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Background. In health technology assessment, restricted mean survival time and life expectancy are commonly evalu-
ated. Parametric models are typically used for extrapolation. Spline models using a relative survival framework have
been shown to estimate life expectancy of cancer patients more reliably; however, more research is needed to assess
spline models using an all-cause survival framework and standard parametric models using a relative survival frame-
work. Aim. To assess survival extrapolation using standard parametric models and spline models within relative sur-
vival and all-cause survival frameworks. Methods. From the Swedish Cancer Registry, we identified patients
diagnosed with 5 types of cancer (colon, breast, melanoma, prostate, and chronic myeloid leukemia) between 1981
and 1990 with follow-up until 2020. Patients were categorized into 15 cancer cohorts by cancer and age group (18–
59, 60–69, and 70–99 y). We right-censored the follow-up at 2, 3, 5, and 10 y and fitted the parametric models within
an all-cause and a relative survival framework to extrapolate to 10 y and lifetime in comparison with the observed
Kaplan-Meier survival estimates. All cohorts were modeled with 6 standard parametric models (exponential, Wei-
bull, Gompertz, log-logistic, log-normal, and generalized gamma) and 3 spline models (on hazard, odds, and normal
scales). Results. For predicting 10-y survival, spline models generally performed better than standard parametric
models. However, using an all-cause or a relative survival framework did not show any distinct difference. For life-
time survival, extrapolating from a relative survival framework agreed better with the observed survival, particularly
using spline models. Conclusions. For extrapolation to 10 y, we recommend spline models. For extrapolation to life-
time, we suggest extrapolating in a relative survival framework, especially using spline models.
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Highlights

� For survival extrapolation to 10 y, spline models generally performed better than standard parametric
models did. However, using an all-cause or a relative survival framework showed no distinct difference
under the same parametric model.

� Survival extrapolation to lifetime within a relative survival framework agreed well with the observed data,
especially using spline models.

� Extrapolating parametric models within an all-cause survival framework may overestimate survival
proportions at lifetime; models for the relative survival approach may underestimate instead.
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Background

Restricted mean survival time (RMST) or life expectancy
(LE) are common survival outcomes evaluated in health
technology assessment (HTA). Moreover, estimation of
quality-adjusted life-years is often based on calculating
the mean survival times and utility values. Interest typi-
cally lies in the experience of patients who are recently
diagnosed or participating in ongoing clinical trials.
Hence, survival data are usually still immature (right
censored). Extrapolation is then required to predict sur-
vival beyond follow-up to obtain estimates for RMST or
LE.1 In health economic evaluations, survival extrapola-
tion is typically carried out by fitting the observed sur-
vival data with parametric models and subsequently
predicting survival probabilities based on estimated

model parameters.2–4 However, the parametric distribu-
tion may fit the observed data well but generate poor
extrapolation because it may not be sufficiently flexible
to capture the underlying shape of a hazard function in
the long run.5,6 An unsuitable choice of the model may
lead to biased extrapolations, which may eventually
result in inaccurate cost-effectiveness analysis results in
HTA.2

Previous recommendations from National Institute
for Health and Care Excellence (NICE)’s Technical Sup-
port Document 14 suggested that 6 standard parametric
models (SPMs)—exponential, Weibull, Gompertz, log-
logistic, log-normal, and generalized gamma models—
should be considered as selecting appropriate models for
survival extrapolation.3 More recent guidance from
NICE’s Technical Support Document 21 published in
2021 provided general recommendations on using flexible
parametric models incorporating restricted cubic splines.5

In this study, we refer to flexible parametric models7 as
spline models. Recent studies have compared multiple
statistical models, including SPMs, spline models, cure,
mixture, and landmark models for survival extrapolation
for patients treated by cancer immunotherapies. How-
ever, the results were compared only with the observed
survival of 3 y8 and 5 y.9 Gray et al.10 applied SPMs and
spline models for survival extrapolation and further com-
pared their performance using long follow-up cancer reg-
istry survival data. They suggested spline models should
be routinely applied for extrapolating cancer survival
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data. However, they evaluated only models in an all-
cause survival framework (ASF), that is, extrapolation of
all-cause hazard (mortality) models, for 10-y survival
outcomes instead of longer survival outcomes, such as
LE.10

A review by Jackson et al.11 summarized survival
extrapolation approaches integrating external data,
including survival extrapolation within a relative survival
framework (RSF),5,6 also referred as an excess hazard
(mortality) framework.12 Relative survival, R tð Þ, is
defined as the all-cause survival of the patients, S tð Þ,
divided by the expected survival of a comparable popula-
tion free from the disease under study, S� tð Þ, written as

R tð Þ= S tð Þ
S� tð Þ ,

where t is time since diagnosis.13 The hazard analogue of
relative survival is excess hazard. The all-cause hazard,
h tð Þ, is the sum of the expected hazard, h� tð Þ, and the
excess hazard , l tð Þ, shown as

h tð Þ= h� tð Þ+ l tð Þ:

To extrapolate survival within an RSF, one needs to
extrapolate the relative survival and the expected sur-
vival, that is, decompose the all-cause hazard into the
expected hazard and the excess hazard, and extrapolate
them separately. Extrapolation of expected survival can
be carried out by projecting the expected hazard, in other
words, predicting future general population mortality
rates (GPMRs).6 Extrapolation of relative survival can
be done by modeling and predicting the excess hazard.14

Afterward, one may use the interrelationship between
the relative survival, all-cause survival, and expected sur-
vival to obtain the extrapolated all-cause survival.

For most cancers, the excess hazard, that is, the mor-
tality attributed to cancer, decreases with time and
remains low or reaches zero for a longer period.15 This
characteristic potentially favors fitting a parametric
model to capture the underlying excess hazard function
and extrapolate it. Furthermore, the expected hazard
(from GPMRs) may explain a substantial part of the all-
cause hazard in the long-run.16,17 Therefore, extrapola-
tion within an RSF can be reasonable for projecting
long-term hazards. Andersson et al.6 showed that extra-
polating lifetime survival more reliably using spline mod-
els within an RSF. Their main focus was on estimating
loss in LE rather than short-term survival outcomes, for
example, 10-year RMST.6

One goal of extrapolation is to apply appropriate
parametric models for predicting survival in randomized

clinical trials. Clinical trial survival data usually do
not have complete follow-up of the study population,
leading to unknown long-term survival outcomes. An
alternative to assessing the performance of survival extra-
polation is to adopt observational data, for example,
population-based cancer registers. The patterns of hazard
functions across cancer sites and ages may be largely
heterogeneous. Therefore, they offer a variety of survival
functions for evaluating extrapolation approaches.
Furthermore, cancer registers provide longer follow-up
of known survival outcomes, which enables us to com-
pare with survival extrapolations.10 The Swedish Cancer
Registry was established in 1958, and its completeness is
greater than 96%.18 All healthcare workers in Sweden
are required to register all incident cancer cases with
information such as age, sex, date of diagnosis, type of
diagnosis, date of emigration, and so on. Accordingly,
this study used these data from the real-world cancer reg-
istry to evaluate survival extrapolation methods.

This research aims to investigate the performance of
survival extrapolations within an ASF and an RSF using
SPMs and spline models for 10-y and lifetime survival
outcomes using the Swedish Cancer Registry. To allow
for a variety of hazard function shapes, we included 5
cancer sites: 2 sex-specific cancer sites (breast and pros-
tate cancer) and other 3 non–sex-specific ones (colon
cancer, melanoma, and chronic myeloid leukemia).
Furthermore, we limited the follow-up time of the sur-
vival data and extrapolated by parametric models in an
ASF and an RSF to compare with the observed Kaplan–
Meier (K-M) survival estimates.

Methods

Study Population

This study used the Swedish Cancer Registry to identify
patients diagnosed with colon cancer (International Clas-
sification of Diseases version 7 code 153.x), breast cancer
(code 170.x), malignant melanoma (code 190.x), prostate
cancer (code 177.x), and chronic myeloid leukemia
(CML) (code 205.1) at 18 to 99 y old in Sweden during
1981–1990, with follow-up until December 31, 2020.
Information regarding the date of death was obtained
from the Cause of Death Register via the linkage with
each patient’s Swedish unique registration number.
Patients who emigrated were classified as censored on
the date of first emigration. For individuals with multiple
primary recorded tumors of the same type, we included
only the first diagnosis. Patients diagnosed at autopsy
were excluded. For breast cancer, males (\1%) were
excluded from the analyses.
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Survival Models

To align with the study by Gray et al.,10 we classified the
patients into 3 separate age groups (18–59, 60–69, 70–
99 y) to produce a total of 15 cancer cohorts. Each can-
cer cohort was fitted by the SPMs and spline models
within an ASF and an RSF.14,19,20 The SPMs included a
total of 6 models: exponential, Weibull, Gompertz, log-
logistic, log-normal, and generalized gamma.21 The
spline models were fitted with restricted cubic splines on
3 different scales: log cumulative hazard, log cumulative
odds, and normal equivalent deviate (probit) scale with
(m+ 1) degrees of freedom (df).19 For flexible parametric
spline models, (m+ 1) df indicates that m internal knots
and 2 boundary knots are applied for the restricted cubic
spline function used for the baseline hazard function,19

and the suggested knot locations are based on the centiles
of the distribution of uncensored log event times.22 To
maintain the consistency across models, all the spline
models were modelled with 5 df, that is, 4 internal knots.

For survival extrapolation within an RSF, the extra-
polation of the expected survival is also required. We cal-
culated the expected survival function with the Ederer I
estimator,13 which can be interpreted as the unbiased sur-
vival the patients would have had if they had not been
diagnosed with the disease. The Ederer I method calcu-
lates the expected survival for the patient population
from the GPMRs, stratified by age, sex, and calendar
year.23 We retrieved the GPMRs of Sweden until 2020
from the Human Mortality Database.24 For mortality
beyond 2020, we assumed that they are equal to 2020.
Detailed step-by-step instructions on survival extrapola-
tion within an RSF can be found in the tutorial by Sweet-
ing et al.12

Evaluating Survival Extrapolation

To compare with the extrapolations, we used the K-M
survival estimates of 40-y follow-up data as the observed
survival outcomes. We presented the K-M survival
curves with 95% confidence intervals (CIs), and the num-
bers at risk of each cancer cohort at selected time points.
To evaluate predicted 10-y survival outcomes (10-y
RMST and survival proportions at 10 y), the follow-up
time for all surviving patients was right-censored at 2, 3,
and 5 y and extrapolated by the parametric models to
10 y. For lifetime (or 40-y) survival outcomes (LE or 40-
y RMST and survival proportions at lifetime or 40 y),
the follow-up was right-censored at 2, 3, 5, and 10 y and
extrapolated to lifetime (or 40 y). The LE was calculated
by integrating the area under the survival curve. Namely,
to obtain LE, we require the patients to have been

followed until the survival has already reached zero.
However, the survival proportions of some younger can-
cer patients were not yet zero by 40 y, so their 40-y
RMST was assessed instead of LE.

We presented boxplots summarizing the differences
(extrapolated minus observed) across 15 cancer cohorts
(5 cancer sites by 3 age groups). These comparisons were
made across 9 models, including 6 SPMs and 3 spline
models, withinin either an ASF or an RSF. Varying
follow-up time points, including 2, 3, 5, or 10 y, were
used for extrapolation to 10 y or lifetime (40 y). Box
plots show the median, first quartile, third quartile, inter-
quartile range, and outliers for the difference. Further-
more, to evaluate the precision of the extrapolations, we
presented the frequency of models in a table that pre-
dicted a difference less than or equivalent to 0.1 y of 10-
y RMST, 1% survival proportion at 10 y, 1 y from the
observed LE or 40-y RMST, and 1% at lifetime or 40 y,
across all groups by time used for extrapolation and sur-
vival framework, where the cut points were selected sub-
jectively. Larger numbers of frequencies imply better
extrapolation performance.

For visual assessment on the extrapolation perfor-
mance, we also included all the survival and hazard func-
tions in the Supplementary Materials (Supplementary
Appendices C–F). The observed quantities were from the
full follow-up of 10 y or lifetime (or 40 y). The observed
survival functions were from the K-M survival estima-
tors. The observed all-cause (or excess) hazard functions
were fitted by spline models7 on log cumulative (excess)
hazard scales, with 5 df for baseline effects. The observed
expected hazard functions were obtained from the
observed all-cause hazard functions subtracted by the
observed excess hazard functions.

For presenting the observed hazard function, we jus-
tify our choice of using spline models over nonparametric
kernel-smoothed estimators based on the following rea-
sons: the sensitivity of the kernel-smoothing method to
bandwidth and the assumption of constant hazard over
the bandwidth.25 Notably, the hazard function may
change rapidly at the boundaries, which makes the kernel
smoothing less suitable. This characteristic may intro-
duce bias especially after long follow-up, where only few
patients are at risk. In addition, it is more common to
show parametric excess hazard functions in practice
instead of nonparametric estimates. Therefore, our pre-
ference leans toward employing spline models to present
smooth functions of the observed all-cause and excess
hazards over the full follow-up duration. It is worth not-
ing that the hazard functions primarily serve for visual
assessment on various shapes over time at Appendices C
to F. However, the main results involve only comparing
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the extrapolated and the observed K-M survival curves,
which provide a more illustrative insight into how well
the model fits the survival data.

Statistical Software

All statistical analyses were performed in Stata version
17.0 (Statacorp, College Station, TX, USA). All SPMs
and spline models were fitted and postestimated by the
Stata commands merlin20 and stpm219 separately.

Results

Baseline Characteristics and Observed Survival Outcomes

Table 1 shows the baseline characteristics of the 15 can-
cer cohorts. The sample sizes varied across the cohorts.
The largest group was prostate cancer aged 70 to 99 y
with n = 29,749, and the smallest was CML aged 60 to
69 y, n = 218. Melanoma patients aged 18 to 59 y had
the highest 10-year and lifetime or 40-y survival out-
comes (10-y RMST = 8.70 y, survival proportion at
10 y = 78.79%, 40-y RMST = 27.26 y, and survival
proportion at 40 y = 37.95%). CML patients aged 70
to 99 y had the lowest 10-y and lifetime or 40-y survival
outcomes (10-y RMST = 1.88 y, survival proportion at
10 y = 1.08%, and LE = 1.90 y). Across all cancer
cohorts, the proportions of censoring ranged from
33.06% to 93.64% at 2 y and from 1.08% to 78.89% at

10 y. The K-M survival functions of an observed period
of 40 y and numbers of patients at risk at selected time
points are presented in Figure 1.

Evaluating 10-y Survival Extrapolation

Figure 2 shows the box plots of difference (extrapolated
minus observed) for 10-y RMST (Figure 2A) and survival
proportions at 10 y (Figure 2B) across cancer cohorts, by
model, and survival framework at which 2-, 3-, and 5-y
follow-up time were used for extrapolation to 10 y. For
10-y RMST, the actual differences were provided in dot
plots in Supplementary Appendix Figure A1 and presented
in numerical values in Supplementary Appendix Table B1;
for survival proportions at 10 y, dot plots and numerical
values can be found in Supplementary Appendix Figure
A2 and Supplementary Appendix Table B2, separately.

Given extrapolation from 2 y, spline models generally
had differences of predicted 10-RMST within 61 y for
both an ASF and an RSF, except 4 predicted values by
the spline hazard model: 21.10 y in an ASF and 21.14 y
in an RSF for breast cancer patients aged 18 to 59 y, and
21.10 y in an ASF and 21.17 in an RSF for melanoma
patients aged 60 to 69 y. On the other hand, SPMs had a
higher frequency of difference outside 61 y across 15
cancer cohorts within either framework. With a follow-
up of 5 y, all the SPMs and spline models in either sur-
vival framework predicted 10-RMST similarly well. The

Table 1 Baseline characteristics and observed survival outcomes of cancer cohorts, by cancer site and age group, diagnosis in
Sweden during 1981-1990 with follow-up until 2020

Observed Outcomes

Cancer Cohort 10 y Lifetime or 40 y Censoring Proportion at Time Points (%)

Type
Age

Group (y)
Median
Age (y) n

RMST
(y)

Survival
(%)

LE
(y)

Survival
(%) 2 y 3 y 5 y 10 y

Colon 18–59 53 3,627 5.59 44.20 14.38 9.19 64.52 57.29 50.23 44.36
60–69 65 6,230 5.19 36.51 9.16 0.00 62.02 55.51 46.61 36.57
70–99 77 14,826 4.05 18.65 5.04 0.00 55.22 46.47 35.38 18.70

Breast 18–59 49 15,991 8.10 67.44 21.63 19.36 91.75 86.88 78.88 67.53
60–69 65 10,996 7.82 60.44 14.52 0.00 90.31 85.46 76.78 60.49
70–99 77 16,782 5.75 28.78 7.39 0.00 78.32 69.16 54.30 28.73

Melanoma 18–59 45 5,662 8.70 78.79 27.26 37.95 93.64 90.43 85.39 78.89
60–69 65 2,638 7.63 60.51 14.67 0.00 87.45 81.73 74.03 60.58
70–99 76 3,194 5.53 28.66 7.29 0.00 74.20 64.84 50.94 28.71

Prostate 18–59 57 1,808 6.35 38.65 10.59 1.62 82.58 73.34 58.74 38.83
60–69 66 10,423 6.10 33.74 8.49 0.00 80.74 71.41 57.37 33.84
70–99 77 29,749 4.47 13.90 5.02 0.00 68.69 56.86 38.94 13.94

CML 18–59 44 359 4.71 20.42 8.16 6.73 69.36 57.66 39.83 20.61
60–69 66 218 3.21 4.64 3.50 0.00 56.88 43.58 22.48 5.05
70–99 77 372 1.88 1.08 1.90 0.00 33.06 22.04 10.48 1.08

CML, chronic myeloid leukemia; LE, life expectancy; RMST, restricted mean survival time; y, year(s). If survival proportion was not yet zero by

40 y, the 40-y RMST was reported instead of LE.
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Figure 1 (A) Kaplan-Meier survival estimates (lines) with 95% confidence intervals (shaded areas) and (B) numbers at risk for
15 cancer cohorts, diagnosis in Sweden during 1981-1990 with follow-up until 2020. Vertical dashed lines on plot (A) indicate
time points at 2, 3, 5, 10, 20, and 30 years. CML, chronic myeloid leukemia.
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largest difference was 20.49 y for colon aged 18 to 59 y
with the exponential model within an RSF (Figure 2A,
Supplementary Appendix Figure A1, and Supplementary
Appendix Table B1).

With regard to the predicted survival proportions at
10 y, with 2 y of follow-up, all the models in either sur-
vival framework generally produced inaccurate extrapo-
lations with the range between 267.42% and 26.68%.
With extrapolation from 5 y, the spline models within
either framework generated similarly accurate extrapola-
tions with differences ranging from 24.88% to 4.61%.
On the contrary, the SPMs within either framework had
greater differences (Figure 2B, Supplementary Appendix
Figure A2, and Supplementary Appendix Table B2).

Evaluating Lifetime or 40-y Survival Extrapolation

Similar to the evaluations at 10 y (Figure 2), we present
the lifetime difference (or 40 y) in box plots (Figure 3),
precision of survival extrapolation on 2 outcomes: LE
(or 40-y RMST) (Figure 3A, Supplementary Appendix
Figure A3, and Supplementary Appendix Table B), and
survival proportions at lifetime (or 40 y) (Figure 3B,
Supplementary Appendix Figure A4, and Supplementary
Appendix Table B4).

Extrapolations from 2 y are generally imprecise for all
the models in either an ASF or an RSF. Given extrapo-
lating from 3 y, most of the spline models within an RSF
predicted a difference lower than 5 y, with the largest dif-
ference being 27.00 y for breast cancer aged 18 to 59 y

Figure 2 Boxplots show difference (extrapolated minus observed) for (A) 10-year restricted mean survival time (RMST) and (B)
survival proportions at 10 years across 15 cancer cohorts, by model, survival framework, and follow-up time used for
extrapolation. The extrapolated values were retrieved from models fitted to 2, 3, and 5 years of follow-up data and predicted to
10 years. The observed values were from Kaplan-Meier survival estimates of 10 years. Boxplots in blue represent models using an
all-cause survival framework, while those in red are using a relative survival framework.
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extrapolating from the spline model on the hazard scale.
However, ASF models and the SPMs within an RSF had
wider ranges in difference. Given extrapolating from 5 y,
most of the SPMs and the spline models had a difference
lower than 5 y, with the largest being 29.28 y for breast
cancer aged 18 to 59 y by the Gompertz model within an
RSF. With 10 y, under an RSF, extrapolations by both
the SPMs and the spline models produced smaller differ-
ences, with the largest difference being 24.95 y for colon
cancer aged 18 to 59 y extrapolating from the exponential
model. Among the spline models, the differences ranged
from 21.62 y to 0.05 y. On the other hand, despite using

10 y, extrapolations by all models within an ASF gener-
ated a wider range of difference from 24.53 to 6.75 y
(Figure 3A, Supplementary Appendix Figure A3, and
Supplementary Appendix Table B3).

For survival proportions at lifetime (or 40 y), on the
condition that the predicted survival proportion deviated
from the observed, extrapolations within an RSF mostly
underestimated the survival, while ASF models mostly
overestimated the survival, with the highest difference
46.00% for colon cancer aged 60 to 69 y extrapolating
from the Gompertz using 3 y. With 10 y, extrapolation
within an RSF, especially using the spline models, agreed

Figure 3 Boxplots show difference (extrapolated minus observed) for (A) life expectancy (LE) or 40-year restricted mean survival
time (RMST) (years) and (B) survival proportion (%) at 40 years across 15 cancer cohorts, by model, survival framework, and
follow-up time used for extrapolation. The extrapolated values were retrieved from models fitted to 2, 3, 5, and 10 years of
follow-up data and predicted to lifetime or 40 years. The observed values were from Kaplan-Meier survival estimates of 40 years.
Boxplots in blue represent models using an all-cause survival framework, while those in red are using a relative survival
framework. If survival proportion was not yet zero by 40 years, 40-year RMST was evaluated instead of LE.
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well with the observed survival, with the largest difference
being 216.16% for melanoma aged 18 to 59 y using the
exponential model (Figure 3B, Supplementary Appendix
Figure A4, and Supplementary Appendix Table B4).

Evaluating the Extrapolation at Selected Scenarios

Table 2 summarizes the number of cancer cohorts whose
absolute differences (absolute value of extrapolated
minus observed) were relatively small. This is another
approach to represent the precision of survival extrapo-
lation. For 10-y survival outcomes (10-y RMST and sur-
vival proportions at 10 y), most parametric models
extrapolated in either survival framework did not have
distinct differences to predict both 10-y RMST within
0.1 y of difference under the same parametric model and
follow-up time. With 2 or 3 y of follow-up time, none of
the models within either framework had predictions
within 0.1 y for more than half of the 15 cohorts. Given
extrapolation from 5 y, among the SPMs, both the
Gompertz model and the generalized gamma model
within an RSF outperformed the best with predictions
on within 0.1 y for 11 of 15 cancer cohorts; among the
spline models, the spline normal within an ASF per-
formed the best with predictions within 0.1 y for 15 of 15
cohorts. With regard to survival proportions at 10 y,
with 2 or 3 y, all models in either framework had predic-
tions within 1% for less than 5 of 15 cohorts. With 5 y
of time, the spline odds and the spline normal within an
RSF predicted within 1% survival for 7 and 6 of the 15
cohorts, respectively.

For long-term survival outcomes, models within an
RSF in general had higher frequency to predict LE (or
40-y RMST) within 1 y of difference than models within
an ASF. In terms of predicting survival proportions at
lifetime (or 40 y) of less than 1%, irrespective of the
follow-up time employed for extrapolation, all models
within an RSF showed frequencies equivalent to or
greater than 10 of 15 cohorts. This frequency was nota-
bly higher than the same models in an ASF. Among
these models, both the spline odds and the spline normal
had the highest frequency, 13, to predict within 1% as
extrapolating from a 10-y follow-up.

Visual Evaluation of Extrapolated Survival
and Hazard Functions

We selected breast cancer patients aged 60 to 69 y as an
example to present the extrapolated survival functions
using either SPMs or spline models within an ASF or an
RSF for 10-y survival or lifetime survival in Figure 4.
Figure 4A shows the lifetime extrapolated survival

functions using 3 y of follow-up. For evaluating 10-y
survival outcomes, the results showed that survival extra-
polations within an RSF did not necessarily predict more
accurate survival than an ASF. For lifetime survival out-
comes, we observed that the models within an RSF, in
general, agreed better with the observed K-M survival
curve compared with the same model within an ASF
(Figure 4A). Similar examples can be found in other can-
cer cohorts (Supplementary Appendices C and D).
Despite using a longer follow-up of 10 y (Figure 4B), the
extrapolation of all models within an ASF overall over-
estimated survival. In contrast, most of the models an
RSF agreed well with the observed, especially using the
spline models. To assist visual assessment for all extrapo-
lations to 10 y, we included the extrapolated survival
and hazard functions using an ASF in Supplementary
Appendix C and using an RSF in Supplementary Appen-
dix D. For lifetime (or 40-y) survival outcomes, all extra-
polated survival and hazard functions within an ASF
and an RSF can be found in Supplementary Appendices
E and F, respectively.

Discussion

Survival extrapolation is regularly practiced for predict-
ing survival outcomes in health economic evaluations.
An advantageous model should ideally fit the survival
during the observed period well and extrapolate unbiased
survival beyond follow-up. As a result, it is important to
select models that adequately capture the hazard func-
tions and make reasonable predictions.5 Flexible para-
metric spline models were developed to sufficiently
capture the hazard functions with potentially complex
shapes,22,26 but they do not guarantee that the extrapola-
tions are always credible. Despite a longer follow-up
period, extrapolating survival using either SPMs or
spline models within an ASF may still generate inaccu-
rate predictions on survival estimates at lifetime (Figures
3 and 4). The underlying reason was that it may be diffi-
cult to find a suitable parametric distribution within an
ASF to describe the hazard function both in the observed
and extrapolation period. Among the 15 cancer cohorts,
most of the observed all-cause hazard functions were
increasing right after time since diagnosis for a short
period, decreasing after the spike, and eventually mono-
tonically increasing again. Some exceptions were mono-
tonically increasing functions over time, for example, age
groups 70 to 99 y for breast cancer, melanoma, and pros-
tate cancer (Supplementary Appendices E and F).

For multiple types of cancer, the relative survival func-
tion tends to drop substantially after cancer diagnosis
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and later approach a plateau over time. In other words,
the excess hazard function spikes initially and approxi-
mates constant or even zero in the long run.27 This spe-
cific characteristic of cancer survival patterns justifies
extrapolating spline models within an RSF, because, for
spline models, the log cumulative excess hazard beyond
the last boundary knot of restricted cubic splines is a lin-
ear trend, which makes the excess hazard function in the
tail behave like a Weibull distribution.6

In this study, we maintained consistency across all the
spline models by selecting 4 internal knots, 5 df, for each
model. Previous studies concluded that with a sufficient
number of knots used in spline models fitted on log
cumulative hazard scale, at least greater than 1 internal
knot (2 df), the ability of splines to approximate complex
hazard functions does not heavily depend on the correct
choice of the number of knots.28,29 In addition, Anders-
son et al.6 investigated how sensitive the extrapolation is

to the chosen number of knots, 5 to 7, that is, 3 to 5
internal knots in the spline models. The results suggested
that the extrapolations are not very sensitive to the num-
ber of knots.

For 10-y survival outcomes, extrapolations within an
RSF were not especially more successful than the same
parametric model within an ASF because the extrapolated
expected hazard may not yet explain a great part of the
all-cause hazard. Instead, it is more important to select
models that can capture the hazard shape and predict the
shape in the near future, for example, spline models.

For lifetime (or 40-y) survival outcomes, survival
extrapolations carried out by models within an RSF gen-
erally agreed well with the observed data, especially using
spline models. The underlying reason is that the expected
hazard from the GPMRs may explain a greater part of
the long-term all-cause hazard. In addition, the spline
models capture and reasonably predict the underlying

Figure 4 Extrapolated survival curves (A) from 3 years to 40 years and (B) from 10 years to 40 years for breast cancer aged 60-
69 years by model, survival framework, follow-up time use for extrapolation. The observed values (black lines) with 95%
confidence intervals (shaded areas) were from Kaplan-Meier survival estimates of 40 years. The vertical solid line on plot (A)
indicates 10 years. K-M, Kaplan-Meier; CIs, confidence intervals.
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excess hazard functions. For predicted survival propor-
tions at lifetime, proportions despite longer follow-up,
most of the models within an ASF overestimated survival
due to the fact that the long-term extrapolated all-cause
hazards were underestimated. On the contrary, the mod-
els within an RSF leaned toward underestimating sur-
vival, since they may overestimate excess hazards.

Strengths

A major strength of this study is comparing the extrapo-
lated survival functions with data from a population-
based cancer registry of empirical 40-y follow-up. We
extended the study by Gray et al.10 by investigating extra-
polation using both SPMs and spline models within not
only an ASF but also an RSF. We evaluated both 10-y
survival outcomes and lifetime (or 40-y) outcomes. Gray
et al. right-censored the survival data at 20%, 35%, and
50% survival points and extrapolated to 10 y. They
found that of the 45 cancer cohorts, the spline models
with the lowest Akaike information criterion (AIC) had
23 groups that predicted within 1-mo difference from the
observed 10-y RMST, while the SPMs with the lowest
AIC had only 9. Instead, our study right-censored the
survival data at different time points. Our motivation
was that in HTA, clinical trial data are usually followed
up until a certain time instead of a certain censoring pro-
portion. For 10-y RMST, within an ASF, we also
observed that the spline models generally had a higher
frequency of predicting difference within 0.1 y than the
SPMs did. We reproduced the spline models within an
RSF by Andersson et al.6 using different cancer cohorts
from the same cancer registry. For predicting survival to
lifetime, Andersson et al.6 showed that extrapolating the
spline models within an RSF to lifetime using 10 y of
follow-up had a difference of 20.23 y for colon cancer
aged 60 to 69 y, while using an ASF had a difference of
2.13 y. Our study presented that, for colon cancer aged
60 to 69 y, the spline models within an RSF using 10 y
had differences ranging from 20.09 to 20.08 y, and an
ASF had differences ranging from 3.37 to 3.74 y (Supple-
mentary Table B3).

Sweeting et al.12 investigated the use of excess hazard
methods in survival extrapolation. They applied SPMs
within an excess hazard framework, that is, the RSF in
our study. They used breast cancer survival data with a
maximum follow-up of 7.3 y. Our study extended this
study by including not only SPMs but also spline models
within an all-cause hazard (all-cause survival) and an
excess hazard (relative survival) framework. Further-
more, considering the heterogeneity of cancer survival,
we investigated the extrapolation performance by using

a real-word cancer registry data of 5 cancer types across
3 age groups with a maximum follow-up of 40 y.

Another study by van Oostrum et al.17 assessed the
incorporation GPMRs for extrapolating survival in
HTA. They recommended the additive hazards
approach, that is, extrapolation within an RSF in our
study. In addition, they investigated a variety of other
approaches, including converging hazards (also known
as imposing statistical cure), external additive hazards,
and proportional hazards, which are plausible only
under certain scenarios.17 Our study corroborated this
study by including the generalized gamma model and the
spline models that incorporate GPMRs into the investi-
gation. We showed that only certain SPMs, such as the
Gompertz model, performed similarly well as the spline
models when extrapolating within an RSF to lifetime.

Limitations

This study, however, has certain limitations. First, the
generalizability of this study to health economic evalua-
tions in randomized clinical trial settings may depend on
the hazard shape of the disease of interest. For example,
the all-cause hazard function may have multiple turning
points. The study populations were selected from various
cancer sites from the nationwide Swedish Cancer Regis-
try. However, we argue that a total of 15 cancer cohorts
had a wide range of heterogeneity in the underlying
hazard functions over time. Thus, our results may pro-
vide valuable insights into evaluating survival extrapola-
tions on diseases characterized by other complex hazard
shapes. Further evaluation is needed when considering
the further advancement of treatments on cancer survival.
Moreover, additional analyses are require to generalize
the findings to other diseases than cancers. Second, clini-
cal trial data usually have much smaller sample sizes than
population-based disease registers do. Consequently, the
accuracy of extrapolation may need to be addressed
under these data-limited scenarios. However, our results
also contained chronic myeloid leukemia, which had
similarly lower sample sizes (less than 400 in each age
group) than other cancer types. Kearns30 conducted a
simulation study to evaluate the impacts of follow-up
time used and sample sizes on extrapolation by different
models, including spline models. The author concluded
that varying lengths of follow-up had a greater influence
on survival extrapolation than varying sample sizes in the
defined simulation settings.30 We suggest that future
research should extend this study to investigate the uncer-
tainty on extrapolated survival estimates due to sample
size reduction in both contexts of population-based dis-
ease registers and clinical trials. Third, the uncertainty in
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the extrapolated survival estimates can also come from
the expected hazards. In this study, we assumed that the
expected hazards, obtained from the GPMRs, were based
on the whole general population in Sweden and constant
for the same age, sex, and calendar year. However, it has
been shown that if estimates of expected measures are
not based on the entire population, then the uncertainty
in GPMRs should be taken into account.31

Other models, such as cure fraction models32–35 and
mixture-cure models,9,36 were also applied to evaluate
survival extrapolation in HTA. This article mainly
focuses on exploring fitting survival data with a variety
of parametric distributions within an ASF and an RSF.
Discussion on cure fractions and their impact on survival
prediction is beyond scope. Hwang et al.37 proposed the
rolling extrapolation algorithm to extrapolate the logit
transformation of the relative survival ratio. This algo-
rithm also incorporates spline models and the RSF. It
has been applied to estimate loss of LE due to cancer38,39

as well as other diseases.40,41 Further investigations may
compare this approach with other existing survival extra-
polation methods, especially within an RSF.

Predicting survival from short follow-up time is a
demanding task in essence. To select an appropriate
model, one should consider not only the goodness-of-fit
of the model during observed time but also the credibil-
ity of extrapolations beyond follow-up.42 Special caution
should always be paid as extrapolating survival to life-
time for younger patients or from shorter follow-up time.
To enhance the credibility of the extrapolation by the
chosen model, researchers should carefully select the
model and conduct rigorous sensitivity analysis.

Conclusions

This study showed the performance of survival extrapo-
lations using SPMs and flexible parametric spline models
within an ASF and an RSF for 10-y and lifetime survival
outcomes. For survival extrapolation to 10 y, spline
models generally outperformed SPMs. However, using
an ASF or an RSF showed no distinct difference. For
survival extrapolation to lifetime, we recommend rela-
tive survival extrapolation for estimating LE, especially
using spline models. With limited follow-up, models
within an ASF tended to overestimate survival propor-
tions at lifetime; models within an RSF may underesti-
mate instead.
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