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SUMMARY

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%–

20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To 

enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune 

evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance 

and diverse immune evasion responses in tumor tissues, we comprehensively characterized the 

immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-

cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative 

learning of cell type compositions and pathway activities. We then thoroughly categorized unique 

genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further 

leveraging the deep phosphoproteomic data, we studied kinase activities in different immune 

subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work 

will facilitate the development of future immunotherapy strategies and enhance precision targeting 

with existing agents.
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In brief

Immunotherapy holds strong promise for cancer treatment but at present benefits only a small 

proportion of cases. A pan-cancer analysis of the immune landscape in more than 1,000 tumors 

across ten cancer types reveals immune surveillance and immune evasion mechanisms as well 

as potential molecular target that could augment future immunotherapy and precision medicine 

strategies.

INTRODUCTION

A key component of cancer ecology is the tumor microenvironment (TME). Immune and 

stromal cells within a tumor can both promote and limit the malignant state in a context-

dependent fashion.1,2 Understanding the cancer immune microenvironment can reveal how a 

patient’s immune system can be harnessed for anti-cancer therapies.

To explore the TME broadly, we examined 1,056 tumor samples from 10 cancers 

using the pan-cancer proteogenomic dataset from the NCI-supported Clinical Proteomic 

Tumor Analysis Consortium (CPTAC).3 This unique multi-omics dataset includes genomic, 

transcriptomic, epigenomic, and proteomic data. The latter comprises mass-spectrometry-

based quantification of relative protein abundance and post-translational modifications. 

While multiple pan-cancer analyses focusing on cancer immunity using high-dimensional 

multi-omic data have been explored,4–6 this work advances the field by integrating novel 

insights gained from deep proteomic sample characterization.
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Employing novel algorithms for dissecting the tumor microenvironment accounting for 

both RNA and protein expression,7 we illuminated the tumor molecular microenvironment, 

explored the pathways related to its function, and associated it with clinical outcomes. 

Despite many differences across the 10 cancers, our analysis revealed seven pan-cancer 

immune subtypes. This indicates a common molecular fingerprint of cancer patient immune 

response. The large sample size of the aggregated pan-cancer multi-omic data enabled 

us to detect a large collection of genomic, epigenetic, transcriptomic, and proteomic 

changes associated with each immune subtype. Coupling the deep phosphoproteomics 

with kinase enrichment analysis tools,8,9 we characterized kinase activities in different 

immune subtypes, revealing known and potentially novel targets. Furthermore, machine 

learning algorithms10,11 applied to digital pathology hematoxylin and eosin (H&E)-stained 

images demonstrated correlations between the immune subtypes and direct visualization of 

lymphocytic infiltrates.

Our work advances the understanding of the diverse immune activation and evasion 

strategies employed by tumors, casting light on potential immunotherapy strategies. Two 

dedicated user-friendly web server portals implemented to accompany this analysis12,13 will 

facilitate further exploration of the rich data resources generated in this and related work.

RESULTS

Multi-omic pan-cancer data

In recent proteogenomic studies by the NCI-supported CPTAC, 1,056 treatment-naive 

samples from patients representing 10 cancers were analyzed using proteogenomic 

approaches consisting of whole-genome sequencing (WGS), RNA-seq, quantitative 

proteomics, and phosphoproteomics.3,14–27 The sample distribution over different cancers 

is visualized in Figure 1A: breast cancer (BC, n = 113), clear cell renal cell carcinoma 

(CCRCC, n = 103), colon cancer (CO, n = 96), glioblastoma (GBM, n = 99), head and 

neck squamous carcinoma (HNSCC, n = 110), lung squamous carcinoma (LSCC, n = 

108), lung adenocarcinoma (LUAD, n = 110), ovarian cancer (OV, n=82), pancreatic ductal 

adenocarcinoma (PDAC, n = 140), and uterine cancer (UCEC, n = 95).

Cell type composition heterogeneity and its association with patient outcomes

The pan-cancer tumors exhibited substantial heterogeneity in tumor cell percentages, as well 

as immune and stromal cell percentages (STAR Methods). Specifically, CCRCC, LUAD, 

and PDAC emerged as the cancers with the highest immune infiltration, while CCRCC and 

PDAC also exhibited higher stromal component compared with other cancers. Conversely, 

UCEC showed the highest tumor cell percentages but the lowest immune and stromal 

composition (Figure 1B).

To gain insights into the infiltration pattern of different immune/stromal cell types in 

these tumors, we estimated cell type composition fractions in the tumor microenvironment 

(TME) using a recently developed deconvolution algorithm,7 which leverages matched 

bulk gene expression and proteomic profiles to perform tissue deconvolution (Table S1). 

The comparison of cell type fractions among different tumors revealed extensive cell 
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type composition heterogeneity across different cancers (Figure 1B). CCRCC and LUAD 

featured notably higher CD8+ T cell infiltration, whereas GBM, CO, and UCEC exhibited 

lower CD8+ T cell fractions. B cells also showed higher infiltration in LUAD, while lower 

infiltration in GBM, BR, and UCEC. The low presence of CD8+ T cells and B cells in GBM 

aligns with the well-known phenomenon in brain tumors, in which T cells and B cells are 

outnumbered by microglia and macrophages.28 On the other hand, monocytes appeared to 

be more enriched in CCRCC, GBM, and OV compared with other cancers. Furthermore, 

CCRCC was the cancer with the highest enrichment of fibroblasts and endothelial cells 

(Figure 1B).

Percentages of different cell types were also found to be associated with progression-free 

survival (PFS) in different cancers, such as CCRCC, LUAD, PDAC, and UCEC (Figures 1C 

and 1D; STAR Methods). Specifically, increased CD8+ T cells resulted in superior PFS for 

CCRCC, LUAD, and PDAC patients, but worse PFS in UCEC. In CO, higher infiltration of 

different cell types resulted in worse overall survival (OS) (Figure 1C).

Immune subtypes spanning 10 cancers

In addition to cell type fractions, we also leveraged 427 immune-related signatures from 

the literature to characterize the TME of CPTAC tumors (STAR Methods; Table S1). Given 

the high correlation among these immune-related signatures, we first grouped them into 10 

different immune modules based on their single-sample gene set enrichment scores derived 

from the pan-cancer proteomic data. Besides the myeloid and lymphocyte modules, we 

observed signature groups representing wound healing proliferation, interferon, and TGFB/

stromal. We then derived module activity scores for each tumor sample based on proteomic 

data. We utilized them together with the cell type fractions to perform consensus clustering 

to detect immune subtypes with different TME (Figure 1A; STAR Methods).

We identified seven clusters: CD8+/IFNG+, eosinophils/endothelial, fibroblast/TGF-β, 

CCRCC/endothelial, brain/neuro, CD8−/IFNG+, and CD8−/IFNG− (Figures 1E and 1F). 

CD8+/IFNG+ contained tumors from all 10 cancers and was characterized by the enrichment 

of CD8+ T cells, the activation of interferon, and immune-related pathways such as T cell 

receptor signaling (Figures 1E, 1F, and 2B). Eosinophils/endothelial was enriched in PDAC, 

LUAD, and LSCC tumors and was characterized by the presence of eosinophilic cells 

(Figures 1E and 1F). Fibroblast/TGF-β was characterized by the upregulation of TGF-β, 

fibroblasts, and the activation of extracellular matrix-related pathways such as epithelial 

mesenchymal transition (EMT) and focal adhesion (Figure 2B; Table S2). It is well known 

that the activation of hypoxia together with TGF-β can affect the TME, stimulating the 

production of extracellular matrix components, a characteristic of EMT.29 Interestingly, 

upregulation of hypoxia was observed in fibroblast/TGF-β solely based on proteomics 

(Figure 2C; Table S2), suggesting the value of the integrative proteogenomic approach.

CD8−/IFNG+ represents an immune subtype characterized by low immune infiltration of 

CD8 T cells and B cells, but strong activation of interferon gamma signaling. In contrast, 

CD8−/IFNG− is characterized by the lowest fraction of all immune and stromal cell types. 

For both these two clusters, we observed upregulation of cell-cycle-related pathways such 

as DNA damage/repair, and MYC targets (Figure 2B; Table S2). Interestingly, allograft 
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rejection was upregulated in CD8−/IFNG+ but downregulated in CD8−/IFNG−, aligning 

the changes observed in interferon gamma signaling between these two subtypes (Figure 

2B). Notably, PPARA activates gene expression was found to be elevated in CD8−/IFNG− 

based on proteomic data alone (Figure 2C). It has been documented that the activation 

of PPAR-gamma can induce the suppression of immune responses and interferon gamma 

activity.31,32

The remaining two clusters, CCRCC/endothelial and brain/neuro, represent cancer-specific 

subtypes (Figure 1E). Despite both being characterized as ‘‘immune cold,’’ these subtypes 

exhibited notable differences compared with CD8−/IFNG−. The brain/neuro subtype 

displayed enrichment of neurons and upregulation of oxidative phosphorylation and 

pyruvate metabolism pathways (Figure 2C). This is consistent with previous findings that 

the less immunogenic GBM and pediatric brain tumors showed upregulation of metabolic 

pathways.22,24 CCRCC/Endothelial was the predominant immune subtype within CCRCC. 

Although similar to CD8−/IFNG− in terms of low T cell infiltration, this subtype exhibits 

significantly elevated levels of mast and endothelial cell infiltration, accompanied by an 

upregulation of the focal adhesion pathway (Figure 2B). The prevalence of the CCRCC/

endothelial subtype in CCRCC was further confirmed in an independent cohort as illustrated 

in the subsequent validation section.

Investigating the association between immune subtypes and demographic variables (Table 

S2; STAR Methods), we found underrepresentation of females compared with males in 

CD8−/IFNG− (Figures 2D and S2C). East Asian were more enriched in CD8−/IFNG+ than 

European patients (Figures 2D and S2F). Furthermore, fibroblast/TGF-β was enriched for 

smokers (Figures 2D and S2D). Indeed, significantly different activity of related pathways, 

including EMT and IFNG, between never- and ever smokers was observed in HNSCC 

(Figure 2E).

Association between immune subtypes and treatment responses

In order to explore the association between immune subtypes and cancer treatment 

responses, we conducted an analysis using data from the phase III OAK clinical trial 

(NCT02008227), which involved 425 non-small cell lung cancer patients treated with 

immunotherapy (atezolizumab/MPDL3280A).30 We obtained RNA-seq data from pre-

treatment tumor tissues for 344 patients.33 By utilizing an immune subtype predicting model 

trained on CPTAC pan-cancer RNA-seq data (STAR Methods), we identified 75 out of the 

344 tumors belonging to CD8+/IFNG+. Strikingly, these patients showed significantly better 

PFS (Figure 2A, left). This association was not detected when considering an independent 

group of patients within the OAK trial (n = 355) who received chemotherapy (Docetaxel) 

(Figure 2A, right). These findings align with our expectations, supporting the notion of 

enhanced immunotherapeutic response in CD8+/IFNG+.

Validation of cell type fraction and immune subtypes

To validate both the immune composition estimates and the inferred immune subtypes, 

we analyzed a subset of tumors, for which FFPE blocks were available, using 

alternative experimental platforms, including immunohistochemistry (IHC), multiple 
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reaction monitoring-mass spectrometry (MRM), and tissue microarray (TMA) multiplex 

immunofluorescence-stained image experiments (STAR Methods). Additionally, we 

leveraged a recent proteogenomic data from an independent CCRCC cohort3,34 to confirm 

the immune subtypes detected in CCRCC.

IHC validation experiments—We evaluated IHC staining data for CD8, CD4, and 

CD163 on adjacent tissue slices from a subset of 17 LSCC tumors from the CPTAC pan-

cancer cohort.26 The IHC scores for these markers displayed strong concordance with the 

corresponding estimated cell type percentages (Figures S1A, S1B, Spearman’s correlation > 

0.55, p value < 0.05). Next, we collected TMA images of CD8 IHC staining from a total 

of 60 LSCC tumors, including the aforementioned 17, in the study cohort (STAR Methods). 

We used these images to assess immune exclusion, defined as an enriched CD8 staining 

along the stroma-tumor interface (Figure S1C). Notably, we observed this characteristic in 

only 4 out of 60 tumors: 2 from CD8+/IFNG+ and 2 from fibroblast/TGF-β (Table S1). 

Given the limited number, we were unable to assess whether the immune exclusion pattern 

is a contributing factor to immune subtypes. Future research on a larger scale is warranted.

Finally, we leveraged the IHC staining image data of 4 GBM samples and 4 CCRCC 

tumors in this study, as provided by Clark et al.17 and Wang et al.,24 respectively. For both 

cancers, we confirmed higher abundance levels of macrophage and T cells markers in the 

CD8+/IFNG+ tumors (Figure S1A).

MRM and TMA validation experiment—We conducted an independent MRM 

experiment for 59 HNSCC tumors in the study cohort (STAR Methods). The analysis 

targeted five proteins upregulated in CD8+/IFNG+ to other subtypes and confirmed the 

significant upregulation (Figure S1D).

To validate the presence of stroma in the TME, we conducted a TMA multiplex 

immunofluorescence-stained image analysis on a subset of 64 LSCC in the study cohort 

(STAR Methods; Table S1). FFPE tissue sections were stained using antibodies against FAP 

and α-SMA. TMA data supported the significant upregulation of FAP in LSCC tumors 

from Fibroblast/TGF-β than from other subtypes (Figure S1E). Additionally, the combined 

density of FAP and α-SMA was the highest in tumors from Eosinophils/Endothelial, 

suggesting a highly heterogeneous and plastic state of these tumors.

Validation of immune subtypes in an independent CCRCC cohort—Analyzing 

proteogenomic data of 112 independent CCRCC tumors34 (STAR Methods), we detected 

all five subtypes identified within CCRCC in the CPTAC pan-cancer cohort (Figure S1F). 

Notably, the predominant subtype, CCRCC-endothelial remained as the largest subtype in 

the validation cohort, suggesting the reproducibility of these subtypes across cohorts.

Contrast with existing immune subtypes

We compared the proteogenomic-based immune subtypes with those identified by the 

TCGA pan-cancer study.5 After applying the TCGA immune subtype classification to 

CPTAC pan-cancer RNA-seq data (STAR Methods), we observed that CCRCC were 

allocated for the most part to the inflammatory subtype, HNSCC and OV to the interferon 
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gamma dominant subtype, and GBM to the lymphocyte depleted subtype (Figures S2A 

and S2B). These results did not reveal the immune heterogeneity within cancers. On the 

other hand, our proteogenomic analysis suggested distinct immune profiles within each 

cancer, consistent with existing literature reporting diverse immune landscapes among these 

cancers.17,24,26 For example, in the CPTAC CCRCC study by Clark et al.,17 two subtypes 

of ‘‘cold’’ tumors were found: one characterized by low immune infiltration and the 

enrichment of endothelial cells, and another one characterized by the low presence of both 

stromal and immune cells. These results were confirmed by our pan-cancer classification, 

but they were not detected by TCGA classification. For GBM, we also observed significant 

(p values < 10−16) coherence between our pan-cancer immune subtypes and the GBM-

specific immune subtypes (im1-im4) identified previously24 (Table S1).

On the other hand, compared with single-cancer studies, our pan-cancer immune subtype 

analysis allows the identification of new immune subtypes by borrowing information across 

different cancers. For instance, the CPTAC LUAD study26 failed to identify a subset of 

cold tumors with activation of interferon gamma signaling. The latter was also missed in 

the TCGA pan-cancer study,5 in which the interferon gamma dominant subtype contained 

a mixture of tumors from the CD8+/IFNG+ (more immunogenic) and CD8−/IFNG+ (less 

immunogenic) groups identified by our classification (Figure S2B).

Impact of DNA aberrations on immune subtypes

Association of mutation profiles with immune phenotypes—For a set of 470 

frequently mutated genes in cancers,35 we assessed the association between their mutation 

profiles and immune phenotypes, including cell type proportions, immune pathway modules, 

and immune subtypes (STAR Methods). Overall, we identified 102 genes whose mutations 

showed significant association with at least one immune phenotype (Table S3; Figures 

3A and 3B). Notably, STK11 mutation was positively associated with CD8−/IFNG+ and 

downregulated its RNA and protein expression in LUAD (p < 0.05, Figures 3A–3C, 

S3A, and S3B). Consistently, protein levels of STK11 were significantly reduced in CD8−/

IFNG+ compared with other subtypes (Figure 3D). These findings suggest that STK11 

may contribute to reduced immune infiltration in patients with activated interferon gamma 

signaling.36

On the other hand, we observed positive association between mutations of BAP1 and 

CASP8 and the highly immunogenic subtype, CD8+/IFNG+ (Figure 3B). Mutations in 

BAP1, which were the most frequent in CCRCC among all cancers (Figure 3A), were 

suggested to be pathogenic and promote CD8+ T cell infiltration in CCRCC.37 In our 

data, BAP1 mutation correlated with the downregulation of cognate RNA and protein 

expression in CCRCC (Figures 3C, S3A, and S3B). This is consistent with the previous 

observation that decreased BAP1 expression results in higher infiltration of immune cells.38 

CASP8 is a critical player in the extrinsic apoptosis pathways. Its mutations have been 

suggested to help tumor cells escape from cytotoxic T cells, reflecting immune evasion 

mechanisms that follow immunological pressure.39 We found that both gene and protein 

expression of CASP8 were upregulated in CD8+/IFNG+ and CD8−/IFNG+, extending 
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previous observations of increased cytolytic activity in tumors harboring defects in CASP839 

(Figure 3D).

Moreover, our analysis revealed several mutations that were not previously linked to TME 

(Table S3). For example, mutation of AXIN1, a central component of the destruction 

complex in the Wnt/β-catenin signaling pathway, was associated with the presence of 

macrophages together with the fibroblast/TGF-β subtype. Mutations in KEAP1 and NFE2L2 

were negatively associated with the IFNG module, endothelial, and CD8 T cell, while 

positively associated with the wound healing module. While the KEAP1-NFE2L2 pathway 

has not yet been directly associated with T cells, its role in regulating oxidative stress, 

metabolism, and inflammation supports that defects in this pathway can have indirect effects 

on T cell function. Overall, our analysis uncovered known and unexplored associations 

between mutations and several immune traits, some deserving further experimental follow-

up.

Association of copy-number variation alterations with immune phenotypes—
We examined the association between various immune phenotypes and gene-level copy-

number variations (CNVs) and found Chr3p, 4p, 5p, and 9p enriched of such associations 

(Table S3, STAR Methods). Specifically, Chr3p contained the highest number of genes (n 

= 467) whose CNV were significantly (p < 0.001) associated with both CD8+ T cell and 

macrophage infiltration (Figure 3E). In the study cohort, the CCRCC tumors showed the 

highest percentage of Chr3p deletion (on average > 50% of genes on Chr3p had deletion in 

one tumor). Interestingly, it was reported that a subset of CCRCC patients with favorable 

prognosis were featured with elevated expression levels of CD8+ T cell effector markers 

as well as a low level of copy-number loss.40 This is consistent with our observation of a 

negative association between Chr3p deletion and CD8+ T cell signal as well as a positive 

association between CD8+ T cell infiltration and PFS of CCRCC patients (Figure 1D).

Another noteworthy region is 9p21, housing genes such as CDKN2A/B and MTAP, for 

which CNVs were significantly correlated with the wound healing proliferation module 

(Figure 3F). 9p21 loss was recently suggested to confer a cold TME and primary resistance 

to immune checkpoint therapy.41 Our observation supports the hypothesis that deletion of 

CDKN2A/B, MTAP and other genes in 9p21 may contribute to immune suppression in 

TME.

Besides CNV aberrations, we further assessed whether microsatellite instability (MSI) was 

associated with immune phenotypes (STAR Methods). We found that MSI high patients in 

CO were associated with higher infiltration of T cells and myeloid cells (Figure S3C; Table 

S3). This association was not identified for UCEC, another cancer enriched of MSI high 

patients (Table S3).

Germline DNA variations contribute to pan-cancer tumor microenvironment—
Multiple studies suggested that germline genetic variants can play an important role in 

shaping TME,42,43 in addition to their more traditionally studied roles on cancer risk.44–

46 To better understand the impact of germline variation, we performed quantitative 

trait loci (QTL) analyses using both gene expressions (eQTL) and protein expressions 
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(pQTL) together with WGS data (STAR Methods) and revealed significant QTLs regulating 

genes (eGenes) and/or proteins (pProteins) (Table S3). Gene sets enriched among eGenes 

and pProteins included multiple immune pathways, such as complement and coagulation 

cascade, neutrophil degranulation, and cellular response to chemical stress (Table S3; Figure 

3G).

Association of DNA methylation with immune subtypes—Based on gene-level 

DNA methylation (DNAm) data, we identified a collection of genes showing either pan-

cancer association (Figure 4A) or cancer-specific association (Figure 4B) between their 

DNAm and immune subtypes (STAR Methods; Table S4). Especially, for a large number 

of genes, their DNA methylations were associated with CD8−/IFNG− in HNSCC (FDR 

< 10%) (Figure S4A). Note, the association between DNAm and immune subtypes were 

largely in the opposite directions compared with those between RNA/protein expressions 

and immune subtypes, as gene-level DNAm typically leads to downregulation of gene and 

protein expression.

Impact of smoking on immune subtype mediated through DNA methylation
—Associations between tobacco use and epigenetics are well established and have been 

surveyed for multiple cancers.47–52 To study whether the impact of smoking on TME were 

mediated through epigenetic alterations, we performed a mediation analysis to identify 

smoking-related DNAm influencing TME in HNSCC, LSCC, and LUAD (Figure 4C, STAR 

Methods). Specifically, we first derived a somatic mutation-based smoking signature47,53 

(Figure S4B). We subsequently focused on 160 genes whose DNAm showed association 

with immune subtypes in either the pan-cancer or cancer-specific analyses and identified 

significant mediation effect (FDR < 10%) for 69 genes (Table S4; Figures 4D and S4C). 

For 13 out of 69 genes, their DNAm’s were previously reported to be associated with 

smoking in normal lung tissue49 (Figure 4D). One gene of interest emerging from this 

analysis is PYCR1, whose DNAm was the most significantly associated with the smoking 

signature in both LUAD and HNSCC (Figure 4E). At the same time, DNAm levels of 

PYCR1 were higher in CD8+/IFNG+ and lower in CD8−/IFNG− across HNSCC, LUAD, 

and LSCC (Figure 4F). It has been suggested that the expression of PYCR1 may contribute 

to an immunosuppressive microenvironment54; together, our observations suggest a role for 

smoking-induced hypomethylation of PYCR1 in promoting this outcome.

Kinase activation in different immune subtypes

Phosphoproteomics data offer a unique opportunity to characterize kinase activation across 

different immune subtypes, revealing important TME mechanisms and suggesting potential 

targets to turn lowly immunogenic (cold) tumors into highly immunogenic (hot) tumors. 

To characterize the activity of kinases, we used two tools (STAR Methods): (1) the Kinase 

Library, which utilizes an experimentally derived global substrate-specificity atlas of the 

ser/thr kinome8; and (2) KEA3, which integrates knowledge about measured and predicted 

kinase-substrate phosphorylations, and kinase-gene co-expression from 20 databases.9

Based on the Kinase Library, we found that phosphosites upregulated in CD8+/IFNG+ were 

significantly enriched of substrates regulated by MAPKAPKs, IKKβ, and TBK1 (Figures 
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5A, S5A, and S5D; Table S5). This group of kinases was found to be activated consistently 

in CD8+/IFNG+ tumors across multiple cancers, including GBM, LSCC, and PDAC (Figure 

5A). In a recent study, TBK1 was identified as an immune evasion gene, and targeting 

this kinase was found to enhance responses to PD-1 blockade.55 Our biochemistry-based 

approach independently identified a host of potential downstream targets of TBK1 that were 

enriched in the phosphosites upregulated in highly immunogenic tumors.

Another group of kinases active in CD8+/IFNG+ were AKT kinases (Figures 5A, S5A, S5D; 

Table S5). The ser/thr kinase AKT is a central mediator of the PI3K signaling pathway and 

is known to play critical roles in the pathogenesis of multiple cancers.56,57 Collectively, 

the PI3K-AKT-mTOR signaling pathway is dysregulated in many cancers and has been 

the subject of targeted therapies to treat cancers. There is increasing evidence that this 

pathway can affect tumors as well as host immunity and therefore targeting this pathway 

might improve immunotherapeutic responses.58 Our analysis confirmed the activation of 

multiple kinases involved in the PI3K-AKT-mTOR signaling pathway such as AKTs, 

PDPK1 (PDK1), and SGKs in CD8+/IFNG+, the highly immunogenic tumors.

Moreover, for a subset of tyrosine kinases, enrichment analysis via KEA3 revealed their 

activation in CD8+/IFNG+ (Figures 5B, S5B, and S5D; Table S5). It is well known that 

tyrosine kinases are key regulators of signaling in the immune system; with Src family 

kinases such as LYN and HCK being more present in leukocytes and playing a critical 

role.59,60 The activation of these tyrosine kinases in CD8+/IFNG+ tumors was consistent 

across different cancers.

In contrast, cyclin-dependent kinases, including CDK1 and CDK2, were found to be 

activated in CD8−/IFNG− and CD8−/IFNG+ based on the Kinase Library (Figures 5A and 

S5A; Table S5), suggesting that a higher proportion of cells in these tumors are actively 

proliferating. Consistently, KEA3 analysis also suggested significantly higher activation of 

cell-cycle kinases (CDK1–6) in CD8−/IFNG− for CCRCC, GBM, HNSCC, LSCC, LUAD, 

and PDAC (Figures 5B and S5B; Table S5).

To understand whether the immune-related kinase activities were driven by DNA alterations, 

we screened for cis-regulation by mutation and/or CNV on kinase activities among relevant 

genes (STAR Methods). While no significant cis-regulation by mutation status was detected, 

we observed associations between some kinase activities and their CNVs (Table S5). For 

instance, ATR kinase activity was upregulated by its own CNV in HNSCC (Figure S5C). 

This kinase was more active in HNSCC with copy-number gains, which were also highly 

enriched with cold tumors. This observation aligns with the findings from a recent clinical 

trial where ATR was activated in conditions of DNA replication and ATR inhibitor treatment 

led to elevated immune responses.61

Kinase and transcription factor regulation relating to immune subtypes—We 

derived transcription factor (TF) activity scores for each tumor sample by applying ChEA362 

on CPTAC pan-cancer RNA-seq data (STAR Methods) and further associated these TF 

scores with kinase activity scores to detect active cell signaling regulations in different 

immune subtypes. Specifically, we focused on CD8+/IFNG+ (hot) and CD8−/IFNG− (cold) 
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and counted the number of tumors for which a pair of kinase and TF were both identified 

to be enriched (STAR Methods). Such co-occurrences were visualized in Figures S6A–

S6D and 6A. We identified various modules of TFs regulated by kinases corresponding 

to different cell signaling pathways unique to either hot or cold tumors. Importantly, a 

set of immune-related TFs including STAT1, STAT5A,and CEBPB, were identified to be 

positively regulated by an immune module featuring specific tyrosine kinases (i.e., LYN and 

SYK), and concurrently negatively regulated by MYO3B and PDK1/3/4 from the glycolysis 

kinase module (Figure 6A; Table S6).

In order to computationally validate the negative association between the glycolysis kinase 

module and the immune TF module (Figures 6A and S6E), we leveraged the cell-line-based 

CRISPR-Cas knockouts L1000 data63 (STAR Methods). First, we found that knockout of 

PDK1/3/4 and MYO3B induced the expression of innate immune system related genes 

in several cellular contexts (Figure 6B). In addition, a key TF in the immune-related TF 

module, CEBPB, was identified as sharing many of its known downstream targets (from 

ENCODE ChIP-seq experiments) with the upregulated gene signatures resulting from the 

CRISPR-Cas knockouts of PDK1/3/4 and MYO3B. Finally, we observed significant overlap 

between targets of CEBPB and the upregulated gene sets upon PDK1/3/4 and MYO3B 

CRISPR-Cas knockouts in diverse cell lines (Figure 6B). This observation strongly suggests 

that PDK1/3/4 and MYO3B exert a suppressive influence on CEBPB activity. This analysis 

provides compelling evidence that the knockout of these glycolysis-related kinases leads to 

the upregulation of immune-related pathways.

Pan-cancer kinases and TFs activity scores and their relationship with immune subtypes can 

be interactively navigated via ProKAP12 and PhosNetVis.13

Cell-type-specific kinase activations relating to immune subtypes—Although 

the phosphoproteomics analyses presented in the previous sections provided valuable 

insights into kinase activation, it remains uncertain whether these activations occurred 

in tumor or in stromal/immune cells. This lack of cell type specificity hindered the 

interpretation of the results, particularly in identifying the kinases with different level of 

activation between tumor cells of highly immunogenic tumors (hot) compared with those 

from lowly immunogenic tumors (cold) or to other cell types. We thus implemented a 

customized analysis pipeline using BayesDeBulk to perform cell-type-specific differential 

analysis to screen for kinases with different level of activation between tumor cells from 

hot versus cold tumors, as well as immune/stroma cells (STAR Methods). As tumor cells 

of different cancers could employ different immune mechanisms, we conducted the analysis 

for each cancer individually. To increase the sample size for differential testing, we grouped 

different immune subtypes into the hot and cold groups: the hot group comprised CD8+/

IFNG+, eosinophils/endothelial, and fibroblast/TGF-β; while the cold group included CD8−/

IFNG−, CCRCC/endothelial, and brain/neuro. For simplicity, we refer to tumor cells in 

hot (cold) tumors as hot (cold) tumor cells. We then utilized BayesDeBulk to identify 

phosphosites differentially expressed across hot tumor cells, cold tumor cells and immune/

stromal cells. Finally, we conducted kinase enrichment analyses via the Kinase Library 

and KEA3 for each cancer, identifying activated kinases corresponding to differential 

phosphosites (STAR Methods).
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Although we analyzed different cancers separately, we found good consistency across 

cancers (Figures S6F–S6I). We then focused on 33 kinases which displayed consistent 

activation patterns across different cancers (Figure 6C, STAR Methods). In Figure 6C, we 

observed lower activation of tyrosine kinases (i.e., FYN, LYN, and LCK) in cold tumor cells 

compared with hot tumor cells and immune/stromal cells in multiple cancers (blue squares 

for the corresponding rows in Figure 6C; Table S6). However, for GBM, a higher activation 

of FYN was detected in cold tumor cells compared with both hot tumor cells and immune/

stromal cells (Figure 6C). To validate these patterns, we leveraged a comprehensive database 

of single-cell RNA-seq (scRNA) data64 (STAR Methods). Since RNA-seq often does not 

reflect kinase activities, we only considered a subset of 11 genes whose kinase activity were 

positively correlated with their RNA expression based on bulk data (Pearson’s correlation 

> 0.20). To validate these findings, we performed differential analysis comparing tumor 

cells and immune/stromal cells within each cancer based on scRNA (STAR Methods). For 

9 out of 11 kinases, scRNA was consistent with the inferred kinase activation. Specifically, 

we confirmed that, in GBM, FYN showed higher activation in tumor cells than in immune/

stromal cells (Figures 6C and 6D; Table S6). These findings were consistent with prior 

literature that suggests the expression of FYN in glioma cells can decrease anti-glioma 

immune response, and its knockdown can reduce the proliferation of tumor cells.65,66

In addition, we observed higher activation of CDK19, CDK20, and PTK2 (FAK) in hot 

tumor cells compared with cold tumor cells and immune/stromal cells (Figure 6C; Table S6). 

Notably, FAK was found to be more activated in hot tumor cells for most cancers, and the 

differences were significant in LUAD and LSCC. FAK is well known to regulate different 

cellular processes in tumors such as tumor proliferation and invasion.67 In LSCC, the 

kinase activity of FAK was found to drive exhaustion of CD8+ T cells and the recruitment 

of regulatory T cells (Tregs), which can limit the effectiveness of immunotherapy.68 

Consistently, through our kinase activity analysis, we found FAK to be activated in tumor 

cells of hot tumors which were enriched of CD8+ T cells as well as Tregs (Figure 1E).

Histopathology assessment of immune subtypes

We utilized digitally scanned tumor H&E images to build convolutional neural network 

models for predicting immune subtypes (STAR Methods). Due to the limited sample size, 

we focused on distinguishing between cold tumors (CD8−/INFG−) and hot tumors (CD8+/

INFG+ and eosinophils/endothelial). We built ten tissue-specific models and one pan-cancer 

model using 4-fold split validation. The pan-cancer model was also evaluated for each 

cancer, separately. Comparative performance using the area under the receiver operating 

curve (AUC) (Figure 7A; Table S7) showed that the pan-cancer model performed better than 

tissue-specific models for most cancers. This might be due to the fact that tissue-specific 

models may not provide sufficient training diversity. On the other hand, when pooled 

together, relevant morphologic features in different tissues can be more effectively learned, 

suggesting that global immune morphologies distinguishing cold vs hot are generalizable to 

a pan-cancer level.

To visually inspect the model’s discernment, we extracted latent features from the last 

convolutional layer and clustered image tiles using tSNE (Figure 7B). The resulting tSNE 
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plot reveals a diagonal separation of cold and hot tiles, with no substantial clustering by 

cancer. To further understand the most important features influencing the model’s decision, 

we applied integrated-gradient-based saliency mapping to select tiles at the periphery of the 

tSNE plot. The result suggests that cell shape, size, and other nuclear features contributed 

to differentiating cold and hot tumors. Correlations between the cell type fractions and 

predictive probabilities show a positive association between known immune cells with 

images predicted as hot, and a negative association with non-immune cell types upon 

pathologist review (Figure 7C). Overlay of the tSNE plot with cell type fractions (Figure 

7D) confirmed the concentration of immune cells in tiles from hot samples, and non-immune 

cells in tiles from cold samples.

Morphologies of neoplastic cells were also calculated (STAR Methods, Table S7) and 

correlated with cytokine expression signatures using Pearson’s correlation (Figures 7E and 

S7C). Notably, at a pan-cancer level, the area, axis major/minor lengths, diameter, and 

perimeter of neoplastic cells are inversely correlated with the cytokine expression pathways 

and cold/hot immune labels, suggesting that inflammatory cytokines may be limiting tumor 

cell growth, leading to smaller cellular area, diameter, and perimeter.

To further investigate the extent to which morphology images can distinguish different 

immune subtypes, we trained an additional pan-cancer model to predict 5 immune subtypes 

(excluding brain/neuro and CCRCC/endothelial). Across a 4-fold split, models performed 

well in predicting CD8+/INFG+, eosinophils/endothelial, and CD8−/INFG− (AUCs of 0.80, 

0.72, 0.70, respectively), with suboptimal benchmarks for fibroblast/TGF-β and CD8−/

INFG+ (AUCs of 0.66 and 0.62, respectively).

DISCUSSION

Proteomics and phosphoproteomics offer unique insights into key functional molecules 

underlying both immune infiltration and tumor immune evasion responses, which are often 

not fully appreciated by genomic approaches alone. We analyzed proteomic profiles along 

with matching genomic, epigenomic, and transcriptomic profiles of over 1,000 tumor 

samples across 10 cancers to comprehensively characterize the immune landscape of 

these tumors. These efforts were complemented by insights from histopathology, digital 

pathology, and clinical annotation of the patients.

To understand tissue function, we must understand its varied composition at the cellular 

level. We inferred the cell type compositions of all tumor samples based on both 

transcriptomics and proteomicss via BayesDeBulk,7 a deconvolution method that integrates 

proteogenomic data. The overall load of immune cells was linked to patient PFS outcomes 

in various cancers, including CCRCC, LUAD, PDAC, and CO (Figure 1D). Interestingly, 

the association directions differed across both tumor and immune cell types: for instance, 

increased CD8+ T cells were associated with superior PFS in CCRCC, LUAD, and PDAC, 

but inferior PFS in UCEC. This suggests that the clinical benefit of immune infiltration 

is dependent on the activation of oncogenic pathways in a tumor-specific manner.69 The 

functional state of the infiltrating immune cells likely also contributes.
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Further combining the estimated cell type compositions with protein-based immune pathway 

activities, we identified multiple distinct pan-cancer immune subtypes. Some were shared 

across various cancers, suggesting common tumor-agnostic host immune reactions and 

evasion mechanisms. Specifically, our analysis revealed the distinction between tumors with 

low and high immune composition among those having active interferon gamma signaling 

(i.e., the CD8−/IFNG+ and CD8+/IFNG+ clusters), which was not evident in TCGA pan-

cancer immune subtypes5 (Figure S1D). This distinction suggests potential intervening 

biology that limits CD8+ T cell infiltration despite the permissive IFNG+ cytokine activation 

axis. When we analyzed data from the phase III OAK clinical trial of lung cancer,30,33 

we found a clear association between CD8+/IFNG+ tumors and significantly improved 

PFS following immune checkpoint treatment (Figure 2A). This finding lends support to 

the hypothesis that CD8+/IFNG+ infiltrates relate to favorable responses to immunotherapy 

across various cancers.6,70,71

We detected two cancer-specific subtypes, i.e., CCRCC-endothelial and Brain/Neurol. Ther. 

CCRCC/endothelial subtype has low immune infiltration, high percentage of endothelial 

cells, and was validated in an independent CCRCC cohort. GBM tumors in the Brain/

Neuro subtype were lymphocyte-poor but had distinct cell type compositions compared with 

those allocated to the CD8−/IFNG−subtype. Specifically, the former showed enrichment of 

neurons, implying involvement of neurons in a subset of GBM tumors, as noted in a recent 

paper72 where some GBM tumor cells hijacked neuronal mechanisms for brain invasion. 

The Brain/Neuro subtype also exhibited upregulated oxidative phosphorylation and pyruvate 

metabolism, consistent with previous findings in less immunogenic GBM and pediatric 

brain tumors.22,24 Both CCRCC-endothelial and Brain/Neuro are of clinical interest as the 

responses of CCRCC and GBM to immune checkpoint inhibitor therapy is heterogeneous 

and no definitive biomarkers of benefit exist.73–75

Our immune subtypes differ substantially from those in the previous TCGA pan-cancer 

study.5 The latter captured less TME heterogeneity within each cancer (Figure S1C). 

Multiple factors underlie these differences. First, Thorsson et al.5 characterized cancer 

immunity across 30+ cancers; while we focused on 10 cancers. Thus, the two studies may 

capture the heterogeneity across cancers at different levels. Second, we derived immune 

subtypes based on estimated cell type composition in combination with immune pathway 

module scores, but Thorsson et al. considered only pathway activity information. Finally, 

preprocessing and normalization of the RNA/proteome data also impacted the analysis.

Influence of various biological and environmental factors on immune infiltration and 

evasion patterns is evidenced through significant associations between sex, race, and 

smoking status and pan-cancer immune subtypes. Screening for mutation, CNV, and 

methylation changes associated with immune subtypes and/or immune pathway activities 

further highlighted potential molecular alterations underlying immune evasion. For example, 

significant associations were detected between the CD8−/IFNG+ subtype and both STK11 
mutations and low STK11 protein abundances. STK11 mutation confers primary resistance 

to PD-1/PD-L1 therapy.76–78 In addition, with methylation analysis, we identified roles 

for smoking-induced hypomethylation of PYCR1 in promoting an immunosuppressive 
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microenvironment in LUAD and confirmed this with assessment of protein levels (Figure 

4A).

By leveraging the CPTAC pan-cancer phosphoproteomics, we systematically characterized 

kinase activities associated with various immune evasion responses in tumors. Multiple 

kinases involved in the PI3K-AKT-mTOR signaling pathway were found activated in 

the CD8+/IFNG+ subtype among different tumors. Alternatively, cyclin-dependent kinases 

were more activated in CD8−/IFNG− and CD8−/IFNG+ subtypes, suggesting stimulated 

cell proliferation in cold tumors. Through multi-omics integration, we identified kinase-

TF regulation across tumors. Activation of PDK1/3/4 and MYO3B co-occurred with the 

downregulation of immune module TFs (STAT1, STAT5A, and CEBPB) (Figure 6A). 

Further support for the suppressive effect of PDK1/3/4 and MYO3B on CEBPB and immune 

pathways stemmed from analyzing the cell-line-based CRISPR-Cas knockouts L1000 data 

(Figure 6B). PDK1–4 are oncogenic,79 while MYO3B is a class III myosin known as 

a selective transporter of receptors to the membrane. There is little evidence regarding 

MYO3B’s role in cancers and regulating the immune response. These kinases are potential 

targets for converting cold tumors into hot tumors, thus enhancing their responsiveness to 

immune-based treatments.

Further performing cell-type-specific analysis via BayesDeBulk, we detected a subset of 

kinases with different activities in tumor cells between highly immunogenic and lowly 

immunogenic tumors. For example, in multiple cancers including LUAD and LSCC, we 

noted upregulated kinase activation of PTK2 (FAK) in tumor cells of high-immunogenic 

tumors. These tumors demonstrated increased infiltration of regulatory T cells (Tregs). 

Prior work suggested that, in LSCC, FAK kinase activity drives the recruitment of Tregs 

and exhaustion of CD8+ T cells, which can limit the effect of immunotherapy.68 Our 

findings support the hypothesis that a PTK2 inhibitor could deplete Tregs and improve 

immunotherapy response in LSCC and other cancers. Further pre-clinical bench work is 

warranted to establish the clinical relevance of this discovery.

Lastly, we demonstrated that digitally acquired H&E images, when assessed and classified 

by convolutional neural networks, are predictive of lowly immunogenic versus highly 

immunogenic tumors. In addition, the classifier trained using the pan-cancer dataset 

outperformed those based on individual cancers in predicting immune subtypes, implying 

that the global immune morphologies distinguishing lowly immunogenic versus high-

immunogenic tumors are generalizable to a pan-cancer level.

The discovery of a limited number of common immune subtypes across multiple cancers 

strongly implies shared pan-cancer mechanisms to adapt to, and evade, immune destruction, 

regardless of the specific diagnosis. This suggests the possibility for unified strategies to 

counteract immunotherapy resistance across various cancers and for the identification of 

predictive biomarkers.

Strength of the study

By employing a comprehensive multi-omics strategy coupled with advanced statistical 

modeling techniques, we obtained insights into TME in 1,000+ tumors. By jointly modeling 
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10 cancers, our analysis achieves superior power to detect mechanisms shared across. 

Compared with related works based on genomic data alone, the immune subtypes derived 

from proteogenomic data reveal increased meaningful heterogeneity within and across 

different cancers. The predictability of the tumor tissue image data for distinct immune 

subtypes defines the linkage between tumor morphology and molecular characteristics. 

Using phosphoproteomic profiles, we predicted targetable kinases associated with different 

immune phenotypes.

Limitation of the study

One limitation is the lack of detailed treatment information within the CPTAC pan-cancer 

cohort. This unknown treatment heterogeneity poses challenges for interpretation of the 

survival analysis. To address this limitation, we drew upon data from the phase III OAK 

trial of lung cancer30 to demonstrate the association between the CD8+/IFNG+ subtype and 

the response to immune checkpoint treatment. Future studies are warranted to explore the 

translational potential of immune subtypes.

Another challenge is the extensive sample heterogeneity, both within and across different 

cancers. With the CPTAC pan-cancer cohort (>1,000), we were more powered to reveal 

unique subtypes not detected in individual cancer studies. Nevertheless, we may not 

exhaustively identify every potential immune subtype present in these tumors. Also, tumors 

may exhibit a spectrum of immune infiltration that defies easy categorization into discrete 

subtypes.

Bulk total protein and phosphorylation signals are a convolution of those from tumor cells 

and immune cells. Therefore, we applied incisive deconvolution to dissect tumor-specific 

signaling from immune-related signaling, and obtain useful cellular level information (e.g., 

cell type compositions, and cell-type-specific differential kinase activities). We validated 

some results using independent single-cell RNA-seq datasets. However, transcriptomic data 

did not provide a direct read of activities for most kinase activities. More comprehensive 

validation efforts may require cellular level proteomic data, which is not currently available.

Despite the great depth of the CPTAC pan-cancer phosphoproteomic experiments, and the 

utilization of the Kinase Library,8 there remains a substantial gap as only the activities of 

serine/threonine kinases are observed. We thus utilized the KEA3 tool for broader kinase 

coverage, including protein-protein interaction and co-expression networks, to better infer 

the activities of tyrosine kinases and other ‘‘dark’’ kinases.80 Validation for some of these 

quantifications may require targeted proteomics experiments, especially for low-abundant 

PTMs.

Various antigens (neo-antigens, CT-antigens, and cancer-antigens) play a crucial role in 

shaping the immune activation landscape.81,82 However, relating these antigen activities to 

our immune subtypes remains a subject for future research.
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W. Chan, Arul M. Chinnaiyan, Hanbyul Cho, Shrabanti Chowdhury, Marcin Cieslik, Karl 

R. Clauser, Antonio Colaprico, Daniel Cui Zhou, Felipe da Veiga Leprevost, Corbin Day, 
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Jonathan T. Lei, Yize Li, Wen-Wei Liang, Yuxing Liao, Caleb M. Lindgren, Tao Liu, Wenke 

Liu, Weiping Ma, D R Mani, Fernanda Martins Rodrigues, Wilson McKerrow, Mehdi Mesri, 
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Satpathy, Sara R. Savage, Eric E. Schadt, Michael Schnaubelt, Tobias Schraink, Stephan 

Schürer, Zhiao Shi, Richard D. Smith, Xiaoyu Song, yizhe Song, Vasileios Stathias, Erik 

P. Storrs, Jimin Tan, Nadezhda v. Terekhanova, Ratna R. Thangudu, Mathangi Thiagarajan, 

Nicole Tignor, Joshua M. Wang, Liang-Bo Wang, Pei Wang, Ying Wang, Bo Wen, Maciej 

Wiznerowicz, Yige Wu, Matthew A. Wyczalkowski, Lijun Yao, Tomer M. Yaron, Xinpei Yi, 

Bing Zhang, Hui Zhang, Qing Zhang, Xu Zhang, Zhen Zhang, Qing Kay Li.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Pei Wang (pei.wang@mssm.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Raw proteomics data of the CPTAC Pan-Cancer cohort can 

be accessed via Proteomic Data Commons (PDC) at https://pdc.cancer.gov.

Raw genomics and transcriptomics files of the CPTAC Pan Cancer cohort are 

publically available via the Genomic Data Commons (GDC) Data Portal at https://

portal.gdc.cancer.gov.

Processed genomic data with access control can be obtained via CDS through the NCI 

DAC approved, dbGaP compiled whitelists. Users can access the data for analysis through 

the Seven Bridges Cancer Genomics Cloud (SB-CGC) which is one of the NCI-funded 
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Cloud Resource/platform for compute intensive analysis. Instructions for data access are as 

follows:

1. Create an account on CGC, Seven Bridges at https://cgc-

accounts.sbgenomics.com/auth/register

2. Get approval from dbGaP to access the 

controlled study (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs001287.v16.p6 )

3. Log into CGC to access Cancer Data Service (CDS) File Explore

4. Copy data into your own space and start analysis and exploration

5. Visit the CDS page on CGC to see what studies are available and instructions 

and guides to use the resources. (https://docs.cancergenomicscloud.org/page/cds-

data)

Processed data without access control can be found at https://pdc.cancer.gov/pdc/cptac-

pancancer. File names for different omics used in this paper are as follows:

• Proteomic data: Proteome_UMich_SinaiPreprocessed_GENECODE34_v1.zip

• Phosphoproteomic data: 

Phosphoproteome_UMich_SinaiPreprocessed_GENECODE34_v1.zip

• RNAseq data: RNA_WashU_v1.zip

• Methylation data: Methylation_MSSM_v1.zip

• Mutation profile: PanCan_Union_Maf_Broad_WashU_v1.1.maf

• CNV data: CNV_WGS_WashU_v1.zip. Note, WGS-based CNV data was 

obtained using the pipeline at https://github.com/ding-lab/BICSEQ2. In addition, 

for OV, CO and BR cancers, WGS data was not available; and CNV calling 

derived from the WXS data (CNV_WashU_v1.zip) was instead utilized. https://

pdc.cancer.gov/pdc/cptac-pancancer

In this paper, we considered samples for which both RNAseq and proteomic data were 

measured. The full list of samples can be found in Table S1. All analysis results reported 

in this manuscript can be found in the supplementary tables. These results include cell 

type composition estimates, immune subtype labels, associations between DNA aberrations 

(i.e., mutation, CNV, WGS germline and methylation data) and immune subtypes, kinase 

activation in different immune subtypes, tumor cell-specific kinase activation inferences and 

histopathology assessment of immune subtypes.

All (inferred) kinase and transcript factor activity scores, as well as the clinical 

meta information of the cohort can be queried, visualized, and downloaded from an 

interactive ProKAP12 data portal: http://prokap.wanglab.cloud . Complete Pan Cancer 

kinase and transcription factor activity score tables can also be downloaded from https://

pdc.cancer.gov/pdc/cptac-pancancer. Selected kinase and phosphosite regulatory networks 

can be queried, visualized, and downloaded from an interactive PhosNetVis13 data portal: 

https://gumuslab.github.io/PhosNetVis/cptac-vis.html.
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Links to the original codes are listed in the key resources table.

Any additional information required to reanalyze the data reported in this work is available 

from the lead contact upon request.

METHOD DETAILS

All the computational methods used in the paper are elaborated in the next section. 

Corresponding code is provided in the key resources table.

QUANTIFICATION AND STATISTICAL ANALYSIS

CPTAC Pan Cancer data preprocessing—CPTAC Pan Cancer data, including all 

genomics, epigenomics and proteomics data, were acquired and processed as described in 
3, which provided a re-harmonized data freeze corresponding to the Pan-Cancer analysis 

of 10 tumor types. Briefly, during the re-harmonization, data were downloaded from the 

Genomics Data Commons (GDC) and the Proteomics Data Commons (PDC). Data for 

individual cohorts were processed separately using common computational pipelines and the 

same genome assembly and gene annotation (GENCODE V34 basic (CHR)).84 All omics 

data were mapped to the same set of primary protein isoforms.

Specifically, for proteomics and phosphoproteomics, raw files were searched and quantified 

through data generation pipeline from University of Michigan against harmonized 

GENCODE34 protein FASTA database, including MSFragger search engine,99 Philosopher 

toolkit version v4.0.1,100 and TMT-Integrator.101 Gene and phosphosite Intensities reported 

by the Michigan pipeline from the analysis of proteomics and phosphoproteomics data were 

normalized across cancers by median centering of the medians of reference intensities of 

each cancer. Phosphosite reannotation was performed to ensure consistent interpretation 

of the data across TMTs and cancers by BCM pipeline for pan-cancer multi-omics data 

harmonization.

We applied a customized preprocessing analysis pipeline to the abundance tables of the 

10 cancers. The pipeline includes three steps: (1) identification and removal of outlier 

TMT multiplexes; (2) batch-effect correction across TMT-plexes; and (3) missing values 

imputation using DreamAI.83 Firstly, we identified outlier TMT multiplex data points by 

performing Intra TMT-plex T tests on the median-aligned intensity tables. For each cancer, 

we compared protein (or phosphosite) abundances within one TMT-plex to those in the 

remaining TMT-plexes using t-tests. Significant p-values indicated influences from artificial 

or technical factors, such as false peptide or protein identification in the TMT experiment 

output. We then removed the corresponding abundance measurements for the outlier protein-

TMT-plex set, replacing them with ‘NA’. After removing outliers, we evaluated TMT-plex 

batch effects for each cancer by examining PC plots of the proteomic and phosphoproteomic 

abundance matrices. For datasets displaying significant batch effects (global proteomics 

data of CCRCC and phosphoproteomics data of ovarian cancer), we applied Combat102 

to eliminate technical variation across TMT multiplexes. And for CCRCC, since tumor 

and normal sample sizes varied within each TMT-plex, we adjusted for tumor/normal 

tissue types during Combat correction. In the end, we applied DreamAI (https://github.com/
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WangLab-MSSM/DreamAI) on each of the tumor types separately. Imputation was done for 

the subset of proteins or phosphosites that quantified in at least 50% of samples in each data 

set. More details of the data pre-processing and harmonization steps are reported in.3

MRM experiment and data preprocessing

MRM experiment—We performed MRM (multiple reaction monitoring-mass 

spectrometry) experiment for a subset of 59 HNSCC samples with adequate sample 

materials. FFPE samples for MRM experiments were processed as described previously103 

with the following modification: All sections were 5 μm tissue sections mounted on slides. 

Protein concentrations of lysates were measured in triplicate using Micro BCA Protein 

Assay Kit (Pierce, #23235) and stored at −80 ◦C until the day of digestion. A mix 

of cleavable stable isotope-labeled peptide standards was added to each lysate at 200 

fmol/capture. 15–500 μg of protein from lysates was transferred to a deep-well plate for 

processing on an EpMotion 5057 (Eppendorf). Lysates were reduced in 30 mM TCEP 

for 30 minutes at 37 ◦C with shaking, followed by alkylation with 50 mM IAM at room 

temperature without shaking. Lysates were then diluted with 0.8 mL 200 mM TRIS before 

Lys-C endopeptidase was added at a 1:50 enzyme:substrate ratio by mass and incubated for 

2 hours at 37 ◦C with mixing at 600 rpm (Thermomixer, EpMotion 5057). After 2 hours, 

sequencing grade trypsin was added at a 1:50 enzyme:substrate ratio. Digestion was carried 

out overnight at 37 ◦C with mixing at 600 rpm. After 16 hours, the reaction was quenched 

with formic acid (final concentration 1% by volume). Custom monoclonal antibodies were 

crosslinked on protein G beads (GE Sepharose, #28–9513-79), and peptide enrichment was 

performed using 1 μg antibody–protein G magnetic beads for each target as previously 

described.104

LC-MS was performed on the enriched samples with an Eksigent 425 nanoLC system 

(Eksigent Technologies) coupled to a 5500 QTRAP mass spectrometer (SCIEX) operated in 

the positive ion MRM mode. Peptides were loaded on a trap chip column (Reprosil C18-AQ, 

0.5 mm × 200 μm, SCIEX, #804–00016) at 5 μL/minute for 3 minutes using mobile phase A 

(0.1% formic acid in water). The LC gradient was delivered at 300 nL/minute and consisted 

of a linear gradient of mobile phase B (90% acetonitrile and 0.1% formic acid in water) 

developed from 2–14% B in 1 minute, 14–34% B in 20 minutes, 34–90% B in 2 minutes, 

and reequilibration at 2% B on a 15 cm × 75 μm chip column (ChromXP 3C18-CL particles, 

3 μm, SCIEX, #804–00001). Scheduled MRM transitions used a retention time window of 

240 seconds, a desired cycle time of 1.5 seconds, a minimum of two transitions per peptide, 

and optimized collision energy values.

MRM data preprocessing—MRM data were analyzed using Skyline.86,105 Peak 

integrations were reviewed manually, and transitions from analyte peptides were confirmed 

by the same retention times and relative transition areas of the light peptides and heavy 

stable isotope-labeled peptides. Transitions with detected interferences were not used in the 

data analysis. Integrated raw peak areas were exported from Skyline and total intensity was 

calculated using peak area + background. Transitions were summed for each light/heavy 

pair and peak area ratios were obtained by dividing peak areas of light peptides by that 

of the corresponding heavy peptides. All measurements were filtered by the lower limit 
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of quantification (LLOQ) determined from previous analytical characterization experiments 

(i.e., all measurements were required to be above the LLOQ).

MRM markers comprised 2 immune cell markers (CCL5, CD4) and 3 interferon signaling 

pathway markers (STAT1, IFIT1, and TAP2).

Immunohistochemistry (IHC) staining for immune cell markers

Tissue Microarrays (TMAs) were constructed from 72 LSCC cases that were available at the 

CPTAC Biospecimen Core Resource (BCR) with four 1.0 mm cores extracted compiled 

on two duplicate TMAs. Immunohistochemistry (IHC) staining for CD8 (clone 4B11, 

Bio-Rad, 1:35) was performed on Autostainer Link 48, Dako, Inc. For 60 out of the 72 

tumors, at least one TMA image passed the QC and were successfully scored by the study 

pathologist (G. Hostetter). Specifically, modified H-Scores for CD8-stained TMA cores 

were adopted to capture in semi-quantitative manner ‘activity’ state of T-cells in the patient 

tumors with separate biopsies at baseline.87,106 Based on the CD8 H-Score as well as 

the spatial distribution of CD8+ cells, we screen for tumors with an ‘‘immune exclusion’’ 

feature, which was defined as an enriched CD8 staining along the stroma-tumor interface. 

We identified this feature in 4 out of 60 tumors: 2 from the CD8+/IFNG+ subtype and 2 

from the Fibroblast/TGFBeta subtype (Figure S1C; Table S1). Moreover, we acquired the 

corresponding IHC scores for CD4, CD8 and CD163 from a previous study involving a 

subset of 17 LSCC tumors.26 The combined IHC scores of CD8, CD4 and CD163 of these 

17 tumors were then used to evaluate the cell type percentage estimates of CD8+ T cells, 

CD4+ T Cells and Macrophages from the deconvolution analysis (Figure S1B).

We also obtained IHC images for 4 GBM and 4 CCRCC tumors from our prior studies, 

detailed in Wang et al.24 and Clark et al.,17 respectively. These IHC stains were performed 

at the Johns Hopkins Hospital clinical IHC laboratory using the autostainers (Ventana 

XT and Dako). Briefly, tissue sections (5-micron thickness) were incubated with primary 

antibodies following heat antigen retrieval. Antibody dilutions followed standard protocols 

or manufacturer recommendations. Immunostaining was developed using mouse-HRP 

and/or rabbit-AP polymer detection systems. Slides were counterstained with hematoxylin 

and dehydrated for permanent mounting, with inclusion of appropriate positive and negative 

controls.

Tissue Microarray (TMA) image scoring for FAP and α-SMA

To confirm the presence of fibroblast and stroma in the TME, we conducted TMA multiplex 

immunofluorescence-stained image analysis on a subset of 64 LSCC tumors with FFPE 

tissue slices from the same tumor blocks. FFPE tissue sections were cut at 4 μm and 

stained using antibodies against FAP (Fibroblast Activation Protein Alpha) and α-SMA 

(α-Smooth muscle actin), which were previously validated for immunohistochemistry. DAPI 

(4,6-Diamidino-2-phenylindole) was used as a counterstain. Each antibody was labeled with 

a specific fluorophore. The staining process was automated using the BOND-RX, model 

B3 (Leica Microsystems, Vista, CA, USA). A tyramine signal amplification system-based 

kit (OpalTM 7-color kit, Akoya/PerkinElmer, Waltham, MA; Cat#NEL797001KT) was 

used. The primary antibody was detected with a horseradish peroxidase (HRP)-conjugated 

Petralia et al. Page 21

Cell. Author manuscript; available in PMC 2024 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



secondary antibody. Upon introducing HRP, the fluorophore tyramide (Amplification 

Reagent) working solution was added to covalently label the epitope. Once the first 

labeling was complete, the tissue was prepared for detecting the next epitope. This process 

was repeated automatically. Positive and negative (autofluorescence) controls were used 

during each run. The multiplex immunofluorescence-stained tissues were imaged using the 

Vectra multispectral imaging system version 3.0 (Akoya Bioscience), which measured each 

fluorescence signal. Multispectral imaging involved capturing an image at low magnification 

(x10) through the full emission spectrum (10 nm increments between 420 to 720 nm). A 

trained pathologist selected a region of interest for scanning at high magnification using 

the Phenochart Software 1.0.9 (931 × 698 μm at 20x resolution). The development and 

optimization of this platform has been previously described.107

A spectral signature for each fluorophore was obtained using the Spectral unmixing library 
in the software (InForm™ 2.4.8, Akoya Bioscience) to separate the multispectral image into 

its individual fluorophores, which were then merged into a single image. Algorithms were 

trained to determine the cellular densities, and the final results were expressed as normalized 

densities of each cell phenotype (Table S1).

Estimation of tumor cell percentage, stromal and immune scores

ESTIMATE108 was utilized to infer immune and stromal scores based on RNA-seq data. 

Tumor cell percentage was estimated via TSNet109 based on gene expression data using 

immune and stromal signatures from108 as input.

Multi-omic based deconvolution

To estimate the fraction of different cell types in the tissue microenvironment, we 

performed a multi-omic based deconvolution integrating proteomic and RNAseq data 

via BayesDeBulk.7 By jointly analyzing both proteomic and gene expression data, 

BayesDeBulk achieves improved accuracy of the deconvolution results measured in terms of 

mean squared error between estimated and true cell-type fractions by 37% (42%) compared 

to other alternative methods applied to proteome (RNA) data alone. When comparing the 

multi-omic version of BayesDeBulk to its corresponding RNA-based deconvolution, the first 

one outperformed the latter by 18%.7

To perform the deconvolution, BayesDeBulk takes a list of cell-type specific markers 

for each cell type. For immune cells, such list was derived from the LM22 signature 

matrix.92 For this analysis, an aggregated version of the LM22 signature matrix was utilized. 

Specifically, we averaged the LM22 values mapping to different types of CD4 T Cells (i.e., 

Memory T Cells, Naϊve T Cells) to create a gene signature for CD4 T Cells. The same 

strategy was utilized for Dendritic cells, Macrophages, Natural Killers cells, Mast Cells and 

B Cells. For each pair of cell types, we considered a marker to be upregulated in the first 

cell type compared to the other cell type, if the corresponding value of the LM22 matrix 

for the first cell type was greater than 1,000 and 3 times the value of the other cell type. 

Besides immune cells, we considered endothelial and fibroblast cells. For GBM, neurons 

and oligodendrocytes were also considered. The list of cell-type specific markers for those 

additional cells were derived from the literature and defined as follows:
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• Fibroblast: CD36, PDGFRB, C5AR2, S100A4, CD70, PDPN, VIM, ITGA5, 

MME, PDGFRA, FAP, ACTA2,

• Endothelial: PECAM1, VEGFA, KDR, CD34, ITGB1, CD74

• Oligodendrocytes: MBP, CLDN11, PLP1UGT8, MOG, SOX10, ERMN, MAG, 

MOBP, IL1RAP, MYRF, OPALIN, APC, RTN4, GJC2, GJB1, GJC3, GPR17, 

PMP22, MPZL1, TRF, RAP1, GAL3ST1, MYO1D

• Neurons: NCAM1, MAP2, RBFOX3, TUBB3, GRIN1

For BayesDeBulk estimation, 10000 Markov-Chain Monte Carlo iterations (MCMC) were 

performed. The estimated fractions were derived as the mean across MCMC iterations after 

discarding a burn-in of 1,000 iterations. This analysis was performed for each cancer, 

separately. Before performing this analysis, genes/proteins were normalized to z-score 

across tumor samples. For each patient, cell type fractions estimated by BayesDeBulk were 

normalized to sum to (1-tumor cell percentage); with the tumor cell percentage estimated by 

TSNet.109 This normalization guarantees that the total sum of non-malignant cells for each 

sample corresponds to (1-tumor cell percentage).

Association between different immune-axes and tumor types

We define immune-axes using the following metrics: tumor cell percentages, computed 

through TSNet109; the immune and stromal scores, computed via ESTIMATE108; and 

cell-type fractions, derived using BayesDeBulk.7 Each measurement of immune axes was 

standardized to have a mean 0 and standard deviation 1 across all tumor samples. Wilcoxon 

signed-rank test was performed to identify differential scores between one cancer versus 

all the others. P-values were adjusted via Bonferroni’s correction and only association with 

adjusted p-value < 1% were reported as significant. The heatmap in Figure 1B contains 

the average score of these immune axes for different cancers. Each measurement was first 

z-scored before calculating the average value for each cancer displayed in the heatmap.

Association between cell type fractions and survival

For each cancer, the association between cell type fractions and survival was assessed 

via univariate Cox proportional-hazards model without including any covariate. P-values 

were adjusted for multiple comparisons via Benjamini-Hochberg (BH) method.85 For this 

investigation, we employed progression-free survival (PFS) as the primary end points across 

all cancers except for CO, OV, and BR. In the cases of CO, OV, and BR, where PFS data was 

unavailable, we instead utilized overall survival in the analysis. Kaplen-Meier estimator was 

utilized in order to visualize the association with survival. To stratify patients into high- and 

low-infiltration of a particular cell type, the 1st and the 3rd quartiles of cell type fractions 

were utilized.

Immune related pathway signatures

To identify modules of immune related pathways activated in the whole CPTAC cohort, we 

curated a collection of 427 signatures from5,89 and gene sets in the Molecular Signatures 

Database (MSigDB – c8 collection).90,91 The analysis was performed in the same way for 

both global proteomics and RNA-seq data according to the following steps. First, gene 
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or protein expression levels were standardized across samples for each tumor, separately. 

Then, the single-sample Mann-Whitney-Wilcoxon gene set test (mww-GST) was applied to 

calculate the normalized enrichment score (NES) for each signature, as previously described 

in 94. The activity matrix resulting from the previous step was used to calculate distances 

based on the spearman correlation values between every pair of signatures, across all tumors. 

Subsequently, the distances matrix was used to inform a consensus clustering between 

signatures (100 random samplings using 95% of signatures) and the optimal number of 

clusters was determined evaluating the relative change in area under the CDF curve for 

k=2 to 10. Signatures grouped together in the same cluster were further inspected in 

order to elucidate the biological significance of every module. Finally, for each sample we 

computed a score averaging the NES of signatures in each module. For the Wound Healing 

cluster, we only utilized two cell-cycle related signatures (i.e., Module11_Prolif_score and 

CHANG_CORE_SERUM_RESPONSE_UP). To investigate the correlation between protein 

and RNA-seq gene set activity the Spearman’s ρ statistic was used. Immune modules based 

on both RNAseq and proteome data are included in Table S1.

Consensus Clustering to Derive Immune Subtypes

Considering cell-type fractions derived via multi-omic deconvolution and proteomic-based 

signatures curated from the literature, consensus clustering was performed to identify 

groups of samples with the same immune/stromal characteristics. Consensus clustering was 

performed using the R packages ConsensusClusterPlus110 within the Bioconductor package 

CancerSubtypes.111 Specifically, 80% of the tumor samples were randomly subsampled 

without replacement and partitioned into seven major clusters using the K-means algorithm 

with Spearman’s correlation as metric.

Sensitivity analysis to assess the impact of estimation errors in the 
decomposition results on immune subtype clustering—To evaluate the impact 

of estimation errors in the decomposition results on the subtypes clustering, we have run 

additional computational experiments to assess the robustness of the clustering results. 

Specifically, we perturbed the cell-type fraction estimates and proteomic-based pathway 

scores by adding independent Gaussian noises with varying standard deviations (5%, 10% 

and 20% of the original standard deviation). We then evaluated how the clustering results 

might change based on the perturbed data matrices. This experiment was repeated 100 

times. The Rand index between the original immune subtypes and the clusters derived from 

perturbed data matrices were above 0.87 with a median above 0.9 for all the SD levels, 

which indicates that the detected immune subtypes are rather robust to the variability in the 

cell-type fraction estimates.

TCGA Pan Cancer immune subtyping

Tumors were classified into the immune subtypes identified by the TCGA Pan Cancer 

analysis5 using ImmuneSubtypeClassifier R package.98

Association between immune subtypes and clinical variables

We examined the association between immune subtypes and demographic variables, such 

as sex, ancestry and smoking status, via logistic regression. We modeled the probability 

Petralia et al. Page 24

Cell. Author manuscript; available in PMC 2024 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of a tumor being classified into a specific immune subtype as a function of the clinical 

variables of interest and the corresponding cancer type. For each demographic variable, 

only immune subtypes with at least 10 samples in one cancer were considered. Smoking 

status was categorized as Never smokers (including lifelong non-smokers) and Ever smokers 
including former and current smokers.

For each sample with germline WGS data, ancestry was annotated based on a Principal 

Component Analysis,3 and assigned as Ad-mixed American, African, East Asian, European 

or South Asian (Figure S2E). Immune subtypes were tested for association with ancestry 

only for the ancestry categories with the largest number of individuals based on the PCA 

groups, which included individuals of European and East Asian ancestries.

Besides the Pan Cancer analysis based on logistic regression models (results were shown in 

Figure 2), we also performed cancer specific association analysis for immune subtypes v.s. 

each of the demographic variables using Fisher Exact tests (results were shown in Figure 

S2).

Differential expression and pathway analysis across immune subtypes

Genes and proteins differentially expressed across the seven immune subtypes were 

identified based on all tumor samples. For each data type, every feature vector was 

normalized to z-score (i.e., mean 0 and sd 1). For each data type, the expression level 

of gene/protein was modeled as a linear function of immune subtypes. Table S1 shows 

upregulated and downregulated genes identified based on different data types. Considering 

genes that were up- and downregulated with Benjamini-Hochberg’s adjusted p value85 lower 

than 10%, Fisher’s exact test was implemented to derive enriched pathways (Table S2). 

For this analysis, pathways from the Reactome,93 KEGG112 and Hallmark113 databases 

were considered and as background the full list of gene/proteins observed under each 

data type was utilized. P-values from Fisher’s exact test were adjusted using Benjamini 

Hochberg’s correction. Table S2 shows summary statistics from this pathway analysis. To 

visualize differential pathway activity, pathway scores based on proteomics and RNAseq 

were computed via combined z-score using the R package GSVA.114 Bubble plots in 

Figures 2B, 2C, and 5A show the difference between the average pathway score for tumors 

belonging to a particular immune subtype and the average pathway score in tumors not 

contained in that immune subtype for a selection of differential pathway. Before computing 

the average, for each pathway, the score was normalized to z-score across all tumors (i.e., 

mean 0 and sd 1).

Validation of immune subtypes in an independent CCRCC cohort

We leveraged an independent proteogenomic data34 including 112 CCRCC tumor samples 

with available proteomics and RNAseq data to validate the CCRCC-endothelial subtype. 

The model was trained based on proteomics and RNAseq data for CCRCC samples in 

our cohort using the R package Pamr.115 Only proteins and genes overlapping between 

the two cohorts were considered to build a classifier. This number included 17632 genes 

and 2802 proteins. RNAseq data was log transformed in both cohorts. Each gene/protein 

was z-scored (mean zero and standard deviation one) in both training and testing data. 

Petralia et al. Page 25

Cell. Author manuscript; available in PMC 2024 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The threshold parameter in the Pamr function was chosen by minimizing the classification 

error via cross validation based on the training data set. Notably, the predominant subtype, 

CCRCC-endothelial, which constituted 47% of CCRCC tumors in our study, remained as 

the largest subtype, accounting for 41% of cases in the validation cohort.

Association between immune subtypes and treatment response

We analyzed gene expression data from the phase III OAK clinical trial for lung cancer 

(NCT02008227).30 The OAK trial encompassed 425 non-small cell lung cancer patients 

who received immunotherapy (atezolizumab/MPDL3280A), with a median follow-up time 

of 21 months. For 344 out of the 425 patients, RNAseq profiling was performed on (pre-

treatment) tumor tissues.33 With this data, we identified 75 tumors as CD8+/IFNG+ subtype 

based on a prediction model of immune subtypes trained using the CPTAC Pan Cancer 

RNAseq data. Specifically, the model was built based on lung cancer samples (including 

both LUAD and LSCC) in the Pan Cancer cohort using the R Cran package Pamr.115 

Since the testing data contained only RNAseq data, the classifier was built based on gene 

expression data only. In particular, only genes overlapping between the training and testing 

data were considered (p=16898). RNA-seq data was log transformed and each gene was 

z-scored (mean zero and standard deviation one) in both training and testing data. The 

threshold parameter in the Pamr function was chosen by minimizing the classification error 

via cross validation based on the training data. The classification error resulting from the 

optimal threshold was about 8% considering 71 genes to train the model.

The same analysis was performed for 355 patients undergoing chemotherapy in the OAK 

clinical trial for which gene expression data was available.

Association between immune subtypes and mutation profiles

To characterize the association between mutation profiles and immune subtypes we built 

an elastic-net regularized model using the R package glmnet.116 The analysis was done 

considering a set of 470 oncogenic genes frequently mutated in cancer.35 Somatic variants 

were previously filtered to retain only not silent mutations with a variant allele frequency 

(VAF) greater than 0.5. The elastic-net model was used to model cell type fractions and 

proteomic modules as function of different mutations. To limit the effect of the enrichment 

of mutations in a particular cancer, the tumor type assignment was used as covariate. A 

cross-validation step was performed to select the best lambda, while the alpha value was 

set to 0.5. To select informative coefficients, a 1000-fold bootstrap sampling was computed. 

Finally, only genes with non-zero coefficients in at least 50% bootstraps were considered 

significant. Table S3 contains the average coefficient across bootstrap iterations for genes 

whose coefficients is non-zero in at least 50% bootstrap iterations.

Mutation-RNA/protein cis-regulation—For genes whose mutations were associated 

with immune subtypes, we conducted additional screening to assess cis-regulation of 

mutation effects on RNA and/or protein expression. Specifically, we tested for differential 

expression between mutated and wild-type, using the Mann-Whitney U test. Adjusted p-

values were derived via Benjamini-Hochberg adjustment.
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Association between immune subtypes and CNV

To characterize the association between copy number variation (CNV) and immune subtypes 

we trained a linear regression model using the lm function in R. The regression modeled 

log2 transformed CNV data as function of cell type fractions, immune subtypes and 

proteomic signature enrichments, and used the tumor type as covariate. The gene level 

log2 ratio of variation was derived from whole-genome sequencing profiling, except 

for BR, CO, and OV, for which the CNV was derived from whole-exome sequencing. 

Genes with a p-value from the model less than 0.001 were considered significant. The 

functional characterization of genes located on 3p arm and associated with CD8 T cells 

and macrophages was performed using an over representation analysis for Gene Ontology 

Biological Processes, as implemented in the ClusterProfiler R package.117

Association between immune subtypes and MSI

MSI scores were obtained from.3 Briefly, MSI scores were calculated by MSIsensor (https://

github.com/ding-lab/msisensor) and interpreted as the percentage of microsatellite sites 

(with deep enough sequencing coverage) that have a lesion. Samples with an MSI score 

> 3.5 were classified as “MSI-High” and the rest were classified as “MSS”. An intermediate 

class with 1.0 <= score <= 3.5 were defined as MSI-Low. Association between each cell 

type fraction and MSI high/low status was assessed via two-sided t test (Figure S3C). 

For this analysis, only CO and UCEC cancers, the cancer types with at least 5 MSI-High 

samples, were considered.

Local impact of germline SNPs on RNA and protein expression in TME

Identification of germline genetic variants regulating local gene expression 
(eQTLs) and/or protein abundance (pQTLs) genome-wide—To identify eQTLs 

and pQTLs, we performed quantitative trait loci (QTL) analyses utilizing the MatrixeQTL 

package in the linear regression mode118 separately for each cancer. This included 103 

CCRCC, 99 GBM, 110 HNSCC, 108 LSCC, 109 LUAD, 140 PDA and 95 UCEC samples. 

To identify genome-wide QTLs, we focused on WGS germline SNPs3 with minor allele 

frequency ≥ 5%. To control for potential confounding due to self-reported sex and/or 

ancestry, we included gender as well as ten principal components from the ancestry 

analysis3 as covariates. For eQTL analyses, we only included genes with TPM > 0.1 in 

at least 20% of samples. Specifically, in our QTL analyses we examined around 6 million 

SNPs for association with ~36,000 genes and 9,000 proteins (Table S3). Further, to control 

for outliers and allow cross-sample comparison, we quantile normalized and inverse normal 

transformed RNAseq data. Additionally, we included 15 PEER factors119 as covariates to 

eliminate the hidden determinants in the expression data. For pQTL analyses, we only 

included proteins with data in at least 20% of samples. We identified significant genes 

(eGenes) and proteins (pProteins) under germline genetic control of a SNP within 1 Mb (cis) 

of a transcription start site using FDR threshold of 1% (Table S3).

Gene-set enrichment analysis of genes and proteins—For each cancer, we 

performed an over representation analysis, using both eGenes and pProteins, as implemented 

in the ClusterProfiler R package117 (Table S3). Pathway were retrieved from the 
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Reactome,93 KEGG112 and Hallmark113 databases using the msigdbr R package (https://

igordot.github.io/msigdbr/). Significant results were derived using a cut-off for adjusted 

p-value of 0.1.

Association between immune subtypes and methylation profiles

Preprocessing of DNAm data—For each cancer, we first derived gene-level DNA 

methylation (DNAm) using the median beta-values of probes from the promotor and 5UTR 

regions of each gene, known to be associated with downregulation (silencing) of the gene 

expressions.3 These gene-level DNAm scores were then transformed into M-value data 

tables. Afterward, we conducted filtering by removing genes and then samples with >= 

50% missing values. Outlier M-values beyond 4xIQR (inter-quantile range) of the median 

were truncated. Subsequently, we performed K-Nearest Neighbor imputation using the 

‘knn.impute’ via the R package impute.120 The resulting data matrix contains DNAm for 

16463 genes and 735 samples, distributed across seven cancers (103 CCRCC, 94 GBM, 105 

HNSCC, 108 LSCC, 107 LUAD, 124 PDA, and 94 UCEC).

Identification of CIMP Subtype in DNAm—Exploratory clustering of methylation data 

of 16463 genes for 735 samples revealed 3 distinct subtypes characterized by an epigenome-

wide pattern of low, medium or high levels of methylation. We identified these subtypes 

as CpG island methylator phenotypes (CIMP), which have been previously described for 

multiple cancers.121–123 While there was no significant association between CIMP and 

immune subtypes (p-value = 0.29, Fisher’s Exact Test, N = 735), we considered the 

substantial variations in DNAm across CIMP subtypes by including it as a covariate when 

assessing the association between DNAm with immune subtype in our subsequent analysis.

Association of DNAm with immune subtype—We focused on 11,610 autosomal 

genes and applied linear regression models to examine the relationship between their DNAm 

(gene-level M-value) and immune subtypes in each cancer separately. Specifically, for each 

cancer and gene, we first considered the subset of immune subtypes and CIMP subtype, 

represented by at least 5 tumor samples each. We derived covariate-adjusted M-values for 

these samples by employing a linear regression model that accounted for factors such as 

age, sex, smoking status (Never/Ever), CIMP subtype (High/Med/Low), immune subtypes, 

and the first 10 principal components from the ancestry analysis.3 Covariate-adjusted 

M-values were calculated by extracting from the M-values the estimated effects of each 

covariate, while retaining the effects related to immune subtype. Subsequently, we focused 

on immune subtypes with at least 10 samples to assess the association between them and 

covariate-adjusted M-values, utilizing a linear regression model without an intercept. To 

identify DNAm with similar association with immune subtypes across all cancers, combined 

p-values were derived based on the Cauchy combination test (CCT).97 The Pan Cancer 

combined scores (Figure 4A) are the Z-scores corresponding to the combined p-value, where 

the sign of the combined score corresponds to the sign of the median Z-score for each 

DNAm across the different cancers. The Benjamini-Hochberg correction was used to adjust 

combined p-values to account for multiple comparisons.85
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Mediation analysis to test for effects of smoking on immune subtypes as 
mediated by DNAm—Mediation analysis was performed for a subset of the genes found 

to be associated with immune subtypes, including (1) 73 genes with a Pan Cancer combined 

association (FDR values < 0.01), as well as (2) genes with a cancer-specific association 

(FDR < 0.10) in HSNCC (N = 85), LUAD (N =4), or LSCC (N =5). For investigation of 

methylation mediated effects due to smoking, we used the COSMIC smoking signature 

(SBS4), a somatic mutation signature associated with tobacco smoking, that has been 

detected in head/neck and lung tissues.124 The associations between this smoking signature 

and self-reported smoking status are illustrated in Figure S4B for all three cancers.

For each cancer, we focused on CIMP and immune subtype categories with a minimum of 

5 samples. Also, samples with missing values in any of the variables were excluded. We 

adjusted gene level methylation M-values according to CIMP Subtypes and the top 10 PCAs 

representing the ancestry genomic backgrounds3 by regressing the M-values against these 

covariates and obtaining the residuals.

Then for the qth gene, we perform the mediation analysis using the below model:

log P i/ 1 − P ij = β0j + θ1jAdjusted_Mqi + θ2jSmokei + β1jSexi + β2jAgei,

Adjusted_Mqi = α0q + φ1qSmokei + α1qSexi + α2qAgei,

where P ij is the probability for the ith sample to fall in the jth immune subtype; 

Adjusted_Mqi represents the adjusted gene-level methylation score of the qth gene in the 

ith sample; Smokei is the SBS4 smoking signature value of the ith sample; and (θ, φ, α, β)
are unknown parameters. In this model, a significant non-zero estimate of φ1qθ1j suggests 

an association between smoking and the jth immune subtype through the methylation 

changes of the qth gene. The Divide-Aggregate Composite-null Test (DACT) was used 

to test for significance of the mediated effect.125 The DACT function https://rdrr.io/github/

zhonghualiu/DACT/src/R/DACT.R with correction parameter set to JC was used to obtain 

bias-corrected p-values for the mediated effect.

We also compared the association direction between DNAm and smoking in the CPTAC 

cohort and that from a previous study of the normal human lung.49 Among the genes with 

significant mediation effects, those showed consistent DNAm v.s. smoking associations in 

both LUAD and normal lung tissues were shown in Figure 4D, while the rest were shown 

in Figure S4C. Note, the p-values from the regression analysis for assessing the associations 

between DNAm and smoking were adjusted using the Bonferroni correction.

Kinase activity in different immune subtypes via the Kinase Library

Pan Cancer association between phosphorylation abundance and immune 
subtypes—For this analysis, we consider sites with less than 95% missing values across 

the ten cancers. Each phosphosite abundance was adjusted by the global abundance of the 

corresponding protein and the cancer indicator via linear regression. Then, the residuals 
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of this linear regression were modeled as a linear function of the immune subtypes. 

For each site, only immune subtypes with at least 5 observations were considered into 

the model. P-values from linear regression were adjusted for multiple comparisons via 

Benjamini-Hochberg adjustment. Only associations with an adjusted p-value less than 10% 

were considered significant. Pan Cancer level association analysis results can be found in 

Table S5.

Cancer-specific association between phosphorylation abundance and 
immune subtypes—For each cancer, we consider sites with less than 80% missing 

values. Each phosphosite abundance was adjusted by the abundance of the corresponding 

protein. Then, the residuals of this linear regression were modeled as a linear function of 

the immune subtypes. For each site, only immune subtypes with at least 5 observations 

were considered into the model. P-values from linear regression were adjusted for multiple 

comparisons via Benjamini-Hochberg adjustment. To control for variability in association 

values between different cancers, we used the top and bottom 10% of the sites (ranked based 

on nominal p-values) as positively and negatively associated sites, respectively, and the 

middle 80% as non-associated sites, as an input to the Kinase Library enrichment analysis. 

Single-cancer association analysis results can be found in Table S5.

Kinase enrichment via the Kinase Library—Based on the list of differential sites 

derived following the procedure illustrated in the previous section, kinase enrichment was 

performed. Full description of the substrate specificities atlas of the Ser/Thr kinome can 

be found in.8 The phosphorylation sites detected in this study were scored by all the 

characterized kinases (303 S/T kinases), and their ranks in the known phosphoproteome 

score distribution were determined (percentile-score). For every non-duplicate, singly 

phosphorylated site, kinases that ranked within the top-15 kinases for the S/T kinases 

were considered as biochemically predicted kinases for that phosphorylation site. Toward 

assessing a kinase motif enrichment, we compared the percentage of phosphorylation 

sites for which each kinase was predicted among the top 10% positively and the top 

10% negatively associated phosphorylation sites with each relevant signature, versus the 

percentage of biochemically favored phosphorylation sites for that kinase within the set 

of un-associated sites (i.e., those not falling into the top 10% positively or negatively 

associated sets). Contingency tables were corrected using Haldane correction. Statistical 

significance was determined using one-sided Fisher’s exact test, and the corresponding 

p-values were adjusted using the Benjamini-Hochberg procedure. Then, for every kinase, 

the most significant enrichment side (upregulated or downregulated) was selected based 

on the adjusted p-value and presented in the bubble plots. Bubble plots were generated 

with size and color strength representing the adjusted p-values and frequency factors (FF) 

respectively, only displaying significant kinases (adjusted p-value <= 0.1). Kinases that were 

significant (adjusted p-value <= 0.1) for both upregulated and downregulated analysis were 

plotted using the parameters of the more significant site, but were also outlined with a 

yellow outer-circle.
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Derivation of kinase activity scores for each tumor sample via KEA3

For each cancer, we standardized the phosphosite abundance data by subtracting the average 

abundance of each phosphosite in the normal adjacent tissue (NAT) samples from its 

abundance in each tumor sample. Subsequently, we scaled these values by the standard 

deviation of the phosphosite abundances across tumor samples. In the case of 4 cancers 

(BRCA, GBM, PDA, UCEC) without any NAT samples, we standardized the abundance of 

each phosphosite across tumor samples to z-score (i.e., mean 0 and standard deviation 1). 

Then, based on the standardized phosphosite abundance matrices, for each tumor sample, we 

applied kinase enrichment analysis on the sets of proteins corresponding to the top (bottom) 

500 phosphosites with the highest (lowest) abundances using KEA3 Appyter.9

Since rank-scores obtained from the KEA3 enrichment analysis were impacted by many 

factors beyond kinase activation levels in the samples (e.g., the number of known substrates 

for each kinase), we utilized a permutation procedure to further normalize the KEA3 rank 

scores to obtain meaningful interpretation of kinase activation. Specifically, we randomly 

sampled 5000 independent protein sets of size 500 from the 8305 proteins represented in the 

Pan Cancer phosphoproteomics. For each set, we performed KEA3 analyses and recorded 

the resulting rank-scores for each kinase. By aggregating the rank-scores of a given kinase 

across all 5000 sets, we obtained a null distribution representing the expected rank-score 

distribution of the kinase under the assumption of no activation (as the query sets were 

randomly selected). This enabled us to compare the observed rank-scores from the real 

dataset against their null distributions and identify kinases with significant activation. We 

normalized the observed rank-scores of each kinase by calculating the reversed z-scores:

Normalized Rank Score = − Observed Rank−μ0 /SD0,

where μ0 and SD0 are the mean and standard deviation of the permutation null distribution of 

the kinase. The normalized rank-scores, which we refer to as kinase activity scores, reflected 

the activation levels of each kinase in tumor samples with higher values indicating higher 

activity.

Association between KEA3 kinase activity scores and immune subtypes

To investigate the association between kinase activity scores and immune subtypes, we 

conducted two analyses. First, we examined the global variation of kinase activity scores 

across immune subtypes within each cancer using an ANOVA test. Second, we assessed the 

effect of each immune subtype on kinase activity scores using a linear regression model 

with kinase activity scores as the response variable and immune subtypes as predictors. Both 

analyses were stratified by cancer. ANOVA test p-values and sub-type-specific coefficients/

significance from linear regression models are reported in Table S5. To account for multiple 

testing, we further adjusted p-values for each cancer using the Benjamini-Hochberg (BH) 

method.85
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Cis-regulation between KEA3 kinase activity scores and mutation/CNV

For the 40 kinases included in Figure 5B, we tested whether their kinase activity scores 

were influenced by the mutation/CNV of the corresponding genes using linear regression for 

each cancer, separately. Specifically, we modeled KEA3 kinase activity scores as function of 

mutation status, gene-level CNV, age, sex and tumor cell percentage. Especially, for CNV 

levels, we were interested in detecting significantly positive coefficients in the regression 

models and utilized p-values from one sided test for this purpose. We further derived family 

wise error rate (FWER) by adjusting p-values via Bonferroni correction for each cancer 

separately. Coefficients with FWER<0.1 were considered significant cis-regulations.

Cell type-Specific Kinase Activation

We implemented a novel analysis pipeline to perform cell-type specific differential analysis. 

Specifically, we used BayesDeBulk to estimate the phosphosite abundances in tumor 

cells of high-immunogenic tumors, in tumor cells of low-immunogenic tumors and in 

immune/stromal cells. This analysis was performed for each cancer separately, since 

phosphoproteomics in tumor cells might be different across cancers. To improve the sample 

sizes for differential testing, we combined different immune subtypes to form the Hotand 

Cold groups. Hot group included the immune subtypes with higher immune composition 

such as CD8+/IFNG+, Eosinophils/Endothelial and Fibroblast/TGFBeta; while the Cold 

group included CD8-/IFNG-, CCRCC/Endothelial and Brain/Neuro. Given the Hot- and 

Cold-group assignments, the abundance of the jth phosphosite for sample i was modeled as 

the following function:

yi, j = πixH, j1(i ∈ H) + πixC, j1(i ∈ C) + 1 − πi xl/S, j

with πi being the estimated tumor cell percentage for sample i; 1(i ∈ H) an indicator function 

equal to 1 if the ith sample belongs to the Hot group and 0 otherwise; 1(i ∈ C) being an 

indicator function equal to 1 if the ith sample belong to the Cold group and 0 otherwise;xH, j, 

xC, j and xI /S . j being the abundance of the jth phosphosite in tumor cells of the Hot tumors, 

Cold tumors and that in immune/stromal cells, respectively. Note, here, we assumed that 

phosphosite abundance distributions in immune/stromal cells were the same across different 

tumors. Tumor cell percentages were considered as fixed and estimated via TSNet (Table 

S1). BayesDeBulk was utilized to estimate the parameters of this model, i.e., xH, j, xC, j and 

xI /S . j for each phosphosite j. For BayesDeBulk estimation, 10000 Markov-Chain Monte 

Carlo iterations (MCMC) were considered. The estimated parameters were derived as the 

median across the MCMC iterations after discarding a burn-in of 1,000 iterations. Once 

parameters of interest were estimated, we performed inference using their 95% CIs derived 

from the MCMC iterations. For example, we claimed a phosphosite to be significantly 

higher in the tumor cell of Hot tumors compared to the other cell groups (i.e., tumor cells 

of the Cold tumors and immune/stromal cells) if the 95% CI of xH, j was larger than that of 

xC, j and xI /S . j. In summary, for each cancer, we derived the following four cell type-specific 

differential lists of phosphosites (Table S6):

• Phosphosites upregulated in tumor cells of Hot tumors (Up-Tumor_Hot):
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xH, j > xC, j & xH, j > xl/S, j;

• Phosphosites downregulated in tumor cells of Hot tumors (Down-Tumor_Hot):

xH, j < xC, j & xH, j < xl/S, j;

• Phosphosites upregulated in tumor cells of Cold tumors (Up-Tumor_Cold):

xC, j > xH, j & xC, j > xl/S, j;

• Phosphosites downregulated in tumor cells of Cold tumors (Down-Tumor_Cold):

xC, j < xH, j & xC, j < xl/S, j .

For each of the four lists of phosphosites, kinase enrichment was then performed via KEA3 

and the Kinase library as explained in the following sections.

Cell type specific kinase activation by KEA3 and the Kinase Library

Considering the list of differential phosphosites derived as described in the previous section, 

we performed kinase enrichment analysis via KEA3 and the Kinase Library. KEA39 

enrichment analysis was performed via KEA3 Appyter. We also employed a permutation 

strategy to derive the normalized KEA3 scores (see next section for further details). 

Significance of KEA3 rank scores was assessed by calculating the proportion of values 

smaller than the observed KEA3 from the permutation-based null distributions (Table S6). 

Kinase enrichment analysis was also performed via the Kinase Library using the same 

strategy described in detail in the previous sections.

In Figure 6C, we reported 33 kinases meeting the following criteria: (1) their differential 

activation-pattern between different cell categories (i.e., hot tumor cells, cold tumor cells 

and immune/stromal cells) was consistent across at least 8 out of the 10 tumor types; (2) 

showed consistent significant differential activation/deactivation patterns (FDR<10%) in at 

least 2 tumor types based on either KEA3 or the Kinase Library results; and (3) exhibited 

differential activation patterns exclusively in either hot or cold tumor cells. Those criteria 

were used to identify kinases with significant and consistent activation trends observed in 

hot and cold tumor cells across different cancers. Results for the full list of kinases are 

reported in Table S6.

Permutation procedure to derive p-values for KEA3 rank scores

Due to the property of enrichment tests, distributions of the KEA3 enrichment rank scores 

are affected by the number of proteins (phosphosites) in the input list to KEA3. Thus, 

to generate faithful null distributions of KEA3 rank scores using the aforementioned 

permutation procedure, it is necessary to match the size of the random phosphosite set 

to that of the DE (differentially expressed) phosphosites from the cell-type specific analysis. 

For this purpose, we created a collection of baseline distributions by randomly sampling 

protein sets of varying sizes (i.e., n = 10, 50, 100, 150, 200, 250, 300, 400, 500) from the 
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complete protein list (8305 proteins). To estimate the baseline distribution for a specific 

size, we used the distributions of the closest two sets (smaller and larger) in the sequence. 

This estimation approach significantly reduces the computational burden while maintaining 

accuracy.

Specifically, for a given differential list of m phosphosites, if m matches one of the values 

in the sequence (n = 10, 50, 100, 150, 200, 250, 300, 400, 500), we will use the null 

distribution corresponding m to normalize KEA3 ranks and to infer significance. For m
smaller than 10 or greater than 500, we will use the distribution of size 10 or 500. Otherwise, 

the closest sizes in the sequence m1 and m2 with m1 < m < m2 will be used.

Mean and standard deviation were calculated from the 5000 random samples with size m1

and m2 separately, denoted as μ1/SD1 and μ2/SD2. Then, the estimated baseline mean and 

standard deviation of size m was calculated as:

μ0 = m2 − m ∗ μ1/ m2 − m1 + m − m1 ∗ μ2/ m2 − m1

SD0 = m2 − m ∗ SD1/ m2 − m1 + m − m1 ∗ SD2/ m2 − m1

Finally, the normalized kinase activity scores are derived with the same procedure described 

in Derivation of kinase activity scores for each tumor sample via KEA3.

Similarly, the p-value of corresponding kinase ranks from KEA3 was calculated from the 

distribution of size m1 and m2, separately. This was achieved by calculating the proportion 

of baseline ranks less than the observation on the same kinase, i.e., p = mean(random 

sampled ranks < observed rank), and followed by the estimation of p-value from the baseline 

distribution of size m as follows:

p0 = m2 − m ∗ p1/ m2 − m1 + m − m1 ∗ p2/ m2 − m1

Normalized kinase activity scores and p-values for all the cell type specific differential 

phosphoprotein lists are provided in Table S6.

Single-cell validation of cell-type specific kinase activation

We collected data from 1,587,530 single cells, spanning 10 cancers in the CPTAC 

cohort. These cells were grouped by sample, of which the number of samples per cancer 

varied considerably (i.e., single digits for OV to over 150 for LUAD). For each patient 

sample, we had already pre-annotated all cell types, and as such we reduced these down 

into three simpler groups for analysis: malignant, immune/stromal, and epithelial-normal. 

Gene expression profiles were then averaged together across those three groups to create 

pseudo-bulk expression profiles for each sample, which were then used downstream for 

comparative differential expression analysis. For each cancer subtype and each given 

kinase, we performed a differential expression analysis in the form of an independent 
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t-test between pseudo-bulk averaged log normalized expression values across malignant vs. 

immune/stromal groups. Log fold-factors (fold-changes) were also calculated.

Transcription factor regulator analysis

Firstly, to standardize the tumor RNAseq expression data for each cancer, we employed the 

same approach as used for creating kinase activity scores based on KEA3 by normalizing the 

data with respect to the matched RNA data from the corresponding NAT (please see section 

Derivation of kinase activity scores for each tumor sample via KEA3). For the subset of 

cancers where NAT samples were not available, each gene was standardized to have mean 0 

and standard deviation 1. We then performed transcription factor (TF) enrichment analysis 

by applying ChEA3 on the sets of the top 500 and bottom 500 genes with the highest and 

lowest expression levels, respectively, for each tumor sample.62 ChEA3 enrichment rank 

scores were normalized using the same permutation procedure utilized to normalize the 

KEA3 rank scores of tumor samples.

For a given kinase-TF pair, we assigned a score to each tumor sample as follows:

1. If either the kinase or the transcription factor (TF) was not ranked among the top 

30 for the tumor, the kinase-TF pair score of this sample was set to zero.

2. If both the kinase and the TF were ranked in the top 30 for the tumor, the 

kinase-TF pair score was calculated as: (31 – [TF Rank])/30 +(31 - [Kinase 

Rank])/30.

Since there were two sets of ranks (upregulated and downregulated) for each feature (kinase 

or TF) for each tumor sample, we generated four sets of kinase-TF pair scores for each 

sample to measure:

1. Co-upregulation of the kinase-TF pair;

2. Co-downregulation of the kinase-TF pair;

3. Co-occurrence of TF-upregulation and Kinase-downregulation for the Kinase-TF 

pair;

4. Co-occurrence of TF-downregulation and Kinase-upregulation for the Kinase-TF 

pair.

We then focused on the Hot tumors from the CD8+/IFNG+ subtype (n = 175) and the Cold 

tumors from the CD8-/IFNG-subtype (n = 306), and derived the average kinase-TF pair 

scores (for each of the four sets of kinase-TF scores) within the Hot and Cold tumor groups, 

separately.

Next, for each of the four sets of kinase-TF scores, we extracted the top 1% of kinase-TF 

pairs with the highest scores (Table S6). Pairs only present in the top 1% sets of Hot tumors 

were assigned a value of 2; pairs that were only present in top 1% sets of Cold tumors were 

assigned a value of −2; and pairs that were present in both the top 1% for Hot tumors and 

cold tumors were assigned a value of 1. The resulting matrices were used to construct four 

heatmaps shown in Figure S6A.
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Finally, to produce the summary bipartite graphs (Figure 6A), clusters were identified 

from the heatmaps manually. Kinases and TFs common in multiple clusters across the 

heatmaps were grouped and connections were drawn between groups to indicate inferred 

activation (up-up or down-down) or inhibition (down-up or up-down) in Hot, Cold, or both 

groups based on the condition from which the cluster was extracted from. Each cluster was 

submitted to Enrichr126 and the most relevant enriched term was used to label the cluster.

Validation of transcription factor regulation via L1000 database

CEBPB targets were sourced from the ENCODE ChIP-seq gene set library 

(ENCODE_TF_ChIP-seq_2015) downloaded from Enrichr.126 CEBPB targets appearing 

in at least two sets were retained resulting in 4767 genes. Processed gene set signatures 

pertaining to PDK1, PDK3, PDK4, and MYO3B L1000127 CRISPR/Cas knockouts were 

sourced from SigCom LINCS.63 The signatures in SigCom LINCS are computed using the 

Characteristic Direction method.88 The overlap of each signature with the CEBPB targets 

was assessed with the Fisher exact test and those with significant overlap were retained. The 

overlapping genes between significant signatures and the CEBPB targets were submitted to 

Enrichr128 for analysis against the Reactome_2022 library and those significantly enriched 

for ‘Innate Immune System R-HSA-168249’ with it appearing in the top three returned 

terms were retained. Additionally, overlapping genes appearing in at least half (n=5) of the 

retained signatures were extracted and included in the diagram.

Histopathology Assessment of Immune Subtypes

Data Pre-processing—Histopathology images are scanned at a maximum depth of 20x 

resolution and segmented into smaller tiles of 299 by 299 pixels with an overlapping area 

of 49 pixels between each tile, at the 10x, 5x, and 2.5x resolution and geographically 

linked such that the model always views tiles in the same spatial region. Tiles with excess 

white space (>60%) or previous annotations marked by pathologists were removed. To 

account for differences in staining procedures by different institutions, color normalization 

is performed using Vahadane’s method. Slides from the same patient were divided into 

training, validation, and test sets with 4-fold splitting. Histopathology images are cut into 

smaller tiles of 299 by 299 pixels with an overlapping area of 49 pixels between each tile. 

Tiles of 10x, 5x, and 2.5x resolutions from the same geographical region were fed as a 

multi-input set to output a single categorical outcome. To avoid overfitting, images were 

augmented with random 90◦ rotation, random vertical and horizontal flip, random change to 

hue, brightness, contrast, and saturation.

Model training—The multi-resolution architecture is based on Xception and modified 

to incorporate a global average pooling layer, dropout layer, and a fully dense predictive 

layer. The architecture is opened to include 3 branches, such that tiles of 10x, 5x, and 

2.5x resolutions of the same region are forward passed together. Models were optimized 

with Adam, initial learning rate set to 0.001, and loss calculated using sparse categorical 

crossentropy weighted by tumor type frequency in the training set. Early stopping of training 

is employed when the validation loss does not improve for two epochs. Both Individual 

cancer models and a single pan-cancer model were trained to assess the extent that global 
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morphologies correlate with immune infiltration across multiple tumor types. In addition, 

4-fold validation was performed to accurately assess model performance.

Performance Evaluation and Model Visualization—Performance is evaluated with 

Receiver Operating Characteristic (ROC) curves at the per-tile and per-patient level. Metrics 

for per-patient level are obtained by averaging the respective tiles’ metrics belonging to 

that patient. Latent imaging features are extracted from the final convolution layer and 

visualized with tSNE clustering. To identify morphology patterns that were important for 

the model’s decision-making process, integrated-gradient based saliency maps were applied. 

The gradients of each class score were calculated with respect to the input layer, the 

magnitude of difference is used to generate a heatmap overlaying the original input image. 

Larger differences signify greater network activation and subsequently more important 

regions of interest.

Tumor Morphology features based on H&E

We devised a custom methodology for the segmentation and classification of neoplastic 

cells, employing a two-step procedure. Initially, cells were segmented at the whole-slide 

level utilizing the Cellpose cyto model.129 Subsequently, a straightforward Convolutional 

Neural Network (CNN) model was developed, which underwent training on the Pannuke 

dataset.130 This dataset was partitioned into an 80:10:10 ratio for training, validation, and 

testing purposes, respectively. The trained CNN model was then subjected to comprehensive 

evaluation on all cells identified by the Cellpose cyto model. The primary objective was to 

accurately discern neoplastic cells within this set. The Pannuke dataset encompasses five 

distinct cell types: neoplastic, inflammatory, connective, dead, and non-neoplastic epithelial 

cells. Tumor cells are defined as having >=50% probability for neoplastic class. Segmented 

masks encapsulating the contour and cellular morphology attributes of each cell were 

extracted, leveraging the skimage.measure.regionprops function. Features extracted include 

human-interpretable measurements (ex. area, perimeter, eccentricity) and other abstract 

features (ex. inertia, moments etc.). The Hematoxylin and Eosin (H&E) staining intensity 

was quantified by converting RGB color space to HED using skimage.color.rgb2hed and 

averaging the values at each channel level. These measurements were aggregated at the slide 

level, Pearson correlated with cytokine expression pathway scores at the patient level, and 

significance tested using scipy.stats.pearsonr, which performs a test of the null hypothesis 

that the underlying sample distributions are uncorrelated and normally distributed. These 

results are attached as a supplementary table (Table S7).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Proteogenomics reveals seven immune subtypes spanning 10 cancer types

• DNA alterations associate with immune subtypes and affect proteomic 

profiles

• Kinase activation in immune subtypes suggests potential therapeutic targets

• Digital pathology reveals infiltrating cells associated with immune subtypes
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Figure 1. Derivation of immune subtypes
(A) Outline for the derivation of immune subtypes. First, multi-omic deconvolution was 

performed based on proteomics and RNA-seq to estimate cell type compositions in each 

tumor. In parallel, pathway scores of immune-related pathways derived based on proteomics 

were clustered to define 10 immune pathway modules. Finally, the estimated cell type 

fractions and the 10 immune module scores were integrated to cluster tumors into different 

immune subtypes.
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(B) Heatmap showing, for each cancer, the average of tumor cell percentage, immune 

and stromal scores, and cell type fractions. Significant differential levels between cancers 

(Bonferroni’s adjusted p value < 1%) are highlighted with a (*) (STAR Methods).

(C) Association between cell type fractions and survival outcomes for each cancer. The 

heatmap displays p values (signed −log10 scale) from Cox-proportional hazard regression 

models. Associations significant at 10% FDR are displayed with black dots.

(D) Kaplan-Meier curves showing cancer-specific associations between fractions of CD8 T 

cells and patient survival outcomes. For each cancer, tumors with high and low fractions of 

CD8 T cells were derived using the 1st and the 3rd quartiles, respectively. p values from 

logrank test are reported.

(E) Heatmap showing, from top to bottom, (1) estimated cell type fractions by deconvolution 

analysis; (2 and 3) pathway scores of immune modules based on proteome and RNA, 

respectively; (4 and 5) protein and RNA expressions of cell type markers. The annotation 

track and the pie-plot on the top show the distribution of different tumors within immune 

subtypes.

(F) Bar plot showing the proportion of samples allocated to different immune subtypes 

within each cancer.
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Figure 2. Associations of immune subtypes with treatment responses, pathway activities, and 
patient demographic variables
.

(A) Kaplen-Meier curves displaying associations between CD8+/IFNG+ and PFS for 

samples in the immunotherapy (left) and chemotherapy (right) arms in the phase III OAK 

clinical trial.30 p values from logrank test are reported.

(B) Bubble plot showing summary statistics of association analyses between immune 

subtypes and biological pathways. Bubble sizes correspond to Benjamini-Hochberg adjusted 
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p values (−log10 scale), while bubble colors correspond to the mean differences between the 

averaged pathway score for samples in one immune subtype and that of the other subtypes.

(C) Bubble plot showing pathway analysis results as in (B), but for pathways found activated 

solely based on proteomics.

(D) Pan-cancer association between immune subtypes and demographic variables. Error bars 

correspond to 95% confidence intervals of odds ratios.

(E) Boxplots for pathway scores of Epithelial Mesenchymal Transition (EMT) and 

Interferon Gamma Signaling (IFNG) pathways among HNSCC cancers stratified by 

smoking status. (*) indicates significant p values (< 0.05) based on the Wilcoxon signed 

rank test.
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Figure 3. Association of immune subtypes with DNA alterations$$PARABREAKHERE$$(A) 
Bar plot showing the total number of mutations per gene stratified by cancer.
(B) Pan-cancer association between mutation profiles and immune traits based on elastic-net 

regressions. Red and blue entries correspond to positive and negative coefficients in the 

regression model, respectively.

(C) Heatmaps showing, for each gene, the association between its mutation status and 

its RNA/protein expressions in each cancer. Colors in the heatmap correspond to log fold-

change (log FC) of the expressions between mutant and wild-type samples. Significant 
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associations (p value from two-sided Mann-Whitney U test < 0.05) are labeled with black 

dots.

(D) Heatmaps showing the association between protein/RNA expression and immune 

subtype. Colors in the heatmap represent signed −log10 Benjamini-Hochberg adjusted p 

values. Significant associations (adjusted p value < 10%) are labeled with black dots.

(E) Heatmap displaying pan-cancer association between CNV and immune traits. For each 

cancer, the bar plot on the top shows the proportion of samples with more than 50% of 

the genes depleted (blue) or amplified (red) in the corresponding chromosome region. The 

heatmap shows, for each chromosome, the number of genes whose copy-number values 

were positively or negatively associated with the immune axes, represented in red and blue, 

respectively.

(F) Manhattan plot summarizing the pan-cancer association between gene-level CNV data 

and the Wound Healing Proliferation module for selected chromosomes. The y axis shows 

−log10 p value from linear regression.

(G) Heatmap displaying, for each cancer, the pathways over-represented in the set of 

pProteins and eGenes. Significant enrichments at 10% FDR are displayed with a black 

dot for pProteins and a white square for eGenes.
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Figure 4. Association of immune subtypes with DNA methylations
(A) Heatmap illustrating DNAm associations with immune subtypes for a set of genes 

exhibiting significant associations in at least two cancers or in the pan-cancer analysis 

(STAR Methods). The color gradients represent the average (standardized) DNAm levels 

within tumors from each immune subtype stratified by cancers (left) or the average Z scores 

across tumors in each immune subtype across all cancers (right) for different omics (DNAm, 

RNA, and proteins). Significant associations (FDR < 10%) are labeled with black dots.
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(B) Heatmap illustrating DNAm associations with immune subtypes as in (A) for the 

topmost significant genes whose DNAm was associated with immune subtypes in only one 

cancer (FDR < 10%).

(C) Diagram of the mediation analysis.

(D) Heatmap illustrating three association analyses for each gene in each cancer: COSMIC 

smoking signature vs. DNAm (left), DNAm vs. immune subtype (middle), and smoking-

mediated DNAm vs. immune subtype (right) for a subset of genes with significant mediation 

effects. In addition, the Lung N column summarizes DNAm-smoking associations as 

reported by a previous study on normal human lung tissues.49 The genes shown in this 

panel were selected based on consistent association trends between DNAm and smoking 

in LUAD and in normal lung tissues (Lung N). Significant associations (FDR < 10%) are 

labeled with black dots.

(E) Volcano plots summarizing the association strengths in terms of Z scores (x axis) and 

signed p value (−log10 scale) (y axis) between DNAm and COSMIC

smoking signatures for the subset of genes considered in the mediation analysis.

(F) Boxplots showing the distributions of DNAm levels of PYCR1 across immune subtypes, 

considering the union of HNSCC, LUAD, and LSCC samples. p values from ANOVA test 

are reported (**p value <0.01; *p value < 0.05, ns, not significant).
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Figure 5. Associations of immune subtypes with kinases activities
Kinases are reported as gene symbols followed by protein symbols in parenthesis.

(A) Left: bubble plot showing pathways associated with different immune subtypes based 

on RNA-seq and proteomics. Bubble color represents the differential mean of pathway score 

in each subtype compared with all other subtypes, while the bubble size illustrates the 

Benjamini-Hochberg adjusted p value (−log10 scale).

Middle: for each pathway, the plots show kinases whose activation was found differential 

across immune subtype at the pan-cancer level (adjusted p value < 10%) via the Kinase 
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Library. The color of the bubble corresponds to the log2 frequency factor from the 

contingency table (log2 frequency factors [FF]), while the size of the bubble to the adjusted 

p value. Right: for some key kinases, the cancer-specific activation in CD8+/IFNG+ and 

CD8−/IFNG− are shown using similar bubble plot.

(B) Heatmap showing the associations between KEA3-based kinase activity and immune 

subtypes in each cancer for selected kinases. Significant associations (adjusted p value 

< 10%) are highlighted with a black dot. The columns on the left illustrate the overall 

associations between each kinase and immune subtypes from ANOVA test for each cancer. 

The columns on the right show the membership of kinases in immune-related pathways. The 

annotation track on the top illustrates whether adjacent normal tissue was considered for 

normalization (T/N) or not (T) when deriving KEA3 scores for each cancer.
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Figure 6. Kinase-TF regulation and cell-type-specific kinase activation
(A) Kinase-TF modules from the top 1% scored kinase-TF pairs for hot and cold tumors. 

Arrowheads are assigned to consistent up- and down-regulations, and plungers to different 

signs of associations between kinases and TFs. Each module was labeled according to the 

most relevant pathway identified by Enrichr. Genes contained in the pathway are highlighted 

in bold.

(B) The diagram at the top depicts the proposed mechanism. The top bar plot (black) 

displays the number of genes overlapping between the sets of upregulated genes following 
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each kinase CRISPR-Cas knockout and the experimentally determined targets of CEBPB 

from ENCODE ChIP-seq (STAR Methods). The middle bar plot (gray) shows the p values 

from Fisher’s exact test for testing whether the overlapping gene sets are significantly 

larger than what would occur by random chance. The bottom bar plot (blue) illustrates 

the enrichment of the kinase perturbation L1000 signatures for the Innate Immune System 

R-HSA-168249 Reactome pathway. The red lines indicate the level of 0.05. Cell line names 

are listed in parentheses, and their primary disease associations are: A549: lung cancer, 

AGS: gastric cancer, YAPC: pancreatic cancer, BICR6: head and neck cancer, A375: skin 

cancer.

(C) Cell-type-specific kinase activation via KEA3 and the Kinase Library. The color of 

the heatmap represents the signed p value (−log10 scale) from enrichment analysis. Red 

color represents activation in tumor cells; while blue color represents activation in immune/

stromal cells. For kinases with a Pearson’s correlation between activity score and RNA 

expression higher than 0.2, we show the log2 fold-change (log2 FC) of gene expression 

between tumor cells and immune/stromal cells based on scRNA (right side). Significant 

associations (FDR < 10%) are displayed with a black dot. From top to bottom, we present 

deactivation in cold tumor cells, activation in cold tumor cells, deactivation in hot tumor 

cells, and activation in hot tumor cells.

(D) Differential kinase activity changes of FYN between different cell types (purple bars) 

and fold-changes of FYN gene expression between tumor cells and immune/stromal cells 

based on scRNA (light gray bars). The differential kinase activity results are displayed as 

signed p values (−log10 scale).
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Figure 7. Histopathology assessment of immune subtypes
(A) Bar plots showing AUCs for predicting hot versus cold tumors based on histopathology 

images across different cancers. For each cancer, both single-cancer and pan-cancer models 

are reported. Error bars correspond to standard error across 4-fold tests.

(B) Based on pan-cancer model, imaging features are extracted from the penultimate layer 

and separated with tSNE clustering. The top-right plot shows the separation by the model’s 

prediction scores, and bottom-left is color-coded by the true label. Each point represents a 
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different tile. Tiles are bordered with their respective cancer-type color. Selected tiles are 

zoomed in (top-left and bottom-right) to appreciate differences with immune infiltration.

(C) Bar plot reporting Pearson’s correlation between cell type fractions and image prediction 

probabilities.

(D) tSNE plot color-coded with the cell type scores.

(E) Bubble plot showing Pearson’s correlation between cellular morphology and cytokine 

expression pathways at a pan-cancer level. The size of the bubble corresponds to p value 

from correlation test.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

BayesDeBulk Petralia et al.7 https://github.com/wanglab-mssm/bayesdebulk

ESTIMATE Yoshihara et al.83 https://bioinformatics.mdanderson.org/estimate/rpackage.html

TSNet Petralia et al.84 https://github.com/petraf01/TSNet

GSVA Hä nzelmann et al.85 https://bioconductor.org/packages/release/bioc/html/GSVA.html

ConsensusClusterPlus Wilkerson et al.86 https://bioconductor.org/packages/release/bioc/html/
ConsensusClusterPlus.html

ImmuneSubtypeClassifier Gibbs et al. 87 https://github.com/CRI-iAtlas/ImmuneSubtypeClassifier

Enrichr Chen et al.88 https://maayanlab.cloud/Enrichr/

Pamr Tibshirani et al. 89 https://cran.r-project.org/web/packages/pamr/index.html

Glmnet Friedman et al.90 http://r.meteo.uni.wroc.pl/web/packages/glmnet/glmnet.pdf

ClusterProfiler Yu et al.91 https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html

Msigdbr Liberzon et al.92 https://igordot.github.io/msigdbr/

Impute Hastie et al.93 https://www.bioconductor.org/packages//2.12/bioc/html/impute.html

MatrixeQTL Shabalin et al.94 https://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/

KEA3 Kuleshov et al.9 https://maayanlab.cloud/kea3/

ChEA3 Keenan et al.62 https://maayanlab.cloud/chea3/

Panoptes - TensorFlow (v2) Wang et al.11 https://github.com/Wenke-Liu/panoptes

Panoptes – TensorFlow (v1) Hong et al.10 https://github.com/rhong3/CPTAC-UCEC

Tensorflow Abadi et al.95 https://www.tensorflow.org

Inception Szegedy et al.96 https://github.com/google/inception

InceptionResNet Szegedy et al.96 https://github.com/tensorflow/models/tree/master/research/slim/nets

Keras Chollet, F., and others (2015). https://keras.io

DACT Liu et.al.97 https://github.com/zhonghualiu/DACT

SigComLincs Evangelista et al.63 https://maayanlab.cloud/sigcom-lincs/

DreamAI Ma et al.98 https://github.com/WangLab-MSSM/DreamAI

The Kinase Library Johnson et al.8 https://kinase-library.phosphosite.org/
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