently agreed
on the AI Act, which establishes a systematic regulation
of AI applications based on risk assessment. This
regulation aims to ensure the safety of AI applications,
including those used in health care. Only very few AI
methods from academic research have successfully
transitioned, or are close to transitioning, into clinical
routine. This observation is not necessarily alarming—
after all, only very few molecular biology studies are
transitioning to approved pharmaceuticals for clinical
use. However, it would be clearly desirable to have a
higher number of academic AI methods ultimately
implemented for the benefit of patients. Diseases such
as breast cancer or prostate cancer have seen clinical
approval of many AI methods in the last 5 years, while AI
for HCC lags behind these other areas. Creating a potent
AI application demands meticulous planning, from
identifying the core issue, outlining its scope, to data
collection, model development, and testing as well as
subsequent regulatory approval and clinical evaluation
(Figure 1).

To provide a systematic overview of approved AI
products, we queried the official FDA database for AI and
machine learning (ML)-enabled medical devices.[5] In the
database, 77% of all AI/ML-based devices are listed in
radiology, and <1% are listed in the field of gastroenterol-
ogy. We identified 546 AI/ML devices in gastroenterology,
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radiology, and pathology. We excluded devices that were
out of the scope of HCC care. From the 3 fields included,
we extracted all devices that contained the keywords
“liver*,” “hepa*,” or “HCC” and identified 10 devices. In
addition, we searched all 546 product summaries for
these keywords and identified 55 devices, with the
exception of 7 as there was no direct connection to liver
cancer care. In total, our search yielded 48 FDA-approved
AI solutions (Supplemental Table S1, http://links.lww.
com/XCL/A11). Thirty-three devices use a single data
modality, and 15 devices are multimodal. Medical image
management and processing systems dominate the
market. Of the 48 devices, 34 analyze MRI, 25 analyze
CT, 5 analyze positron emission tomography, 1 for single-
photon emission computed tomography, 2 for not other
specified nuclear medicine input data, 3 for ultrasound,
and 1 for computed radiography and for x-ray angiogra-
phy (Figure 2A). Only 1 device for pathology was
identified, which quantifies the tumor similarity to a
template of 15 cancer types with the RNA expression
pattern from tumor specimens.

We categorized devices into prevention and risk
group identification, diagnostics, therapy planning, and
treatment (Figure 2B, Supplemental Table S1, http://
links.lww.com/XCL/A11). Resonance Health Analysis
Services has introduced HepaFatSmart, an AI-driven
solution for quantifying liver fat using MRI data, which
could ease the identification of patients at risk for HCC
on the basis of metabolic dysfunction–associated fatty

liver disease.[6] Similarly, Shanghai United Imaging
Intelligence’s uMR 680 and uMR Omega offer AI-
enhanced MR-based liver spectroscopy for the same
purpose. FerriSmart by Resonance Health utilizes AI to
measure liver iron concentration, while their LiverSmart
device integrates both fat and iron quantification
technologies. Sonic Incytes’ HepaVelacur leverages
DL for precise liver segmentation and enhanced shear
wave measurements, critical for diagnosing liver dis-
eases that could progress to cirrhosis and elevate HCC
risk.[7,8]

It is noteworthy that the devices we have cataloged
are primarily utilized in diagnostics and therapy plan-
ning, highlighting a notable deficiency in other applica-
tion areas. These include, among others, prediction,
prevention, digital and drug companion therapeutics,
lifestyle adaptation, disease management, and presur-
gical and postsurgical rehabilitation. AI can improve
liver anatomy depiction and segmentation, providing
support during ultrasound examinations with systems
like GE Medical Systems’ Versana Balance. For CT and
MRI, a suite of AI tools including GE Medical Systems’
Hepatic VCAR, Perspectum’s LiverMultiScan and
Hepatica V1, and Canon Medical Systems Corpora-
tion’s Vantage series, streamline the process. Fujifilm
Corporation’s Synapse 3D is particularly versatile,
accepting a range of input data types such as CT,
MRI, computed radiography and ultrasound, nuclear
medicine, positron emission tomography, and x-ray
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F IGURE 1 Schematic depiction of developing AI medical devices for liver cancer care and implemented examples. The development of AI
methods for liver diseases encompasses a comprehensive process that begins with clearly defining the problem. Such problems can range from
screening potential liver ailments, identifying specific biomarkers, making precise diagnoses, planning therapeutic interventions, and executing
therapy, to predicting prognosis outcomes. To fuel these AI algorithms, data collection becomes pivotal. This involves accumulating the appro-
priate input data modalities like images from radiology scans, videos from endoscopic procedures, textual patient records, and even multimodal
data that combine multiple sources. Following data gathering, model development is undertaken, where algorithms are trained, fine-tuned, and
tested against diverse data sets to ensure accuracy and reliability. However, before these AI solutions can be integrated into clinical practice, they
must undergo stringent regulatory approval processes to ensure patient safety and efficacy. Such approvals often require comprehensive
documentation, evidence of performance, and alignment with medical standards. Once approved, clinical validation is imperative. This step
involves testing the AI model in real-world clinical scenarios through controlled clinical trials, closely monitoring for any adverse events, and
constantly evaluating the model’s performance. Postimplementation monitoring then ensures that the AI system remains effective and safe in
diverse and evolving clinical settings, adapting to new data and feedback for continuous improvements. Abbreviation: AI, artificial intelligence.
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angiography. In addition, MIM Software’s Contour
ProtegeAI contributes to organ contouring and Siemens
Medical Solutions’ Magnetom series allows an
improved display of internal structures by constructing
additional anatomical planes from MRI data. Change
Healthcare Canada’s Anatomical AI significantly
speeds up the identification of regions of interest by
providing detailed anatomic descriptors and optimizing
the diagnostic workflow. Hepatic VCAR aims at
segmentation, vessel analysis, visualization, and quan-
titative evaluation of liver anatomy. All tools designed for
segmentation and anatomical representation offer the
capability to forecast the size of the future liver remnant,
thereby aiding in identifying patients suitable for
resection or radiation segmentectomy.[9] Furthermore,
these tools facilitate the easier identification of anatom-
ically adjacent structures, which is crucial in assessing a
patient’s eligibility for ablation procedures.

Additional applications offering segmentation capa-
bilities are predominantly designed for radiation therapy
planning. These include Siemens’ Syngo.Via RT Image
Suite, which performs tumor segmentation using CT,
MRI, or positron emission tomography scans; Deep-
Voxel’s DV.Target; Carina Medical’s INT Contour;
MVision AI’s Segmentation; Radformation’s AutoCon-
tour Model; Limbus AI’s Limbus Contour; Therapanacea
SAS’s ART-Plan; and Manteia Technologies Co., Ltd’s
MOZI TPS. This is also of particular relevance for HCC,
as selective internal radiation therapy (TARE,Y90) is
increasingly utilized in HCC care, as both a bridging
therapy resulting in excellent local tumor control and
overall survival, as well as in more advanced cases
when used in combination with immunotherapy to
synergize overall treatment effect.[10] Different radiation

therapy options including selective internal radiation
therapy but also stereotactic body radiation therapy are
still used as treatment alternatives for local tumor
control when other alternatives have been exhausted
or are not feasible because of patient comorbidities or
anatomical and functional characteristics.[11]

GE’s FlightPlan for Liver is tailored to support
embolization therapy planning, providing a depiction of
liver vasculature from various imaging modalities. Arterys
Oncology from Aretrys Inc. detects and characterizes
lesions. Similarly, Ezra AI’s Ezra Plexo software provides
detection, quantification, evaluation, and documentation
of lesions. Perspectum Diagnostics’ MRCP+ offers a
3-dimensional representation of the biliary system,
enabling regional volumetric analysis. In addition, GE’s
Xeleris V Processing and Review System includes the Q.
Liver application, which provides preparatory assistance
for selective internal radiation therapy, such as liver
segmentation, estimation of the liver-to-lung shunt value,
and calculation of the body surface area. Finally, Canon
Medical Systems Corporation’s Aquilion Exceed LB and
Cartesion Prime, along with Shanghai United Imaging
Healthcare’s DeepRecon, aim to use AI to provide clearer
imaging, which could improve the accuracy of HCC
detection. The majority of these applications attribute DL
as the foundational technology behind their devices as
described in the FDA product summaries.[5] However,
many manufacturers typically do not disclose detailed
information about the specific technologies publicly. Over
a third of AI/ML-based medical devices evolved from non-
AI/ML first-generation devices,[12] others evolved from AI/
ML-based medical devices (Figure 3). Radiology devices
often changed to AI-guided tasks, initiating discussions
on safety concerns.[12]
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F IGURE 2 FDA 510(k) cleared AI-based products for liver cancer care depicted by input data modality (A) and potential application category (B).
The majority of products available take MRI as input data modality, followed by CT imaging (A). We grouped the products in potential application
categories in liver cancer care and found the majority of products to be useful for diagnosis and therapy planning (B). Abbreviations: CR, computed
radiography; FDA, Food and Drug Administration; PET, positron emission tomography; SPECT, single-photon emission computed tomography.
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In summary, despite these numerous approved
devices, there is a substantial lack of AI/ML methods
in HCC care outside of radiology image processing. The
use of clinical data has been crucial in enhancing AI
applications in health care.[13] As the availability of
health care data expands, there is a clear rationale for
the utilization of wider data types than radiology imaging
data alone for the training of application of AI models,
and there is increasing interest in the development of
multimodal models.[14,15] This interest is driving the
development of multimodal AI models, which promise
not only improved predictive capabilities but also
deeper insights into disease mechanisms. To date,
tumor morphology, studied primarily through imaging
data like radiology and histopathology, has been a key
prognostic factor.[13,16] However, challenges remain,
particularly in interpreting and generalizing results from
diverse data sources.[13]

The FDA AI/ML-enabled Medical Devices database[5]

and the FDA product classification database[17] provide
some details about devices but are not optimally
structured for clinical practitioners. Clinicians would
benefit substantially from an enhanced search capabil-
ity that filters devices by indication and application,
thereby facilitating the selection of appropriate tools for
distinct patient groups in clinical routines. Notably, for
AI/ML-enabled devices approved in the EU, no acces-
sible general structured database exists. EUDAMED is
a medical device product database that is not fully
operational, requires technical expertise to search, and
does not allow searching based on whether devices are
enabled by AI/ML. Furthermore, regulatory approval is
not the final goal for Medical Devices, but these have to
be reimbursed, evaluated in clinical trials, and ultimately

be broadly implemented in clinical routine. To bridge the
gap, close cooperation between medical practitioners,
industry, and other stakeholders could help to identify
areas in which these devices can be most beneficial
and can be implemented.

TEACHING POINTS

� Deep learning excels in handling complex medical
data sets, crucial also for liver cancer care.

� AI-enabled devices in HCC care require FDA clear-
ance or approval and, in the EU, CE-marking after
assessment.

� Medical image management and processing systems,
predominantly using MRI and CT data, dominate the
AI-enabled device market in liver cancer care.

� AI tools in liver cancer are mainly used for diagnosis
and therapy planning, revealing a significant gap in
other application areas.

� Exploiting the increasing volume of health care data
can enhance AI models, broadening their utility
across different stages of the journey of a patient
with liver cancer.

� Improving the FDA database structure could aid in
selecting the most suitable AI tools for specific patient
groups.
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