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Abstract

Cancer stem cells (CSCs) play a critical role in metastasis, relapse, and therapy resistance 

in colorectal cancer. While characterization of the normal lineage of cell development in the 

intestine has led to the identification of many genes involved in the induction and maintenance 

of pluripotency, recent studies suggest significant heterogeneity in CSC populations. Moreover, 

while many canonical colorectal cancer CSC marker genes have been identified, the ability to 
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use these classical markers to annotate stemness at the single-cell level is limited. In this study, 

we performed single-cell RNA sequencing on a cohort of 6 primary colon, 9 liver metastatic 

tumors, and 11 normal (non-tumor) controls to identify colorectal CSCs at the single-cell level. 

Finding poor alignment of the 11 genes most used to identify colorectal CSC, we instead 

extracted a single-cell stemness signature (SCS_sig) that robustly identified ‘gold-standard’ 

colorectal CSCs that expressed all marker genes. Using this SCS_sig to quantify stemness, we 

found that while normal epithelial cells show a bimodal distribution, indicating distinct stem and 

differentiated states, in tumor epithelial cells stemness is a continuum, suggesting greater plasticity 

in these cells. The SCS_sig score was quite variable between different tumors, reflective of the 

known transcriptomic heterogeneity of CRC. Notably, patients with higher SCS_sig scores had 

significantly shorter disease-free survival time after curative intent surgical resection, suggesting 

stemness is associated with relapse.
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Introduction

The prognosis for patients with colorectal cancer (CRC) remains poor, particularly for those 

with advanced disease (1) with only incremental improvement over the last two decades(2). 

Recent evidence suggests that cancer stem cells (CSCs), a subpopulation of tumor cells that 

possess the ability of unlimited self-renewal as well as ability to differentiate into non-stem 

cell types, may play a critical role in the development, progression and poor prognosis of 

CRC.

The concept of CSCs was first introduced with the recognition that malignant cell 

populations are derived from a small subgroup of cancer cells that are distinguished from 

the bulk of tumor cells by the ability to self-renewal and regenerate the malignant cell 

population indefinitely (3). Particularly in aggressive and therapeutically resistant cancers, 

a subset of CSCs can survive and promote cancer relapse following initially effective 

treatment due to their ability to establish higher invasiveness and less treatment sensitivity. 

This concept emphasizes the need to develop innovative treatment strategies targeting CSCs 

to achieve cures in these cancers (4). However, defining what is a CSCs and identifying 

these cells has been challenging to date. Growing evidence suggests that CSCs within 

individual tumors represent multiple pools of phenotypically and functionally heterogeneous 

cell populations, each of which can have unique biological characteristics (5). Additionally, 

the plasticity of individual CSCs is more widespread than previously thought; CSC can 

transition back-and-forth between stem and differentiated states in response to therapeutic 

insults or other stimuli within the tumor microenvironment (TME) (6–8), which could 

help explain the heterogeneity observed in tumors. Understanding the impact of CSC 

plasticity and other properties on disease progression and therapy resistance is critical to 

the development of more effective therapeutic strategies (4).
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Many canonical CRC CSC marker genes have been identified, including LGR5, ASCL2, 

EPHB2, PROM1, AXIN2, LEFTY1, RNF43, CD44 and SLC12A2 (3,9–13). However, CSC 

identification by cell sorting according to individual cell surface markers has limitations, and 

there is the potential to miss a large population of CSCs (14). Single-cell RNA sequencing 

(scRNA-seq) is a powerful technique for identifying and characterizing CSCs by profiling 

the transcriptome of individual cells; however, scRNA-seq has not-to-date been used to 

identify CRC stemness. Here we performed scRNA-seq on primary CRC tumors, CRC liver 

metastases, and normal tissue to identify, characterize, and evaluate the impact of cancer cell 

stemness throughout the tumor ecosystem.

Materials and Methods

Patient and sample collection

All patients with diagnosis of colorectal cancer undergoing surgical resection at The 

University of Texas MD Anderson Cancer center between August 8, 2019 and November 

30, 2021, there was no selection based on molecular or prior treatment criteria. A total 

of 22 samples were collected, however 4 samples failed quality control metrics. A total 

of 26 specimens from 18 patients with primary or liver metastatic CRC were included in 

this study (Supplementary table 1). Tumor and nonmalignant tissue samples were surgically 

removed and kept short-term in sterile cold DMEM medium for transport. Human research 

was conducted in accordance with the Helsinki Declaration ethical guidelines. Human tumor 

specimens were collected at The University of Texas MD Anderson Cancer Center under 

Institutional Review Board approved protocol LAB10–0982 (PI: Dr. Scott Kopetz) after 

written informed consent was obtained from each participant.

scRNA-seq library preparation and sequencing

After rinsing with cold PBS, fresh specimens were minced to approximately 1 mm3 pieces, 

transferred to a 50-ml conical tube with 30 ml dissociation solution and incubated for 30 

min on a rotor at 37°C. The dissociated cells were subsequently passed through a 70 μm 

Cell-Strainer (BD) centrifuged at 400 g for 10 min; the supernatant was removed. If red 

blood cells (RBCs) were present in the pellet, the pelleted cells were suspended in 20 ml 

of 1× MACS RBC lysis buffer and incubated on ice for 10 min to lyse the RBCs. To make 

dissociation solution, collagenase A (Sigma, 11088793001) was dissolved in 75% (vol/vol) 

DMEM F12/HEPES medium (Gibco, 113300) and 25% (vol/vol) BSA fraction V (Gibco, 

15260037) to prepare a concentration of 1 mg ml−1. The isolated cell was examined by 

countess and microscope, if mostly dead cells seen, the sample was excluded from library 

preparation.

Chromium single-cell sequencing technology from 10x Genomics was used to perform 

single-cell capture, barcoding and library preparation by following the 10X Genomics 

Single-Cell Chromium 3’ (PN-120237) protocol using V3 chemistry reagents (10X 

Genomics). The HS dsDNA Qubit Kit was used to determine the concentrations of both the 

cDNA and the libraries. The HS DNA Bioanalyzer was used for quality-tracking purposes 

and size determination for cDNA and lower-concentrated libraries. Sample libraries were 

normalized to 7.5 nM and equal volumes were added to each library for pooling. The 
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concentration of the library pool was determined using the Library Quantification qPCR 

Kit (KAPA Biosystems) before sequencing. The barcoded libraries were sequenced at 

100 cycles on an S2 flow cell on the Novoseq 6000 system (Illumina). Sequence reads 

were converted to FASTQ files and UMI read counts using the CellRanger software (10X 

Genomics).

scRNA-seq data preprocessing and quality control (QC)

The analysis started with a gene count matrix that had genes in rows and cell IDs in 

columns. Genes detected in fewer than three cells and cells detected with fewer than 500 

reads, fewer than 200 genes and more than 50% of transcripts derived from mitochondrial 

genes were filtered out and excluded from subsequent analysis. Following the initial 

clustering, we removed likely cell doublets from all clusters as previously described (15). 

Briefly, potential doublets were identified by the following methods: (1) cells in distinct 

clusters with similar expression features and an aberrantly high gene count, and (2) cells of a 

cluster expressing markers from distinct lineages. A similar percentage of potential doublets 

(approximately 5%) was removed from each sample. A summary of the samples after QC is 

listed in Supplementary table 2.

Variable gene selection, dimensionality reduction and clustering

After poor quality cells were filtered out and doublets were removed, 111,224 cells (83%) 

were retained for downstream analyses. From these filtered cells, the gene count matrix was 

normalized to the total UMI counts per cell and transformed to the natural log scale. To 

identify highly variable genes, the FindVariableFeatures method in the Seurat V3 package 

(16) was used. The numbers of significant principal components (PCs) were determined 

by an elbow plot, which was generated with the ElbowPlot function in Seurat. The first 

fifteen PCs and top 2000 highly variable genes were used for unsupervised clustering with 

a resolution set to 0.6. For visualization, the dimensionality was further reduced using 

the Uniform Manifold Approximation and Projection (UMAP) method with the Seurat 

RunUMAP function. The cell types were annotated by comparing the canonical marker 

genes and the differentially expressed genes for each cluster.

Defining single-cell gene signature scores

Cells were scored to a gene signature as previously described (17), using the 

AddModuleScore function in Seurat, with which analyzed features are binned based on 

averaged expression, and the control features are randomly-selected from each bin. Given 

a pre-defined set of genes (Gj) reflecting an expression signature of a specific cell type or 

biological function, we generated for each cell i, a score, SCj(i), quantifying the degree 

to which sample i expressed Gj. SCj(i) was calculated by subtracting the average relative 

expression (Er) of a control gene set (Gj cont) from the average relative expression of 

Gj: SCj (i) = average[Er(Gj,i)] − average[Er(Gj cont,i)]. The control gene set (Gj cont) 

was defined by first binning all analyzed genes into 24 bins of equal size based on their 

aggregate expression levels. Next, we randomly select 100 genes from the same bin for 

each gene in Gj, such that its average expression was analogous to averaging over 100 

randomly-selected gene sets of the same size as Gj. Each patient’s tumor gene signature 

score was represented by the median of all gene signature scores from their tumor tissue.
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Enrichment analysis

Gene set enrichment analysis (GSEA) (18) was based on Hallmark 50 gene sets to identify 

the CSC transcriptome differences between each patient. The genes were ranked by log2 fold 

change, using the FindAllMarkers analysis in the Seurat package. The ranked gene lists were 

subjected to GSEA using the GSEA software run using the GSEA-Preranked method.

Statistical analysis

All statistical analyses were performed using the two-tailed Student’s t-test to assess the 

statistical significance between two groups in R statistical software (version 4.0.0) or 

GraphPad Prism 8. The p-value of ≤ 0.05 was considered statistically significant in the 

hypothesis testing.

Data availability

The raw single-cell RNA sequencing and processed data generated from this study (MDA 

cohort) are available on Gene Expression Omnibus under accession number GSE231559. 

Other datasets referenced in this study are available from the GEO database under the 

accession codes GSE132465 and GSE178341.

Results

Single-cell transcriptome map of CRC

We performed droplet-based encapsulation scRNA-seq on six primary CRC specimens, nine 

liver metastatic CRC specimens, three matched normal colon specimens, and eight normal 

liver specimens. After removing cells that did not pass quality control (QC), 111,224 cells 

remained for further analysis. A median of 1389 genes were detected per cell. The mixture 

samples from each cluster and cell origin site/class indicated the minimal bench effect of 

scRNA-seq data (Fig. 1A and Supplementary Fig. 1A). A two-stage clustering strategy 

was employed in which cells were first annotated into four major populations and further 

partitioned into minor populations (subtypes).

Canonical marker genes were used to identify each cell cluster. Four major cell types, 

including epithelial cells (EPCAM, KRT8, KRT18), immune cells (PTPRC, CD68, CD163, 

CD3D, CD3E, CD79A, CD19), stromal cells (COL1A1, COL3A1, COL6A1, VWF, CDH5), 

and hepatocytes (CYP2E1, ASGR1), were annotated (Fig. 1A). Unsurprisingly, while barely 

detected in normal liver specimens, nearly all colon specimens had a substantial proportion 

of epithelial cells (Supplementary Fig. 1B). The low percentage of epithelial cells in some 

of the liver-metastatic tissue is likely due to little tumor remaining after neoadjuvant 

chemotherapy, which may be low in patients who received chemotherapy before surgery 

within 3 months. This is because the chemotherapy may have killed the tumor cells, as 

confirmed by a professional pathologist who observed extremely low tumor cell viability 

in samples L6T and L9T (Supplementary Table 1). For the partitioned epithelial, immune, 

and stromal cells, we further annotated the subtypes of each compartment based on known 

marker genes and found that most of the subtypes were recovered.
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In the epithelial cell compartment (Fig. 1B), many of the tumor cell clusters did not express 

canonical epithelial subtype marker genes (Fig. 1B and Supplementary Fig. 1C). Combining 

our observations in these clusters with published epithelial subtype gene signatures (12) 

(Supplementary Fig. 1D), we annotated these tumor cells to the normal epithelial subtype 

with confidence (Fig. 1B, right). Liver metastatic CRC specimens showed less diversity 

in the number of transcriptional subtypes present in each sample. For example, L4T was 

predominated by stem cells and L1T was predominated by immature secretory type cells 

(Fig. 1C). A simpler or more uniform cell type in liver metastatic tumors may arise from 

either monoclonal seeding or clonal selection in the metastatic microenvironment (19). 

Notably, there were more immature/undifferentiated cells in tumor specimens compared to 

normal specimens, indicating that cancer represents a less differentiated state relative to 

normal tissue but with significant heterogeneity at a cell-to-cell level.

Hepatocytes were identified only in liver specimens, though counts were low likely due to 

the known fragility of these cells with respect to the dissociation process (Supplementary 

Fig. 1B). For immune cells, we assigned T cell, B cell and myeloid components 

(Supplementary Fig. 1E), the proportion of B cells was significantly reduced in liver 

metastatic CRC compared to the primary tumor, whereas the proportion of T cells was 

observed to be increased (Fig. 1D). In the stromal cell compartment (Supplementary Fig. 

1F), liver metastatic tumors were predominantly endothelial cells, while primary tumors 

were predominantly fibroblasts (Fig. 1E). Interestingly, we found the fibroblast proportion 

was significantly decreased in liver metastatic tumor compared to primary CRC (Fig. 

1E). This result is consistent with recent findings that cancer-associated fibroblasts were 

significantly more abundant in primary CRC than in liver metastatic tumor (20). Studies 

using scRNA-seq to investigate the TME and its role in disease pathogenesis and treatment 

response are becoming increasingly common. Lambrechts et al. found that fibroblasts and 

myofibroblasts in the TME exhibited a distinct phenotype compared to those in normal lung 

tissue, and this phenotype was associated with poor prognosis. They also identified potential 

therapeutic targets for modulating the TME (21). The stem-like malignant progenitors 

have phenotypic plasticity to adapt to specific microenvironments and overcome metastasis 

barriers (22).

Single-cell stemness signature for CRC

Single-cell RNA sequencing revealed heterogeneity of known CSC marker genes expression 

in epithelial cells, indicating that the stemness expression profiles cannot be fully captured 

by a few marker genes (Fig. 2A). To address these challenges, we used CRC scRNA-seq 

data to identify a novel stemness signature (SCS_sig) to annotate CSCs. We first annotated a 

‘gold-standard’ set of CSCs that expressed nine canonical colon CSC marker genes (LGR5, 

ASCL2, EPHB2, PROM1, AXIN2, LEFTY1, RNF43, CD44 and SLC12A2) (3,9–13) (Fig. 

2B); 346 gold-standard CSCs were identified (1.7% of epithelial cells) (Fig. 2C). Myc 

targets, Wnt/β-catentin pathways (Fig. 2D), and previously published stemness gene sets 

(Supplementary Fig. 2A), were enriched in these gold-standard stem cells compared to other 

tumor cells, suggesting that these CSCs were robustly identified.
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To characterize and capture the unique transcriptomic features of stemness from these 

gold standard cells, we selected the 50 most significantly up-regulated genes (relative to 

other tumor cells) as a single-cell stemness signature (SCS_sig) (Supplementary table 3); 

this signature was positively correlated with the previously published 500-gene intestinal 

stem cell signature (23). We then determined the SCS_sig score at the single-cell level 

using AddModuleScore (17). In epithelial cells, the highest SCS_sig scores were well 

aligned with gold-standard CSCs (Fig. 2E, Supplementary Fig. 2B). Evaluation of the 

correlation between CSC marker genes and SCS_sig expression in epithelial cells indicated 

that the SCS_sig was statistically significantly associated with all CSC genes (Spearman p < 

0.0001), most correlated with ASCL2 expression (Supplementary Fig. 2C). In selecting the 

optimal number of genes for the gene set, we also evaluated the signature scores using 25, 

50, and 100 genes. We found that all three gene sets were significantly correlated with each 

other (Supplementary Fig. 2D), and the high signature score cells were largely overlapping 

for 25, 50, and 100 gene sets in the scRNASeq profile (Fig. 2E), indicating that a 50-gene set 

provided a robust approach for identifying cancer stem cells in colorectal cancer.

Furthermore, comparing individual tumors, while the stemness of each tumor was higher 

relative to normal colon controls there was considerable variability in stemness among 

different tumors from different patients (Fig. 2F). To evaluate the stemness of tumor cells 

from different patients, we used unsupervised clustering to identify the cells with the most 

stemness; cells within the highest 10% of SCS_sig scores of each sample were defined as 

having high stemness (Supplementary Fig. 2E). When the UMAP plot was annotated by 

sample, some tumor cells formed distinct clusters, while other clusters included a mix of 

primary, metastatic and normal cells (Supplementary Fig. 2E). The four individual clusters 

(1, 2, 4, 5) with higher SCS_sig scores were separated from each other as well as from the 

group of clusters (0, 3) with lower SCS_sig scores (Supplementary Fig. 2E). These results 

suggest that SCS_sig could serve as an indicator of tumor heterogeneity, as UMAP has good 

preservation of large-scale distances (24).

Single-cell stemness signature characterization and distribution

To examine if the SCS_sig can measure single-cell stemness, we calculated the 

differentiation states by CytoTRACE, an unsupervised framework for predicting relative 

differentiation states from single-cell transcriptomes (17). We found both SCS_sig and 

CytoTRACE scores were significantly higher in both gold-standard CSC compared to 

non-CSC cells and tumor cells compared with normal cells (Fig. 3A and Fig. 3B). 

Indeed, the SCS_sig and CytoTRACE scores were highly correlated at the single-cell level 

(R=0.75, p<0.0001; Fig. 3C). Our comparative analysis between the SCS signature and the 

CytoTRACE-derived top 50 gene lists revealed a substantial overlap, with 30 out of the 

50 CytoTRACE genes coinciding with the SCS signature genes, reinforcing the validity 

of our SCS signature in representing stem cell characteristics (Supplementary Fig. 3F). 

Furthermore, we calculated the SCS_sig in epithelial cells from the Samsung Medical 

Center cohort (32 patient) (25) and Broad Institute cohort (62 patients) (26) and found 

SCS_sig score was higher in tumor compared with normal cells (Fig. 3D), and positively 

correlated with CytoTRACE score (Supplementary Fig. 3A). There was no significant 

difference of SCS_sig and CytoTRACE scores between primary and liver metastatic CRC 
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(Supplementary Fig. 3B), suggesting that liver resident tumor cells did not acquire more 

stemness than primary tumor cells. In our analysis of 4,312 normal epithelial cells, we 

identified only one cell meeting the criteria for a gold-standard cancer stem cell (CSC), 

highlighting their scarcity in normal colon tissue. Comparative studies of primary colon 

tumors and liver metastases revealed significant inter-tumor variability in CSC numbers, but 

no discernible difference between the primary and metastatic sites (Supplementary Fig. 3G). 

The distribution of SCS_sig scores in tumor cells followed a normal and continuous pattern, 

which implies that the level of stemness in tumor cells is highly adaptable. In contrast, the 

SCS_sig score distribution in normal cells was bimodal in both our dataset and the Broad 

cohort data (26) (Fig. 3E).

Association between single-cell stemness signature, tumor features and clinical outcomes

We investigated the potential relationship between SCS_sig score, patient treatment history, 

and survival outcomes (Fig. 4A). We found that patients with higher SCS_sig score tended 

to experience relapse shortly after surgery. For instance, patient L4, who had the tumor with 

highest SCS_sig score, relapsed within two months after surgery, while patients C3, C4, L1, 

and L9 with the four lowest SCS_sig scores have not yet relapsed (Fig. 4A, B). Splitting the 

cohort into half, the patients with higher SCS_sig scores had markerly shorter DFS relative 

to those with lower SCS_sig, average DFS time of 5.0 months vs. 19.2 months (Fig. 4B). 

Survival analysis by Kaplan-Meier plot and log-rank test revealed statistical significance 

(p=0.025) between high SCS_sig group and low group (Fig. 4C). Relapse after surgical 

resection is a major challenge in cancer treatment, and these data fit with emerging evidence 

in other tumor types that suggests that cancer cell stemness is a critical contributor(27).

Discussion

Prior research has suggested identifying Cancer Stem Cells (CSCs) in single-cell RNA 

sequencing profiles based on the expression of single-gene or few-gene markers ((3), (9–

13)). However, this approach resulted in higher heterogeneity among the CSCs that were 

identified in scRNA-seq profiles of CRC (Fig. 2A). We also observed that the canonical 

CRC CSC marker genes, some of which overlap with markers of normal intestinal stem 

cells, present complexities in their expression patterns, making it challenging to differentiate 

between normal and cancer stem cells using individual markers. Additionally, our analysis 

of specific markers like ALDH1 and BMI1 demonstrated a dispersed expression across 

the epithelial cell cluster (Supplementary Fig. 3C), emphasizing the intricacy and potential 

pitfalls of relying solely on individual markers for stem cell identification in colorectal 

cancer. In this study, we identified a novel gene set with high expression levels in 

CSCs. This gene set, which we refer to as the single-cell stemness signature (SCS_sig), 

is postulated to delineate the stemness characteristic of epithelial cells. The 50-gene set 

encompasses a wide range of biological functions, including well-established cancer-related 

genes, such as AREG and ASCL2, as well as unexpected genes involved in oxidative stress 

like PRDX4 and PRDX5, and ribosomal protein genes (eg, RPS14, RPS15A, RPL10, etc.)

(28–32). Additional bioinformatic analyses of ribosomal protein-associated networks may 

also shed light on mechanisms maintaining stemness. Interestingly, markers of epithelial 

differentiation like KRT20 are notably absent. The lack of mature intestinal markers 
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supports the stem-like nature of the identified cell subset(33). This comprehensive and 

balanced composition not only validates the robustness of our gene set but also opens 

new avenues for research, enhancing its reliability and scope for further validation and 

applications in colorectal cancer research.

Our analysis revealed that tumor cells with the top 10% signature score from four known 

ISC gene sets (ISC_Munoz, ISC_Merlos, Stemness_Biton, and Stemness_Li) did not 

congregate into a distinct cluster (Supplementary Fig. 3D), suggesting that the SCS_sig 

gene set encapsulates the similarity of stem cells more comprehensively than other ISC gene 

sets(14,23,34,35). We also found that the single cells with the top 10% signature score of 

these four ISC gene sets differ significantly in terms of their overlap with the top 10% using 

SCS_sig (Supplementary Fig. 3E). This, combined with low correlation between SCS_sig 

and ISC_Munoz (Supplementary Fig. 2B), implies that the new SCS_sig gene set may lead 

to different results on what would be considered stem cells in the tumor compared to other 

published ISC gene sets, providing a more comprehensive and nuanced understanding of 

stemness in tumor cells.

Our study emphasizes the importance of considering cell states over cell types of tumor 

cells. Utilizing this SCS_sig gene set, we quantified the stemness attribute of individual 

epithelial cells in both normal and tumor specimens. Interestingly, the stemness scores 

of malignant epithelial cells presented a unimodal normal distribution, in contrast to the 

bimodal distributions observed in epithelial cells of normal colonic tissue. These data 

suggest that stemness in normal, non-tumor cells is a regulated, binary on/off state. In 

contrast, in tumor cells, there is greater plasticity and stemness exists on a continuum. 

This observation is consistent with the continuous and reversible state theory of tumor 

cell stemness plasticity, which explains the role of CSCs in tumor growth, recurrence (6), 

metastasis (22), and treatment resistance (27). This theory posits that CSCs can transition 

back and forth between stem and non-stem cell states, allowing them to adapt to changing 

environmental conditions for a survival advantage (36). Thus, CSCs are thought to be a key 

factor in the aggressiveness and resistance of tumors, as they are able to persist and initiate 

new tumors even after conventional treatments such as chemotherapy and radiation. Such a 

perspective offers a more comprehensive understanding of tumor heterogeneity, potentially 

reshaping therapeutic strategies that target the intricate and adaptable nature of cancer stem 

cells.

We also propose that SCS_sig may be utilized as an indicator of inter-tumor heterogeneity. 

By assigning the top 10% of SCS_sig scoring cells in each tumor sample as ‘high stemness’, 

we were able to create a distinct grouping of cells exhibiting marked stemness traits. 

Tumor cells’ clusters exhibiting higher SCS_sig scores demonstrated clear separation from 

each other and also from the group of clusters that displayed lower SCS_sig scores. This 

differentiation between clusters based on their SCS_sig scores underlines the potential of the 

SCS_sig as a tool for dissecting tumor heterogeneity. Indeed, we observed a patient-specific 

bias in the distribution of cells with high SCS_sig scores (>1). We found that using a high 

SCS_sig score as a threshold would identify single cells from only three samples, and single 

cells from other samples were under-represented.This insight is critical, as understanding 

tumor heterogeneity is a key aspect of developing personalized therapeutic strategies and 

Lin et al. Page 9

Mol Cancer Res. Author manuscript; available in PMC 2024 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predicting treatment responses (37–39). Our study also revealed that patients exhibiting a 

high SCS_sig generally have a less favorable Disease-Free Survival (DFS) post-surgery of 

patients with CRC, highlighting its prognostic value as the tumor cell recurrence following 

surgical removal represents a significant obstacle in cancer therapy. However, our study 

acknowledges a notable limitation concerning the limited data on MSI-H status, available 

for only one patient, and the small sample size, which might not fully represent the diverse 

clinical scenarios encountered in larger populations. Future studies will aim to enhance 

the dataset to explore the potential correlations between stemness markers and significant 

prognostic factors in colorectal cancer more comprehensively. In this study, we emphasize 

the potential of our computational groundwork to pave the way for future studies, where 

detailed experimental validations such as lineage tracing and in vitro or in vivo assays can be 

integrated to confirm the functional properties and behaviors of identified CSC populations, 

thereby fostering a more nuanced understanding of colorectal cancer dynamics. Moreover, 

further investigations and validations are required to assess the functional implications of 

high and low SCS_sig scores in different tumor cells and exploring how these scores might 

be influenced by the tumor microenvironment or patient-specific factors. The potential 

application of this novel approach in a clinical setting could greatly aid the management and 

treatment of complex and heterogeneous colorectal cancers.

In summary, our study provides a novel approach for annotating stemness using CRC 

scRNA-seq data that can help improve our understanding of the heterogeneity and plasticity 

of these cells. Further studies are needed to validate the SCS_sig in larger patient cohorts 

and to explore its potential as a prognostic or therapeutic target in CRC.
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Implications

This study reveals significant heterogeneity of expression of genes commonly used to 

identify colorectal CSCs, and identifies a novel stemness signature to identify these cells 

from scRNAseq data.
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Figure 1: A single-cell transcriptome map of primary and liver metastatic CRC.
A single-cell transcriptome map of primary and liver-met CRC. A, UMAP plots displaying 

111,224 cells from colon normal, colon primary CRC, liver normal and liver metastatic CRC 

tissues. Cells were colored by cluster (left), sample ID (middle) and major cell type (right), 

respectively. B, UMAP plot of colon and liver epithelial cells, color-coded by cluster (left), 

sample class (normal/tumor, middle) and epithelial subtype (right). C, Number and relative 

proportions of epithelial subtype in colon and liver metastatic CRC samples. D, Percentage 

of immune subtypes grouped by the sample type of site and class. E, Percentage of stromal 
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subtypes grouped by the sample type of site and class, samples with total stromal cells < 20 

were not presented.
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Figure 2: Identification of a single-cell stemness signature.
A, UMAP plots showing expression of canonical intestinal CSC marker genes. Color bar 

represents scaled expression. B, Intersection epithelial cell number that CSC gene is non-

zero. LGR5, ASCL2 and EPHB2 are marked as primary CSC genes. C, UMAP showing 

the ‘gold-standard’ CSC expressing most of the canonical intestinal CSC marker genes 

(LGR5, ASCL2, EPHB2, PROM1, AXIN2, LEFTY1, RNF43, CD44 and SLC12A2). D, 

Gene set enrichment analysis (GSEA) results showing the hallmark gene sets related to 

‘gold-standard’ CSC compared with other epithelial cells. Gene sets with FDR < 0.25 are 
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shown. E, Feature plot showing the 10% epithelial cells (colored by dark red) with the 

highest SCS_sig score of 50, 25 and 100 genes. F, Violin plot of the SCS_sig score by tumor 

samples and merged normal colon samples. The line in each violin represents the median 

value.
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Figure 3: SCS_sig characterization.
A and B, SCS_sig score (left) and CytoTRACE score (right) in non-CSC/CSC (A) and 

in normal/tumor cells (B). C, Spearman correlation coefficient of SCS_sig score and 

CytoTRACE score in epithelial cells. D, SCS_sig score in the Samsung Medical Center 

(SMC) cohort (left) and Broad cohort (right) epithelial cells by normal/tumor. E, Histogram 

showing the distribution of SCS_sig score in normal and tumor cells (MD Anderson data, 

left; Broad cohort data, right).
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Figure 4: Associate of SCS_sig with clinical outcomes and tumor features.
A, Swimmer plot showing the patients’ treatment history and outcomes, patients were 

ordered by SCS_sig score. B, SCS_sig score and disease-free survival (DFS) from time of 

single cell collection surgery. Each patient’s SCS_sig score is represented by the median 

SCS_sig score of tumor cells from that patient. C, Kaplan-Meier plot showing the DFS 

curves for patients grouped by median of SCS_sig score.
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