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Abstract

Current evidence suggests that DEP domain containing 1 (DEPDC1) has an important

effect on non-small-cell lung cancer (NSCLC). However, the diagnostic value and the regu-

latory function within NSCLC are largely unclear. This work utilized publicly available data-

bases and in vitro experiments for exploring, DEPDC1 expression, clinical features,

diagnostic significance and latent molecular mechanism within NSCLC. According to our

results, DEPDC1 was remarkably upregulated in the tissues of NSCLC patients compared

with non-carcinoma tissues, linked with gender, stage, T classification and N classification

based on TCGA data and associated with smoking status and stage according to GEO data-

sets. Meanwhile, the summary receiver operating characteristic (sROC) curve analysis

result showed that DEPDC1 had a high diagnostic value in NSCLC (AUC = 0.96, 95% CI:

0.94–0.98; diagnostic odds ratio = 99.08, 95%CI: 31.91–307.65; sensitivity = 0.89, 95%CI:

0.81–0.94; specificity = 0.92, 95%CI: 0.86–0.96; positive predictive value = 0.94, 95%CI:

0.89–0.98; negative predictive value = 0.78, 95%CI: 0.67–0.90; positive likelihood ratio =

11.77, 95%CI: 6.11–22.68; and negative likelihood ratio = 0.12, 95%CI: 0.06–0.22). Subse-

quently, quantitative real-time PCR (qRT-PCR) and western blotting indicated that DEPDC1

was high expressed in NSCLC cells. According to the in vitro MTS and apoptotic assays,

downregulated DEPDC1 expression targeting P53 signaling pathway inhibited the prolifera-

tion of NSCLC cells while promoting apoptosis of NSCLC cells. Moreover, DEPDC1 was

significantly correlated with immune cell infiltrating levels in NSCLC based on TCGA data,

which were primarily associated with T cells CD4 memory activated, macrophages M1, B

cells memory, mast cells resting, T cells regulatory, monocytes, and T cells CD4 memory

resting. Compared with the group with high expression of DEPDC1, the group with low

expression level had higher scores for immune checkpoint inhibitors (ICIs) treatment. GSEA

confirmed that DEPDC1 was involved in gene expression and tumor-related signaling path-

ways. Finally, DEPDC1 and its associated immune-related genes were shown to be

enriched in ‘receptor ligand activity’, ‘external side of plasma membrane’, ‘regulation of

innate immune response’, and ‘Epstein-Barr virus infection’ pathways. The present study
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demonstrates that DEPDC1 may contribute to NSCLC tumorigenesis and can be applied as

the biomarker for diagnosis and immunology.

Introduction

Lung cancer represents a frequently seen cancer globally. It is estimated that 350 people are

killed every day in the United States in 2022, therefore, lung cancer is the major factor resulting

in cancer-associated mortality [1]. Pathologically, lung cancer can be classified as two major

types, small cell lung cancer (SCLC) and NSCLC; NSCLC occupies approximately 85% of the

lung cancer patients currently observed worldwide [2]. NSCLC comprises several frequently

seen histological subtypes, like squamous cell carcinoma, large cell carcinoma and adenocarci-

noma [3]. Despite major breakthroughs in the treatment of NSCLC in recent decades, clini-

cians still face difficulties in treating of advanced NSCLC, which is prone to relapse and

metastasis, and the prognosis is very poor [4–6]. NSCLC remains one of the most aggressive

and deadly cancer types.

DEPDC1 is a highly conserved protein among many species ranging from Caenorhabditis

elegans to mammals that is located at 1p31.3 and plays a crucial role in regulating the proper

mitotic progression [7, 8]. Moreover, DEPDC1 is primarily expressed in the testis and is hardly

detected in other normal human tissues [9]. DEPDC1 is related to tumorigenesis and caner

progression. Overwhelming evidence indicated the high expression of DEPDC1 in hepatocel-

lular carcinoma samples relative to corresponding adjacent samples, which accelerates tumor

cell growth but inhibits their apoptosis [10]. In addition, up-regulation of DEPDC1 in gastric

cancer tissues has been associated with the advanced tumor differentiation and lymph node

metastasis [11]. It has been increasingly suggested that DEPDC1 can be a key regulatory factor

for different signaling pathways in tumors. Moreover, DEPDC1is up-regulated and plays a car-

cinogenic role in lung adenocarcinoma (LUAD) tissues, meanwhile, DEPDC1 up-regulates

RAS expression in LUAD cells, thereby enhancing ERK1/2 activity and inhibiting autophagy

via the RAS-ERK1/2 signaling pathway [12]. DEPDC1 can act as an immunological biomarker

in cancers. In this respect, it has been shown that DEPDC1 shows remarkable up-regulation

within cancer samples in comparison with corresponding non-carcinoma samples, which is

negatively related to dendritic cells during immune infiltration analysis in esophageal squa-

mous cell carcinoma [13]. Immunotherapy has been applied in the treatment of cancers in

recent years. Immune checkpoint inhibitors (ICIs) antibodies that target cytotoxic T lympho-

cyte antigen 4 (CTLA4) and PD1/PDL1 axis achieve remarkable successes in the treatment of

NSCLC and are closely related to patient survival [14, 15]. At present, few studies have been

reported on immunotherapy of DEPDC1 in NSCLC.

Herein, we assessed DEPDC1 expression levels within the tissues from NSCLC cases to

illustrate its potential for application as a diagnostic and therapeutic biomarker and identified

association between DEPDC1 expression and clinical features based on data from available

open-access databases. Subsequently, we investigated the effects of DEPDC1 expression on

biological behavior, targeting pathways, and related immune genes in vitro based on NSCLC

cells. Finally, the obtained data were analyzed with an unabridged bioinformatics framework,

including immune microenvironment, immune cell infiltration, immune checkpoint treat-

ment, and signaling pathways with linked immune genes, to explore the possible immunologi-

cal function of DEPDC1 in NSCLC.
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Materials and methods

DEPDC1 expression analysis and data sources

This work collected RNA-sequencing data as well as related clinical data based on TCGA

(https://portal.gdc.cancer.gov/). The sample inclusion criteria: completed DEPDC1 sequenc-

ing data in normal samples (108) and NSCLC samples (1037), and clinical data with 513

LUAD and 501 lung squamous cell carcinoma (LUSC), including age, gender, stage, TNM and

race. This work “limma” package for detecting the difference of DEPDC1 expression between

NSCLC and normal lung tissue samples.

Microarray about DEPDC1 in NSCLC was obtained from the GEO database (https://www.

ncbi.nlm.nih.gov/geo/) with the following keywords: (malignant OR malignancy OR tumor

OR tumour OR cancer OR carcinoma OR neoplasm OR neoplasms adenocarcinoma OR AC

OR SCC OR NSCLC) AND (Lung OR pulmonary OR respiratory OR respiration OR bronchi

OR bronchioles OR alveoli OR pneumocytes). The organism was screened by “Homo sapiens.”

Criteria for selecting the subjects were as follows: (a) Each dataset involved lung cancerous and

noncancerous samples; (b) The expression profiling data for DEPDC1 were available for both

groups; (c) The normal and tumor groups included in tissue; (d) At least ten samples were

included. Data from GEO were represented by mean ± standard deviation (SD), meanwhile,

normalized and combined via R packages “limma” and “sva”.

Pan-cancer of DEPDC1 expression analysis was performed by TIMER2.0 (http://timer.

cistrome.org/) which contained TCGA data.

Data collection from the HPA database

The HPA database (https://www.proteinatlas.org/) contains the protein expression in normal

cells, tissues, and cancers. This work conducted IHC for validating DEPDC1 expression within

normal lung tissues and lung tumor tissues.

Cells culture and treatment

BEAS-2B, NCI-H1299 and A549 were purchased from GeneChem (Shanghai, People’s Repub-

lic of China). Human normal lung epithelial cells (BEAS-2B) were cultured in RPMI-DMEM

supplemented with 20% fetal calf serum (FBS). In addition, NCI-H1299 NSCLC cells and

A549 LUAD cells were cultured within RPMI-1640 medium containing 10% FBS and trans-

fected with a siRNA to knock down DEPDC1. Negative control siRNA (siRNA-NC) and

siRNA targeting DEPDC1 were transfected into the NCI-H1299 and A549 cells for further

experiments. The sequences were as follows:

Quantitative real-time PCR and western blotting

This work extracted total RNA with RNAiso Plus (TAKARA 9108) and then transformed into

cDNA by reverse transcription reaction (AG11711, Accurate Biology, China). Through adopt-

ing TAKARA RR820A kit, this work carried out qRT-PCR following specific protocols, with

U6 being the internal controls. 2-44Ct approach was adopted for calculating transcription

level of genes. The sequences of primers were as follows:

siRNA-DEPDC1: 5’- GGAAGAUGUUGAAGAAGUUTT – 3’

siRNA-NC: 5’ – UUCUCCGAACGUGUCACGUTT – 3’

https://doi.org/10.1371/journal.pone.0294227.t001
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Total cellular proteins were obtained with RIPA lysis buffer containing the protease inhibi-

tor (PMSF). Thereafter, protein separation was conducted on 10% SDS-PAGE before transfer

on PVDF membranes. Later, membranes were blocked with skim milk, followed by overnight

primary antibody incubation under 4˚C, including polyclonal rabbit anti-DEPDC1 (bs-6525R;

Bioss), polyclonal rabbit anti-P53 (Cat No. 10442-1-AP; Proteintech Group, Inc.), polyclonal

rabbit anti-BAX (Cat No. 50599-2-Ig; Proteintech Group, Inc.) and anti-β-actin primary anti-

bodies (Cat No. 66009-1-Ig; Proteintech Group, Inc.). Membranes were later washed thrice

using 1×PBST, followed by another 1h incubation using the secondary antibody (Cat No.

SA00001-1 and Cat No. SA00001-2; Proteintech Group, Inc.). Protein bands were detected by

luminescent solution, recorded by the ECL system. This work utilized ImageJ software for

quantifying gray values of protein bands.

Cell proliferation and cell apoptosis assay

The present study inoculated NCI-H1299 cells in the 96-well plated, followed by siRNA trans-

fection. At 0, 24, 48, and 72 h after transfection, 20ul MTS solution (Promega G3580, China)

were added in per well, followed by 2 h incubation and measurement of absorbance at 490nm.

After siRNA transfection, apoptotic cell rate was quantified with Annexin V-APC/7-AAD

(KGA1016, China) in line with specific instructions. EDTA-free pancreatin was added to col-

lect cells, followed by washing trice with 1×PBS. Afterwards, 500ul binding buffer was added

together with 5ul Annexin V-APC and 5ul 7-ADD to resuspend cells, followed by 5-15-min

staining in dark. FCM (Flow cytometry, Germany) was conducted to detect apoptosis rate.

Relation between DEPDC1 level and tumor immune microenvironment as

well as immune infiltrating cells in NSCLC

StromalScore, ImmuneScore and ESTIMATE score were calculated by applying the ESTI-

MATE method approach of “estimate” and “limma” from R software, so as to predict diverse

cell purity in tumor immune microenvironment using TCGA database. Meanwhile, the

immune infiltrating cell levels in NSCLC were estimated using the CIBERSORT algorithm

[16].

The value of DEPDC1 in immunological therapy

Data related to PD1 and CTLA4 immunotherapy in NSCLC cohort were visualized from

TCIA website (https://tcia.at/home). We utilized “limma” and ‘ggpubr’ packages of R soft for

analyzing the differences between low-DEPDC1 and high-DEPDC1 groups in different

immunotargets.

DEPDC1 Forward: CTCGTAGAACTCCTAAAAGGCA

Reverse: TCAACATCTTCCTGGCTTAGTT

TNFSF12 Forward: CGCCAGATCGGGGAGTTTATAGTC
Reverse: AGCACACCATCCACCAGCAAG

CD81 Forward: ACGAGACGCTTGACTGCTGTG
Reverse: TTGAAGAGGTTGCTGATGATGTTGC

BIRC5 Forward: AAGGACCACCGCATCTCTACATTC
Reverse: CTCGTTCTCAGTGGGGCAGTG

NRAS Forward: ACCAATACATGAGGACAGGCGAAG
Reverse: ACTTGTTTCCCACTAGCACCATAGG

https://doi.org/10.1371/journal.pone.0294227.t002
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GSEA

Transcriptomic data from TCGA were applied in GSEA. According to the expression level of

DEPDC1 in NSCLC, all samples were classified as low- or high-expression group. GSEA soft-

ware (version 4.1.0, Broad Institute) was employed for GSEA [17], with “c2.cp.kegg.v7.4.sym-

bols.gmt” gene set from the MsigDB database being the reference. Pathways with FDR< 0.001

were considered significantly enriched.

Immune-related genes of DEPDC1 in NSCLC

To predict the immune-related genes of DEPDC1, firstly, a total of 1793 immune-related

genes were obtained according to the “Gene Lists” page of Immport database (https://www.

immport.org/home). Then the correlation between DEPDC1 and abtained genes were calcu-

lated utilizing the Spearman method of R language based on TCGA data. At the criterion of

P< 0.001 and |R|> 0.2, immune-related genes were considered as significantly correlated

with DEPDC1 in NSCLC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis were utilized by R software with cut-off threshold p-value = 0.05

and q-value = 1 to investigate pathway DEPDC1 and correlated gene enriched.

Statistical analysis

IBM SPSS Statistics V23.0, Stata software (version 12.0), R software and GraphPad Prism Ver-

sion 8.0.2 were employed for data analysis. Student’s test was adopted for statistical analysis.

Chi-square test was adopted to analyze relationships between clinical characteristics and both

groups. SPSS 23.0 was employed for constructing ROC curves. Stata12.0 and R software were

used for meta-analysis that estimated the DEPDC1 expression and diagnostic value in NSCLC.

The results were visualized in forest plots and sROC curve. Cochran’s Q (chi-square test) and

the I2 test were applied to evaluate heterogeneity and ensure a suitable meta-analysis model

was applied. Egger’s test was used to estimate the publication bias. Correlation analysis was

completed by the method of Spearman (P< 0.001 and |R|> 0.2 as cut-off thresholds).

P< 0.05 was stood for statistical significance.

Results

Confirmation of the expression, clinical and diagnostic effects of DEPDC1

in NSCLC, based on TCGA database

The clinical characteristics of NSCLC patients were obtained from TCGA. DEPDC1 expres-

sion was significantly up-regulated in LUAD compared with non-carcinoma tissues

(P< 0.001, Fig 1A and 1B). The AUC of upregulated DEPDC1 expression in LUAD was 0.975

(95%CI: 0.963, 0.987; P< 0.001, Fig 1C). The analyses of the LUSC groups alone revealed that

DEPDC1 was upregulated in cancer tissues (P< 0.001, Fig 1D and 1E). The AUC of the high

DEPDC1 level in the LUSC group was 0.997 (95%CI: 0.994, 1.000; P< 0.001, Fig 1F). The data

on LUAD and LUSC, based on TCGA, were pooled for further validation. DEPDC1 expres-

sion was increased in NSCLC patients (P< 0.001, Fig 1G and 1H). The AUC of high DEPDC1

expression in NSCLC was 0.983 (95%CI: 0.975, 0.990; P< 0.001, Fig 1I). As for clinicopatho-

logical features of LUAD, age (P< 0.05), gender (P< 0.01), clinical stage (P< 0.05) and T

classification (P< 0.01) were significantly associated with the expression of DEPDC1 (Fig 2A).

And the abnormal DEPDC1 expression was significantly associated with age (P< 0.01) in

LUSC patients (Fig 2B). As described in Fig 2C, a significant difference in DEPDC1 expression

was found for gender (P< 0.001), clinical stage (P< 0.01), T classification (P< 0.001) and N
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Fig 1. Expression and diagnostic value of DEPDC1 based on TCGA data. (A) Boxplots of DEPDC1 expression in

LUAD. (B) Identification of DEPDC1 expression in pairs of LUAD samples. (C) The ROC curve of DEPDC1 in

LUAD. (D) Boxplots of DEPDC1 expression in LUSC. (E) Identification of DEPDC1 expression in pairs of LUSC

samples. (F) The ROC curve of DEPDC1 in LUSC. (G) Boxplots of DEPDC1 expression in NSCLC. (H) Identification

of DEPDC1 expression in pairs of NSCLC samples. (I) The ROC curve of DEPDC1 in NSCLC.

https://doi.org/10.1371/journal.pone.0294227.g001

Fig 2. The heatmap of the clinical features of cases in the low- and high-DEPDC1 expression group in the TCGA

cohort. (*P< 0.05, **P< 0.01, ***P< 0.001). (A) LUAD. (B) LUSC. (C) NSCLC.

https://doi.org/10.1371/journal.pone.0294227.g002
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classification (P< 0.05). Pan-cancer analysis using TIMER2.0 online tool found that DEPDC1

was highly expressed in NSCLC tissues, consistent with prior findings (S1 Fig).

The expression, clinical pathology, and diagnostic value of DEPDC1 in

NSCLC based on GEO datasets and meta-analysis

In total, 15 microarrays from GEO datasets satisfied the required criteria (GSE12236

GSE12428, GSE18842, GSE29250, GSE31210, GSE31446, GSE32863, GSE33532, GSE63459,

GSE75037, GSE85716, GSE85841, GSE101929, GSE115002, and GSE134381). The features

and analysis result of the contained GEO datasets were depicted in Table 1.

Based on the 15 obtained microarrays, a meta-analysis was conducted (Fig 3A). In view of

the high heterogeneity (I2 = 86.4%, P< 0.001), a random effects model was chosen. The meta-

analysis of the 15 datasets that expression of DEPDC1 was remarkably increased in NSCLC

groups than that in control groups (SMD = 1.25; 95% CI: 0.86, 1.63; P< 0.001). To detect the

significant heterogeneity of an especial microarray, a sensitivity was performed (Fig 3B). After

one individual study was eliminated, the combined effect of the remaining studies was com-

pared with the previous studies, there was no particular one in the total studies. A subgroup

analysis was conducted to further explore the source of heterogeneity on the basis of cancer

type (Fig 3C). Significant heterogeneity was depicted in the LUAD subgroup (I2 = 83.1%,

P< 0.001), LUSC subgroup (I2 = 13.6%, P = 0.282) and NSCLC subgroup (I2 = 92.0%,

P< 0.001), which suggested that the types of cancer may be source of heterogeneity. Publica-

tion bias was estimated by Egger’s tests (P = 0.691) and shown by a funnel plot (Fig 3D). The

results suggested no publication bias in the present meta-analysis.

After data combined based on GEO datasets, the clinical characteristics of 755 NSCLC sam-

ples and 479 normal control samples were shown in Table 2. The expression of DEPDC1 was

Table 1. Features of the eligible gene expression omnibus datasets.

Accession GPL Year Country Control NSCLC P-value Source Cancer type

N M SD N M SD

GSE12236 GPL5188 2014 USA 20 2.120 0.068 20 3.370 1.114 <0.001*** Tissue LUAD

GSE12428 GPL1708 2012 Netherlands 28 -0.108 0.053 34 0.083 0.167 <0.001*** Tissue LUSC

GSE18842 GPL570 2019 Spain 45 3.464 0.120 46 5.572 0.930 <0.001*** Tissue NSCLC

GSE29250 GPL10558 2019 China 6 -18.375 9.435 6 -1.920 21.967 0.123 Tissue NSCLC

GSE31210 GPL570 2019 Japan 20 25.191 13.468 226 119.811 135.339 <0.001*** Tissue LUAD

GSE31446 GPL9244 2012 USA 30 -1.075 0.320 34 -0.306 0.455 <0.001*** Tissue LUSC

GSE32863 GPL6884 2019 USA 58 6.792 0.054 58 6.923 0.137 <0.001*** Tissue LUAD

GSE33532 GPL570 2019 Germany 20 3.103 0.139 80 5.262 1.278 <0.001*** Tissue NSCLC

GSE63459 GPL6883 2017 USA 32 6.985 0.088 33 7.022 0.142 0.218 Tissue LUAD

GSE75037 GPL6884 2019 USA 83 3.443 0.195 83 4.098 0.578 <0.001*** Tissue LUAD

GSE85716 GPL19612 2019 China 6 1.854 0.260 6 1.960 0.274 0.510 Tissue LUAD

GSE85841 GPL20115 2018 China 8 45.240 23.985 8 26.780 18.269 0.105 Tissue LUAD

GSE101929 GPL570 2021 USA 34 2.946 0.965 32 5.255 2.004 <0.001*** Tissue NSCLC

GSE115002 GPL13497 2021 China 52 3.423 0.550 52 4.983 1.231 <0.001*** Tissue LUAD

GSE134381 GPL11532 2019 United Kingdom 37 3.511 0.877 37 3.939 1.031 0.059 Tissue NSCLC

LUAD Lung adenocarcinoma, LUSC lung squamous cell carcinoma, NSCLC non-small-cell lung cancer, M mean, SD standard deviation

*P < 0.05

**P < 0.01

***P < 0.001

https://doi.org/10.1371/journal.pone.0294227.t003
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significantly increased in LUAD, LUSC and NSCLC (P< 0.001). A significant difference in

DEPDC1 was found for the smoking status (P< 0.001). StageⅢ-ⅣNSCLC patients had a

higher expression of DEPDC1 than stage Ⅰ-Ⅱ patients (P< 0.01).

DEPDC1 (P< 0.001) showed high expression in NSCLC groups in 10 datasets, including

GSE12236, GSE12428, GSE18842, GSE31210, GSE31446, GSE32863, GSE33532, GSE75037,

GSE101929, and GSE115002 (Fig 4A–4J). And the p-value of the diagnostic power in the ROC

curves based on the ten GEO datasets were all< 0.001 (Fig 4K–4T).

Meta-analysis of the diagnostic value of DEPDC1 based on GEO and

TCGA databases

A total of 10 microarrays from GEO datasets and TCGA mRNA-sequencing data were

included in the diagnostic meta-analysis. Forest plots results of relevant data on sensitivity,

0.89 (95%CI: 0.81–0.94); specificity, 0.92 (95%CI: 0.86–0.96); positive likelihood ratio, 11.77

(95%CI: 6.11–22.68); negative likelihood ratio, 0.12 (95%CI: 0.06–0.22) and diagnostic odds

ratio, 99.08 (95%CI: 31.91–307.65) of DEPDC1 in diagnosing NSCLC were displayed in Fig

5A–5E. Meanwhile, the sROC curve yielded an AUC value of 0.96 (95%CI: 0.94–0.98, Fig 5F).

Moreover, the pooled positive predictive value (PPV) and negative predictive value (NPV) cal-

culated by R language with random effects model were 0.94 (95%CI: 0.89–0.98) and 0.78 (95%

CI: 0.67–0.90), respectively.

Fig 3. Continuous variable meta-analysis of GEO data. (A) Forest plot. (B) Sensitivity analysis. (C) Subgroup

analysis based on cancer type. (D) Funnel plot.

https://doi.org/10.1371/journal.pone.0294227.g003
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Protein expression verified through IHC

According to Fig 6, up-regulated DEPDC1 expression was detected in tumor tissues in com-

parison with normal tissues.

Decreased DEPDC1 expression suppressed NSCLC cells growth and

enhanced their apoptosis

First, we found that DEPDC1 mRNA (Fig 7A: P< 0.05) and protein (Fig 7B: P< 0.001) levels

were up-regulated in NCI-H1299 cells compared with BEAS-2B cells. Afterwards, for explor-

ing the effect of DEPDC1 on cancer cells, DEPDC1 was silenced in NCI-H1299 cells. As a

result, DEPDC1 mRNA (Fig 7C: P< 0.001) and protein (Fig 7D: P< 0.01) expression remark-

ably decreased in siRNA-DEPDC1 groups relative to the siRNA-NC groups. According to

MTS analysis, DEPDC1 down-regulation could suppressed NCI-H1299 cell proliferation rela-

tive to control group (Fig 7E: P< 0.001). On the contrary, for NCI-H1299 cells showing

DEPDC1 down-regulation, the apoptosis rate remarkably increased relative to control group

(Fig 7F: P< 0.05).

Immunological function of DEPDC1

This work also explored the relations among tumor immune microenvironment, immune cell

infiltration, immunotherapeutic targets and DEPDC1 level. Typically, the relations of

DEPDC1 expression with diverse infiltrating cell types within the NSCLC microenvironment

were analyzed by StromalScore, ImmuneScore and ESTIMATEScore using the ESTIMATE

algorithm. As showed in Fig 8A, DEPDC1 expression showed significant relation to

Table 2. Relationship between the expression of DEPDC1 and clinicopathological features in NSCLC patients from GEO.

Clinicopathological feature Type N M SD t/F P-value

Tissue Normal 479 3.836 0.560

LUAD 549 4.707 0.994 -17.582 <0.001***
LUSC 104 4.957 0.864 -12.658 <0.001***
NSCLC 755 4.799 0.982 -21.919 <0.001***

Age <65 363 4.807 1.050 1.541 0.124

�65 298 4.690 0.905

Gender Female 348 4.736 0.985 -0.520 0.603

Male 319 4.776 0.998

Tumor location Central lung 18 4.948 0.877 -0.064 0.949

Peripheral lung 50 4.962 0.790

Smoking status No 223 4.544 0.888 -4.400 <0.001***
Yes 293 4.913 1.013

Stage Ⅰ-Ⅱ 507 4.671 0.930 -3.215 0.002**
Ⅲ-Ⅳ 60 5.158 1.129

T T1-T2 28 4.958 0.833 1.145 0.261

T3-T4 6 4.551 0.504

N No 38 4.852 0.773 -1.332 0.189

Yes 16 5.229 1.288

LUAD Lung adenocarcinoma, LUSC lung squamous cell carcinoma, NSCLC non-small cell lung cancer, M mean, SD standard deviation

*P < 0.05

**P < 0.01

***P < 0.001.

https://doi.org/10.1371/journal.pone.0294227.t004
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StromalScore, ImmuneScore and ESTIMATEScore (P< 0.001) in NSCLC. Different infiltrat-

ing immune cells could be detected within tumor immune microenvironment. DEPDC1 was

positively correlated with T cells CD4 memory activated, macrophages M1, while, negatively

correlated with B cells memory, mast cells resting, T cells regulatory, monocytes, and T cells

CD4 memory resting (Fig 8B and 8C). As for immunotherapy, we detected treatment scores

for immune checkpoint inhibitors, and discovered statistically significant difference between

low-DEPDC1 and high-DEPDC1 groups with no CTLA4 or PD1 treatment (Fig 8D,

P< 0.001). In addition, PD1 or CTLA4 monotherapy exhibited increased immune scores in

low-DEPDC1 group relative to high-DEPDC1 group, with significant difference (Fig 8E and

8F, P< 0.001). After PD1 was used in combination with CTLA4, the low-DEPDC1 group had

an increased immune score (Fig 8G, P< 0.001).

GSEA of gene DEPDC1

GSEA performed with TCGA showed that NSCLC samples with high expression DEPDC1

were enriched in ‘BASAL TRANSCRIPTION FACTORS’, ‘CELL CYCLE’, ‘DNA REPLICA-

TION’, ‘NUCLEOTIDE EXCISION REPAIR’, ‘OOCYTE MEIOSIS’, ‘P53 SIGNALING

PATHWAY’, ‘PYRIMIDINE METABOLISM’, ‘RNA DEGRADATION’ and ‘SPLICEOSOME’

pathways (Fig 9A). NCI-H1299 is a congenital P53-deficient cell line, therefore, the A549 cell

line was used to detect the relationship between DEPDC1 expression and the associated P53

signaling pathway. The P53 and BAX protein levels decreased in A549 cells, after siRNA treat-

ment, DEPDC1 protein expression was silenced within A549 cells (Fig 9B). These results sug-

gest that DEPDC1 regulated the P53 signaling pathway.

Fig 4. DEPDC1 expression in NSCLC and ROC curves of DEPDC1 based on GEO datasets. (A-J) DEPDC1

expression in NSCLC. (K-T) ROC curves of DEPDC1.

https://doi.org/10.1371/journal.pone.0294227.g004
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DEPDC1 immune-related genes as well as relevant pathway within NSCLC

Based on ImmPort database, 245 immune-related genes that correlated with DEPDC1 were

identified and the top 20 were showed in Fig 9C. We checked the expression levels of top four

correlated with DEPDC1 after siRNA treatment in NCI-H1299 cells (Fig 9D). The results of

qRT-PCR showed that mRNA levels of NRAS and TNFSF12 were decreased after knocking

down DEPDC1 expression. On the contrary, the expression levels of BIRC5 and CD81 mRNA

were increased after knocking down DEPDC1 expression. Influenced by DEPDC1, mRNA lev-

els of CD81 and NRAS showed the same trend as predicted based on TCGA data, while

TNFSF12 and BIRC5 were contrary to the predicted trend.

GO analysis conducted on the eligible 245 genes and DEPDC1 were enriched in biological

process (BP), including ‘receptor ligand activity’, ‘amide binding’ and ‘peptide binding’, ‘exter-

nal side of plasma membrane’, ‘vesicle lumen’, and ‘cytoplasmic vesicle lumen’ in cellular com-

ponent (CC) category, additionally included ‘regulation of innate immune response’, ‘positive

regulation of innate immune response’, and ‘antigen processing and presentation’ in molecular

Fig 5. Forest plots and the sROC curve based on GEO and TCGA data. (A) Forest plot of sensitivity. (B) Forest plot

of specificity. (C) Forest plot of positive likelihood ratio. (D) Forest plot of negative likelihood ratio. (E) Forest plot of

odds ratio. (F) The sROC curve.

https://doi.org/10.1371/journal.pone.0294227.g005
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function (MF) category (Fig 9E). During KEGG pathway analysis, ‘Epstein-Barr virus infec-

tion’, ‘Cytokine-cytokine receptor interaction’, and ‘Th17 cell differentiation’ were signifi-

cantly enriched (Fig 9F).

Fig 6. Immunohistochemical analysis of DEPDC1 in the HPA-derived normal, LUSC and LUAD samples.

https://doi.org/10.1371/journal.pone.0294227.g006

Fig 7. DEPDC1 inhibits NSCLC cell proliferation and enhances their apoptosis (*P< 0.05, **P< 0.01,

***P< 0.001). (A) DEPDC1 mRNA expression within BEAS-2B and NCI-H1299 cells. (B) DEPDC1 protein

expression within BEAS-2B and NCI-H1299 cells. (C) DEPDC1 mRNA expression within NCI-H1299 cells after

siRNA-NC and siRNA-DEPDC1 transfection. (D) DEPDC1 protein expression within NCI-H1299 cells after

siRNA-NC and siRNA-DEPDC1 transfection. (E) MTS assay conducted to analyze NCI-H1299 cell proliferation at 0/

24/48/72h after siRNA-NC and siRNA-DEPDC1 transfection. (F) NCI-H1299 cell apoptosis after siRNA-NC and

siRNA-DEPDC1 transfection.

https://doi.org/10.1371/journal.pone.0294227.g007
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Discussion

Although DEPDC1 expression in NSCLC has been reported, few studies have documented the

correlation of the clinical features of NSCLC and DEPDC1, diagnostic value, and the latent

mechanism of DEPDC1 in NSCLC. In the present study, meta-analysis, bioinformatics analy-

sis and in vitro were employed to investigate the role of DEPDC1 in NSCLC.

DEPDC1 shows up up-regulation within multiple cancer, like gastric cancer [11], hepato-

cellular carcinoma [18], triple-negative breast cancer [19], prostate cancer [20] and NSCLC

[21]. According to our results, DEPDC1 up-regulation found within NSCLC was verified by

publicly available databases and NSCLC cells. Thus, the results suggested that DEPDC1 might

function as a promoter in NSCLC. Based on GEO database analysis, DEPDC1 was associated

with smoking status and tumor stage. Moreover, TCGA data analysis indicated that DEPDC1

expression level was related to gender, clinical stage, T classification and N classification in

NSCLC. Besides, AUC values from GEO and TCGA data were greater than 0.8 (P< 0.001);

thus, GEO- and TCGA-based diagnosis analysis and meta-analysis suggested that DEPDC1

yielded a relatively high diagnostic efficiency in differentiating NSCLC patients from controls.

Fig 8. Relations between DEPDC1 level and tumor immune microenvironment, immune infiltrating cells and

immune checkpoint inhibitors based on TCGA database (*P< 0.05, **P< 0.01, ***P< 0.001). (A) Scatter

diagrams showing the correlation between DEPDC1 expression and tumor immune microenvironment. (B) Boxplots

displaying the immune infiltrating cells between the low- and high-DEPDC1 expression groups in NSCLC. (C)

Lollipop plot showing the relation of DEPDC1 level with immune infiltrating cells within NSCLC. (D-G) Relation of

DEPDC1 level with immune checkpoint inhibitors.

https://doi.org/10.1371/journal.pone.0294227.g008

PLOS ONE Bioinformatics analysis and in vitro experiments of gene DEPDC1 in NSCLC

PLOS ONE | https://doi.org/10.1371/journal.pone.0294227 April 2, 2024 13 / 19

https://doi.org/10.1371/journal.pone.0294227.g008
https://doi.org/10.1371/journal.pone.0294227


It has been reported that, DEPDC1 is a key gene in the transformation of hepatitis B into

hepatocellular carcinoma [22]. Chronic inflammation can lead to the continuous activation of

immune cells, interfere with the invasion of tumor immune cells and inhibit the anti-tumor

immune response of tumor [23]. An increasing body of evidence suggests that immune cells in

the tumor immune microenvironment have important effects on tumorigenesis and tumor

development [24]. In clear cell renal cell carcinoma, resting mast cells are positively correlated

with MUC20 level in the tumor immune microenvironment, while MUC20 expression is neg-

atively linked with activated CD4+ memory T cells [25]. In LUAD, it has been reported that

p53 mutation can affect the abundance of macrophages M1 in tumor-infiltrating lymphocytes

[26], and memory B cells are significantly associated with NCAPH expression [27]. Interest-

ingly, regulatory T cells are related to CD3E in bladder cancer [28]. Monocytes are regulated

by CCR2 in the tumor immune microenvironment of sarcoma [29]. PLXDC2 expression is

related to T cell CD4 memory resting proportion within gastric cancer [30]. In NSCLC,

DEPDC1 is associated with T cells CD4 memory activated, macrophages M1, B cells memory,

mast cells resting, T cells regulatory, monocytes, and T cells CD4 memory resting.

In this paper, the treatment scores of ICIs were significantly associated DEPDC1 expres-

sion. Immunotherapy targeting ICIs have achieved phased success in clinical tumor therapy,

however, there are still some patients with poor drug resistance treatment [31, 32]. Reversing

T-cell exhaustion caused by conditions such as chronic infection and cancer is a promising

immunotherapy for cancer, which exerts a distinct anticancer activity, as detected in PD1

Fig 9. Analysis of DEPDC1 signaling pathway and immune-related genes (*P< 0.05, **P< 0.01, ***P< 0.001).

(A) Gene enrichment plot of multiple pathways in GSEA. (B) Protein levels of DEPDC1, P53 and BAX in response to

the treatment of siRNA-NC and siRNA-DEPDC1. (C) Deviation plot of the top 20 immune-related genes significantly

associated with DEPDC1. (D) The expression levels of NRAS, TNFSF12, CD81 and BIRC5 mRNAs after the treatment

of siRNA-NC and siRNA-DEPDC1. (E) GO analysis of DEPDC1 and immune-related genes. (F) KEGG pathways

items of DEPDC1 and immune-related genes.

https://doi.org/10.1371/journal.pone.0294227.g009
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immunotherapy, moreover, immune checkpoint inhibitors plus T-cell activators have been

suggested to generate the prominent anticancer immunity [33, 34]. PD1 combined with

reversing T-cell exhaustion is of great significance for the immunotherapy of patients with

NSCLC.

Few recent studies have documented the biological function of DEPDC1 within NSCLC.

According to our results, GSEA revealed the significant enrichment of high-DEPDC1-expres-

sion group in ‘BASAL TRANSCRIPTION FACTORS’, ‘CELL CYCLE’, ‘DNA REPLICA-

TION’, ‘PYRIMIDINE METABOLISM’, ‘NUCLEOTIDE EXCISION REPAIR’, ‘OOCYTE

MEIOSIS’, ‘P53 SIGNALING PATHWAY’, ‘RNA DEGRADATION’ and ‘SPLICEOSOME’.

Basal transcription factors have been associated with transcription mediated by RNA polymer-

ase II, which transcribes all protein-coding genes in eukaryotic genomes [35, 36]. In gastric

cancer, the cell cycle signaling pathway can be activated by overexpressing CDK1, which ulti-

mately affects the development of gastric cancer cells and then affects cancer progression [37].

DNA replication plays a central role in genome health; the errors during the DNA replication

process leads to various diseases and even tumors [38]. Pyrimidine metabolism is a critical

metabolic pathway associated with DNA replication in tumor cells, and it plays an important

role in tumor development [39]. With regard to DNA lesions with different structures, cells

can reverse the genome into the original form through using the nucleotide excision repair

(NER) pathway with high conservation degree; moreover, it has been reported that the NER

pathway was associated with cisplatin resistance in NSCLC cell lines [40]. The oocyte meiosis

pathway is enriched by different cancer-related genes [41, 42]. The p53 signaling pathway has

been extensively studied and proved to be associated with proliferation migration apoptosis of

various cancer cells, suggesting it is a potential immunotherapy target [43, 44]. It has been

established that the RNA degradation system ensures the normal expression of genes; an error

in the RNA degradation process can interfere with gene transcription and translation of vari-

ous biological processes and ultimately lead to the occurrence of different diseases [45]. The

spliceosome pathway is related to regulating gene levels and has been proved to related to vari-

ous tumors, and its abnormal changes may affect tumor immune response, prognosis, immu-

notherapy and targeted drug therapy [46]. In this paper, DEPDC1 was targeting P53 signaling

pathway in NSCLC cells. These findings revealed that DEPDC1 is mainly involved in cancer-

related signaling pathways and DNA replication, repair, transcription and translation signaling

pathways, suggesting that DEPDC1 might be related to the molecular mechanism of genesis

and development of NSCLC, representing a potential therapeutic target.

To further explore the underlying molecular mechanisms, GO and KEGG analyses were

performed to reveal the enrichment of DEPDC1 and immune-related genes. The GO terms

were enriched in ‘receptor ligand activity’ for BP, ‘external side of plasma membrane’ for

CC and ‘regulation of innate immune response’ for MF, revealing that the genes might have

important effects on the targeted regulation of tumorigenesis, progression and immuno-

therapy [47, 48]. Epstein-Barr virus (EBV) is tightly associated with cancer genesis, which

participates in the oncogenic and immune signaling pathways of tumors and may be a

potential target for immunotherapy and drug therapy [49–51]. As for KEGG analysis,

‘Epstein-Barr virus infection’ pathway was the most significantly enriched. Overall, these

findings may provide new directions to understand tumor occurrence and therapeutic

mechanisms.

However, certain limitations should be noted in this work. First, data from TCGA only con-

tained tissue sample data. Besides, in vivo experiments of DEPDC1 are lacking. Moreover, the

pathways were based on data from different datasets rather than experimental verification.

Therefore, further experiments are warranted to substantiate our findings.
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Conclusion

In summary, DEPDC1, which was of high diagnostic value, was up-regulated in NSCLC tis-

sues, and was associated with gender, stage, T classification, N classification and smoking sta-

tus according to meta-analysis based on TCGA and GEO databases. Through the in vitro

experiments, the DEPDC1 mRNA and protein expression increased in NSCLC cells; besides,

the down-regulated DEPDC1 expression could inactivate the P53 signaling pathway, which

thereby inhibited cell growth and promoted their apoptosis. Moreover, DEPDC1 was signifi-

cantly correlated with immune cell infiltrating levels and immune-related genes. The results of

bioinformatics analysis and in vitro experiments suggested that DEPDC1 may be a key diag-

nostic and immunological marker, which provided a new method for investigating the patho-

genesis, development and immunotherapy response of NSCLC.
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