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Abstract

Gut microbiota is essential for maintaining local and systemic immune

homeostasis in the presence of bacterial challenges. It has been demonstrated

that microbiota play contrasting roles in cancer development as well as

anticancer immunity. Cancer immunotherapy, a novel anticancer therapy that

relies on the stimulation of host immunity, has suffered from a low responding

rate and incidence of severe immune‐related adverse events (irAEs). Previous

studies have demonstrated that the diversity and composition of gut

microbiota were associated with the heterogeneity of therapeutic effects.

Therefore, alteration in microbiota taxa can lead to improved clinical

outcomes in immunotherapy. In this review, we determine whether

microbiota composition or microbiota‐derived metabolites are linked to

responses to immunotherapy and irAEs. Moreover, we discuss various

approaches to improve immunotherapy efficacy or reduce toxicities by

modulating microbiota composition.
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Highlights

• Gut microbiota has been acknowledged as key regulators in host‐mediated

anticancer immune response especially during immunotherapy, and

antibiotics‐induced dysbiosis often leads to resistance to immunotherapy

and poor clinical outcomes.

• Although the mechanisms underlying gut microbiota‐mediated potentiating

efficacy while ameliorating side effects of immunotherapy differs across
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bacteria genus and immunotherapy types, it's generally via enhancing

anticancer immunity and remodulating the tumor microenvironment.

• We reviewed the commensal bacteria profiles associated with responders to

immunotherapy in various cancer types, characterized by a high diversity

with abundance of specific species, which may help predict patients;

sensitivity to immunotherapy before treatment.

• Since the causal relationship between individual gut microbiota and

response to immunotherapy, we propose gut microbiota act as the future

therapeutic target and adjuvant in personalized anticancer regimen, and

reviewed the current dilemma and potential strategies to manipulate gut

microbiota towards “beneficial bacteria.”

INTRODUCTION

Globally, multifactorial cancer is the second leading cause
of mortality [1], and immune systems are intricately
linked to tumor growth [2]. In healthy individuals,
abnormal cells can be recognized and removed by
immune cells rapidly through immune surveillance.
However, cancer cells can escape from host immunity,
proliferate and form an intra‐tumoral immunosuppressive
environment [3]. Immunotherapy, including adoptive cell
therapy (ACT), cancer vaccines, cytokines, oncolytic virus
therapies and immune checkpoint inhibitor (ICI) therapy,
has dramatically changed the treatment landscape of
cancers [4]. Different from conventional anticancer
therapies like chemotherapy and radiotherapy, it retards
tumor growth indirectly by unleashing and enhancing
host Antitumor immune response. Clinical breakthroughs
have been achieved through immunotherapy in various
tumor types, including hematologic malignancies, mela-
noma, nonsmall‐cell lung cancer (NSCLC), renal cell
cancer (RCC), hepatocellular carcinoma (HCC), and
gastrointestinal (GI) cancer [5].

However, immunotherapy is only effective for a small
share of patients, and most patients fail immunotherapy
due to primary refractoriness and acquired resistance due
to the undesired immune infiltrates in tumor micro-
environment (TME) [6]. Besides, treatment paradigms
are complicated by immune‐related adverse effects,
inhibiting the rapid development and clinical application
of immunotherapy. Therefore, recent advances in cancer
immunotherapy have focused on normalizing the
immune defects in TME as well as amplifying antitumor
immunity via metabolic reprogramming and combina-
tion with other antitumor approaches.

The commensal microbiota has an intricate relation-
ship between cancer and anticancer therapies in a balance
between proinflammation and anti‐inflammation function.

Emerging evidence has suggested that gut microbiota and
its metabolites can significantly contribute to the efficacy
and/or toxicity of immune‐related interventions. Specific
microbiota profiling is associated with either improved or
defective antitumor immunity between responders and
nonresponders. Thus, manipulating gut microbiota to-
wards the dominance of “beneficial” bacteria might be a
new therapeutic strategy and a novel biomarker to improve
and predict the clinical outcomes of cancer patients
receiving immunotherapy (Figure 1).

THE CANCER ‐MICROBIOTA ‐
IMMUNE AXIS

The dual role of gut microbiota in cancer

Gut microbiota differs widely even among healthy
individuals [7]. They reside on intestinal epithelial
barriers and are symbiotic with the host. The complex
microbial ecosystem is crucial in human health, and
disruption of which is associated with chronic inflamma-
tion, auto‐immune diseases, heart failure, and even
cancer [8, 9] (Figure 2). Previous studies have indicated
commensal microbiota plays contrasting roles in cancer
initiation, progression, and metastasis.

In 1987, a study observed that patients with chronic
infection of Salmonella typhi were related to an enhanced
risk of death induced by hepatobiliary cancer [10]. In 1994,
the World Health Organization designated Helicobacter
pylori as a class I biological carcinogen and acknowledged
it as a crucial pathological factor in gastric adenocarci-
noma [11]. Other commensals found in the colon and
pancreatic cancers also had the capacity to protumorigenic
effects [12]. Researchers have found that the reduction of
bacterial load could prominently reduce colorectal tumor
growth [13]. Besides these well‐elucidated oncogenic
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species, disruption of gut microbiota, namely dysbiosis,
can also act as a key driver to cancer initiation [14].
The mechanism underlying carcinogenesis caused by gut
microbiota includes its producing toxic metabolites,
inducing inflammation milieu, and suppressing antitumor
immunity, which leads to genomic instability, DNA
damage, and immune escape in tumor tissue [15, 16].
Recent studies have envisioned other potential mecha-
nisms, including regulating hormones in circulation or
through a reciprocal route called the gut‐brain axis, which

further explains how gut microbiota induces dysplasia
in distal organs and systems outside the gastrointestinal
tract [17].

Conversely, other studies have supported that intact
intestinal microbiota served as a protective role against
cancer. A causal relationship was observed between
antibiotic use and the increased incidence of breast
cancer in mice and humans [18, 19]. Iida et al. showed
commensal bacteria exert anticancer properties partially
through priming tumor‐associated innate myeloid cells

FIGURE 1 The role of gut microbiota in cancer immunotherapy. Through manipulation of commensals in cancer patients by diet
interventions, fecal microbial transplant, prebiotics, probiotics and bacteria consortia, host antitumor immunity can be enhanced by
dominance of “beneficial” bacteria in gut lumen and their metabolites. Increased effector T cells and induction of Tregs can be seen in
GALT, which leads to improved clinical outcomes of cancer immunotherapy with lower incidence of immune‐related adverse events.
FMT, fecal microbiota transplant; GALT, gut‐associated lymphoid tissue; GZMB, granzyme B; IFN‐γ, interferon‐γ; IL‐10, interleukin‐10;
PFN, perforin; TNF‐α, tumor necrosis factor‐α; Treg, regulatory T cell.
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for pro‐inflammatory cytokine production, which could
alter inflammation at the gut mucous site and in the
TME [20]. Through human‐into‐mice fecal microbiota
transfer (FMT), Erick et al. found gut microbiota could
significantly alleviate pancreatic adenoma (PDAC) tumor
growth in mice [21]. These studies suggested that gut
microbiota might retard tumor growth partially through
altering intratumoral microbial composition and shaping
the TME. Interestingly, a recent study showed that gut
microbiota and its postbiotics make a contribution to
intestinal and immune homeostasis in healthy indivi-
duals by modulating function and self‐renewal of

intestinal stem cells (ISCs) [22]. Additionally, it can
improve immune surveillance through tumor adjuvanticity
and antigenicity [23].

Induction of acute inflammatory reactions often
stimulates the antitumor immune responses by promot-
ing the maturation of dendritic cells (DC) and effector T
cells, and chronic inflammation facilitates tumor pro-
gression and treatment resistance [24]. While some
bacteria may activate the immune system and thus
generate inflammation and oxidative stress, they can also
promote tumor development, especially under the
context of persistent inflammation, potentially leading

FIGURE 2 Human microbiota disruption contributes to various diseases including cancers, bowel diseases, liver diseases, chronic
kidney diseases, cardiovascular diseases, respiratory diseases, metabolic diseases, and neurologic and psychiatric diseases. IBD,
inflammatory bowel disease; IBS, irritable bowel syndrome; IFN‐γ, interferon‐γ; IL‐10, interleukin‐10; IL‐12, interleukin‐12; LPS,
lipopolysaccharides; NAFLD, nonalcoholic fatty liver disease; SCFAs, short‐chain fatty acids; TNF‐α, tumor necrosis factor‐α.
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to a complex interplay in cancer progression. Infection
with H. pylori chronically activates disrupted gastric
mucosal immune response which leads to accumulation
of immunosuppressive cells and finally stomach cancer.
Intestinal microbiota or microbial products are essential
for inflammatory bowel disease to induce colorectal
cancer (CRC), and the use of a common antimicrobial
additive may exacerbate colonic inflammation and
increase the risk of colitis‐associated colon tumorigenesis
in a microbiota‐dependent manner [25, 26]. Further
research is needed to fully understand these interactions
and elucidate how to adjust the composition of the
commensal species to achieve a balance between
immune activation and immunosuppression.

Immunomodulation function of gut
microbiota in adaptive and innate cancer
immune response

The intricate crosstalk between the commensal microbiota
and the host immune system begins at the gut epithelial.
Through ligation of pathogen‐associated molecular pat-
terns (PAMPs) derived from gut microbes and pattern
recognition receptors (PRRs) presented on a variety of
intestinal epithelial cells and innate immune cells,
antigen‐presenting cells like DCs are activated, and pro‐
inflammatory cytokines are widely produced. Activation
and translocation of DCs from gut‐associated lymphoid
tissue (GALT) to mesenteric lymph nodes boost the
stimulation of naïve CD4+ and CD8+ T cells. Studies have
shed light on how gut microbiota affect the generation,
differentiation, and infiltration of adaptive and innate
immune cells in tumor tissues [27]. In murine models of
CRC and melanoma, oral gavage with commensal
Clostridiales strains potently induced antitumor immunity
via potentiating infiltration and activation of intratumoral
CD8+ T cells, with therapeutic efficacy superior to anti‐
PD‐1 therapy alone [28]. Commensal microbial commu-
nity could also positively influence patients' outcomes
after tumor resection through activating CD8+ T cells‐
dependent antitumor response [29].

Previous studies have stated that microbiota‐derived
modulators via PRRs have been linked to cancer initiation
and development through the activation of innate immune
pathways [30, 31]. However, other studies reported that gut
microbiota could also affect innate immunity in a beneficial
way against cancer. Gut commensals were observed to
enhance antitumor T cell immunity by activating DCs via
toll‐like receptor 4 (TLR4) signaling in melanoma mice
receiving radiation [32]. Besides, the prevalence of specific
gut bacteria induced by vancomycin treatment was also
associated with potentiation of cytotoxic T cell response via

stimulating interleukin 12 (IL‐12) secretion by CD8α+DCs
in mice models of lung and cervical cancer [33]. Lam et al.
proposed that gut microbiota could reprogram innate the
immune landscape in TME by skewing intratumoral
mononuclear phagocytes (MPs) toward immunostimula-
tory monocytes and DCs through regulating the natural
killer (NK) cell‐DC axis and type I interferon (IFN‐I)
signaling. These MPs tended to skew toward protumori-
genic macrophages when gut microbiota was depleted [34].
Intact commensal bacteria were also found to support
immune surveillance in mice with lung carcinoma partially
through enhancing γδT17 cell response [35].

IMPACT OF THE GUT
MICROBIOTA ON CANCER
IMMUNOTHERAPY

Involvement of gut microbiota to cancer
immunotherapy

In addition to influencing tumor development, the
commensal bacteria can also influence treatment out-
comes. Preliminary studies have explained the engage-
ment and contribution of gut microbiota to reprogram-
ming anticancer immune responses, presenting a
rationale for a novel field, “oncomicrobiotics,” which is
focused on how commensal microbiota influences the
host‐cancer equilibrium [36].

Through the gut wall where immune cells are located,
the gut microbiota interacts with the immune system,
which allows it to affect gut immunity as well as immune
responses in distal mucosal sites via circulation and
systemic metabolism [37]. Antitumor therapies like
chemotherapy, radiotherapy, and immunotherapy can
damage the integrity of the physical gut epithelial barrier,
causing translocation or accumulation of specific micro-
biota, which leads to alteration in the constitution of the
commensal microbiota. Upon Rag2–/–γc–/– mice receiving
total body irradiation (TBI) before ACT, an augmented
antitumor immunity was seen due to systemic liberation
of Lipopolysaccharides (LPS), a common metabolite
produced by Gram‐ bacteria) and microbial translocation
permitted by TBI‐induced mucosal barrier injury [32]. In
mice treated with antibodies against cytotoxic T
lymphocyte‐associated antigen 4 (CTLA‐4), the equili-
brium between intraepithelial lymphocytes (IELs) and
ileal epithelial cells (IECs) was compromised, resulting in
a damaged intestinal tract and accumulation of Bacter-
oides fragilis and Bacteroides cepacian (which later found
to be associated with preferred clinical outcomes) [38].

Dysbiosis of intestinal contents could also affect the
clinical outcome of cancer immunotherapy since gut
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microbiota and host immunity are mutualistic [39]. It is
common practice to prescribe antibiotics to patients
undergoing cancer treatments to prevent or alleviate
opportunistic infections. Beyond its antibacterial effects,
evidence have shown that antibiotics are the most
common cause of dysbiosis, leading to a detrimental
impact on T cell‐based immunotherapies by changing the
composition or decreasing the diversity of the gut
microbiota [40]. Perturbations of gut microbiota in mice
receiving an antibiotic cocktail (vancomycin, imipenem,
and neomycin) lead to impaired function of tumor‐
infiltrating myeloid‐derived cells and poorer response to
CpG‐oligonucleotide immunotherapy [20]. Administra-
tion of broad‐spectrum antibiotics, respectively, in
murine models of MCA205 sarcomas, Ret melanoma,
and MC38 colon cancer all resulted in the compromised
antitumor effect of CTLA‐4‐specific antibodies [38].
Retrospective analyses have been conducted in cancer
patients based on observations in these preclinical
models to determine whether antibiotic premedication
could impact the outcomes of ICI treatment. A recent
study showed that malignancy patients receiving ICI had
adverse outcomes (objective remission rate [ORR],
progression‐free survival [PFS], and overall survival
[OS]) related to antibiotics administration [41].

Relationship between gut microbiota
composition and efficacy of
immunotherapy

ICI therapy

Anti‐programmed cell death protein 1 (PD1)/pro-
grammed cell death ligand 1 (PD‐L1) and anti‐CTLA‐4
monoclonal antibodies (mAbs) are currently the most
widely used ICI therapies. Despite bringing hope to
cancer patients who were defined as uncurable before,
current ICI therapies are limited by low initial response
rate and a long‐term loss of antitumor efficacy. Many
preclinical and clinical studies have suggested that
interindividual differences in the composition of the
commensal microbiota might account for the significant
heterogeneity in the success of ICI treatments. The
baseline stool samples collected from patients being
treated with mAbs were analyzed using shotgun DNA
sequencing, 16S rRNA sequencing, and metabolomics,
and studies found that decreased diversity or richness of
fecal bacterial composition was correlated with lower
response rate and worse patient survival [42]. In
addition to the diversity of the gut microbiota, further
studies have identified that the accumulation of specific
bacteria species or strains in the gut microbiota

ecosystem was also associated with higher therapeutic
efficacy of immunotherapies and enhanced antitumor
T cell immunity.

C57BL/6 mice harboring different commensal
microbes from Taconic Farms (TAC) and Jackson
Laboratory (JAX) were treated with anti‐PD1 mAb,
respectively, and JAX‐fed mice (relatively abundant in
Bifidobacterium) showed far higher response rate to the
treatment. This phenotype could be transferred to TAC‐
fed mice by cohousing or fecal transplant [43]. Matson
et al. identified that Bifidobacterium longum, Enterococ-
cus faecium, and Collinsella aerofaciens were more
prevalent in responding versus nonresponding metastatic
melanoma patients receiving anti‐PD‐1 blockade, and
FMT from responders to germ‐free (GF) mice bearing
melanoma could potently facilitate antitumor immune
responses and restore therapeutic efficacy of anti‐PD‐L1
blockade in mice [44], indicating that gut microbiota
composition was at least partially involved in the efficacy
of ICI therapies. Metastatic melanoma patients with high
Faecalibacterium abundance were prone to benefit from
anti‐PD‐1 and anti‐CTLA‐4 therapies with a significantly
prolonged PFS compared to those with the dominance of
Bacteroidales in the gut microbiota [45, 46]. In patients
with NSCLC and RCC, sequencing analysis of feces
showed that the prevalence of Akkermansia muciniphila
was associated with favored clinical responses to ICI
therapies [47]. Baseline stool samples of patients with
advanced‐stage GI cancer collected before and during
anti‐PD‐1/PD‐L1 treatment presented an elevation of the
Prevotella/Bacteroides ratio in patients with preferred
clinical outcomes. Besides, it was shown that a subset of
responders was significantly enriched in Prevotella,
Ruminococcaceae, and Lachnospiraceae genus [48]. In
addition, Combination of anti‐PD‐1‐based immuno-
therapy with traditional Chinese medicine Gegen
Qinlian decoction (GQD) eradicated colorectal cancer
in mice by remodeling the gut microbiota portraited by a
high abundance of Bacteroides acidifaciens and increas-
ing the level of CD8 T cells and IFN‐γ [49].

Chimeric antigen receptor T cells (CARTs) and
allogeneic hematopoietic cell transplantation
(allo‐HCT) therapy

ICI treatment has achieved great success in numerous
solid tumor types. However, for hematological malig-
nancies, CARTs targeting CD19 and allo‐HCT have been
demonstrated as prototype and innovation of T cell‐based
anticancer therapies, respectively [50]. A growing under-
standing of how gut microbiota composition affects allo‐
HCT and CART immunotherapy is emerging. A great
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diversity of commensal bacteria taxa with the dominance
of Eubacterium limosum was related to a lower risk of
progression and relapse after stem cell transplantation
[51], while abundance in Enterococcus induced by
administration of broad‐spectrum antibiotic was linked
with exacerbated graft‐versus‐host disease (GVHD) and
unfavorable OS [52]. Smith et al. observed that distinct
dominance of gut microbiota before CD19‐CART treat-
ment led to different outcomes in patients with B cell
malignancies. Oscillospiraceae, Lachnospiraceae, and
Ruminococcaceae were enriched in patients achieving a
complete response (CR), while the increased presenta-
tion of Peptostreptococcaceae was associated with resist-
ance to anti‐CD19 CAR‐T cells [53]. To corroborate the
result, a two‐center study was conducted by the same
team later, and researchers found that a higher
abundance of Ruminococcus, along with Bacteroides and
Faecalibacterium, were also correlated with higher
efficacy and no toxicity development in CART therapy
[54]. Notably, “favorable” gut microbiota identified in
CAR‐T therapy such as Ruminococcaceae, Faecalibacter-
ium, and Lachnospiraceae, were consistent with the
“beneficial” bacteria capable of promoting the efficacy of
ICI treatment. However, specific bacterial taxa of the
Bacteroides genus showed increased efficacy of CAR‐T
immunotherapy in contrast to its role of reducing
anticancer immunity in ICI immunotherapy (Table 1).

Relationship between gut microbiota
composition and immune‐related
toxicities

As a novel anticancer agent, immunotherapy can activate
the host immunity against cancer and shift the inherent
immunosuppression tone in TME. However, the en-
hanced systemic immune response not only exerts effects
on tumor tissues but also on normal tissues, causing
colitis, hepatitis, pneumonitis, and GVHD, collectively
known as immune‐related adverse events (irAEs) [55].
Searching for an intervention that concurrently improves
clinical effects and prevents adverse events of immuno-
therapy has long been a concerning question. Commen-
sal bacteria are pivotal in alleviating overstimulation of
the immune system, which induces immune tolerance by
potentiating induction of regulatory T cells (Tregs) at
mucosal barrier sites and producing immunomodulatory
metabolites into circulation [56]. Gut microbiota can
maintain host homeostasis in the gut lumen and the rest.
Manipulation of commensals might be the key to the
question. The intestinal Blautia genus was associated
with improved overall patient survival while preventing
the incidence of lethal GVHD in patients undergoing

allo‐HCT [57]. In a preclinical murine model, changes in
gut microbiota composition due to anti‐CTLA‐4 treat-
ment were linked to the severity of intestinal lesions, and
recolonization of antibiotics‐treated mice with Bacter-
oides cepacia and Bacteroides fragilis was observed to be
capable of uncoupling efficacy and toxicity of CTLA‐4
blockade [38]. Two prospective studies of patients with
metastatic melanoma reported that the overrepresenta-
tion of Bacteroidetes phylum in baseline stool samples of
patients was related to the resistance to the onset of
ipilimumab‐induced colitis [45, 58]. A previous study
focused on patients with advanced NSCLC showed that
the suppressive role of Lactobacillaceae, Raoultella, and
Akkermensia species in the development of irAEs was
observed during anti‐PD‐1/PD‐L1 treatment [59]. Inter-
estingly, although capable of attenuating immune‐related
toxicities, clinical outcomes of immunotherapies were
not improved by the Bacteroidetes phylum and Akker-
mensia species.

The beneficial mechanism mediated by
gut microbiota in cancer immunotherapy

The human microbiota produces a wide range of genes,
and the microbiota encodes peptides that mimic tumor
neoantigens [60]. In preclinical murine models, upon
stimulation of antimicrobial antigen immunity, bacterial
epitope‐specific T cells expand, enter circulation, and
transport into the TME, facilitating immune response at
distant sites by producing chemokines, expressing
CD40L or cross‐reactivity of tumor antigen‐specific T
cells [61]. A number of studies have demonstrated the
ability of gut microbes to stimulate systemic innate
immune responses via interacting with PRRs that
mediate anti‐inflammatory or pro‐immune effects [62].
Upon exposure to PAMP which present on microbial
surfaces, Antigen‐presenting cells (APCs) located at the
gut mucosa or elsewhere upregulate pro‐inflammatory
genes such as tumor necrosis factor‐α (TNF‐α), IL‐12,
and IFN in a PRR‐dependent manner, thereby promoting
Th1/Tc1 immune responses against cancer. Notably, a
recent study has proposed that specific gut bacterial
species may also promote antitumor immunity by
suppressing the expression of PD‐L2 and its binding
partner in T cells [63].

Inosine produced by a subset of intestinal bacteria
increases antitumor immunity through enhancing Th1
differentiation and effector function of naïve T cells
expressing A2AR [64]. It can also feed effector T cells that
infiltrate into TME depletion of glucose by cancer cells [65].
A positive correlation was found between anti‐PD‐1/PD‐L1
responses and bacteria that produce short‐chain fatty acids
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(SCFAs) like Eubacterium, Lactobacillus, and Streptococcus
[48]. Possible mechanisms of immunostimulatory action of
gut microbiota in CAR‐T infusion also relied on the
microbial metabolites (including bile acid metabolites [66],
tryptophan metabolites [67], and SCFAs [68]) and bacterial‐
derived membrane fractions (e.g., lipoteichoic acid and
LPS) which exert strong influences on T cells via host
receptors and other targeted molecules, so hypothetically
can modulate anticancer immunity in T‐cell based CAR‐T
therapy as well (Figure 3) [50].

APPLICATIONS OF GUT
MICROBIOTA: SERVING AS NEW
THERAPEUTIC TOOLS AND
BIOMARKERS FOR
IMMUNOTHERAPY

New therapeutic strategies to improve
cancer immunotherapy

Cancer patients commonly receive conventional thera-
pies like chemotherapies and radiotherapies before being
treated with immunotherapies, which could disrupt gut
commensals unfavorably. Thus, manipulating gut micro-
biota composition to a status of optimal biodiversity and
signature before immune‐related interventions might be
a new and effective therapeutic tool. Recent studies have
raised awareness of the importance of a population‐
specific approach to microbiota‐based combination
treatments due to the co‐diversification of the gut
microbiota with humans [69]. Therefore, interventions
will have to be adapted according to the age, lifestyle,
comorbidities, comedications, and genetic inheritance of
patients for an optimized personal therapy (Table 2).

Dietary intervention

As is known to all, “you are what you eat,” which means
long‐term dietary habits affect the composition and
activity of microbes residing in the human gut from the
scientific aspect. Notably, studies have also indicated that
the gut microbiota rapidly respond to dietary changes,
even when these alterations occur over a brief period
[70]. This underscores the potential of intervening cancer
patients' diet as a plausible strategy to suppress tumor
growth. Accumulating evidence have shown that patients
with a diet high in sugar and fat were correlated with
poor response to immunotherapy, while consumption of
sufficient dietary fibers and salt led to improved clinical
outcomes [71]. Microbial fermentation of dietary fibers
produces SCFAs like butyrate and propionate, which canT
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interact with the gut wall and assist in maintaining
intestinal immune homeostasis as the main metabolites
produced by the gut microbiota of long‐term responders
to ICI therapy [72]. High salt condition was associated
with significant tumor regression. It enhanced anticancer
immunity in tumor‐bearing mice, indicating that salt
intake might be a diet‐related factor to affect the efficacy
of immunotherapy [73]. Therefore, a diet high in fibers
and salt as well as low in fat and sugar can be
recommended for cancer patients receiving immuno-
therapy. A few studies have claimed that distinct diets
could result in predictable shifts in existing host bacterial
taxa [74]. Higher fiber intake was associated with
increased Provotella, and higher salt intake led to a
lower abundance of Bacteroides and Proteobacteria, while
upregulated Firmicutes in a mouse model [75]. Ketogenic
diet could upregulate the abundance of commensal
Eisenbergiella massiliensis which are strongly correlated
with the serum concentration of principle ketone body,
3‐hydroxybutyrate (3‐HB) and induce T‐cell based
antineoplastic effect in a 3‐HB dependent manner,
thereby promoting ICI efficacy and increase overall

survival rate in mice with colorectal cancer [76]. For
further development of dietary interventions, more
studies are needed to determine how dietary interven-
tions can modulate gut microbiota composition and
enhance anticancer immune response, as well as the
underlying mechanism.

Fecal microbiota transplantation (FMT)

By transplanting fecal material from healthy donors to
recipients, FMT directly modulates the gut microbiota
profiling, which can promote the recolonization of
bacteria that exhibit health‐enhancing properties, restore
microbial diversity in the gastrointestinal tract, and
improve clinical outcomes of immunotherapy [77]. In
preclinical models, tumor regression has been demon-
strated in mice receiving FMT from patients responding
to ICI treatment [78]. In a first‐in‐human clinical trial,
the feasibility and safety of FMT treatment in immuno-
therapy were confirmed with 3 out of 10 patients with
anti‐PD‐1‐refractory metastatic melanoma responding to

FIGURE 3 The mechanisms underlying the immunostimulatory involvement of gut microbiota in cancer immunotherapy. Anticancer
therapies such as chemotherapy, radiotherapy and immunotherapy can increase permeability of gut epithelial, translocation of bacteria
and dysbiosis. During cancer therapy, antibiotics are sometimes used to treat opportunistic infection, which can also lead to disruption of
gut microbiota. The mechanism of immunostimulation by gut microbiota includes ligation of PRR and PAMP, release of microbial
metabolites such as SCFAs, LPS and inosine, and cross‐reactivity of bacteria epitope‐specific T cells and tumor antigen‐specific T cells.
LPS, Lipopolysaccharides; MDSC, myeloid‐derived suppressor cells; PAMP, pathogen‐associated molecular patterns; PRR, pattern
recognition receptor; SCFAs, short‐chain fatty acids.
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anti‐PD‐1 blockade after FMT from previous responding
patients to nonresponding patients, and none of the 10
patients developed severe irAEs during FMT treatment
[79]. Another phase I clinical trial enlightened by the
first one also focused on the clinical benefit of FMT
together with anti–PD‐1 in metastatic melanoma patients
who failed immunotherapy, reporting that 2 out of 15
patients achieved partial response while one achieved
CR. Despite the fact that all patients in this clinical trial
experienced at least one irAE, the degree is minimal [80].
A recent multicenter phase I trial combining healthy
donor FMT with the PD‐1 inhibitors showed a more
promising result that 13 out of 20 patients with advanced
melanoma (previously untreated) responded to the
combined treatment including four CR, although 5 out
of 20 patients reported grade 3 irAEs during the
combination therapy. Safety of FMT as first‐line setting
was also ensured for no severe irAEs occurred when
FMT was conducted alone. However, it's noteworthy that
the similarity between the gut microbiome of donor and
recipient only gradually increased over time in respond-
ers [81].

Defined commensal strains

Besides immune modulation, convenience, and low
price, there might be safety risks of transferring chronic
diseases like obesity, pathogens, and carcinogenesis
during FMT treatment, which makes administering
defined commensal strains as exogenous probiotics a
preferred alternative for FMT. Developing specific
microbiota‐based combinatory treatment has been
shown to improve the overall response rate of immuno-
therapy. Integration of inosine supplementation with
checkpoint‐blockade therapy and adoptive T‐cell therapy
has led to delayed tumor growth and survival in mice
[65], and inosine‐producing microbes like Bifidobacter-
ium pseudolongum might represent a novel and effica-
cious way to deliver the molecule and enhance its
accumulation in the TME, which could be added to the
diets of cancer patients to improve the efficacy of ICI
treatment [82]. Tanoue et al., have identified a rare
commensal consortium isolated from healthy human
feces, consisting of 11 bacterial strains with 7 Bacteroi-
dales and 4 nonbacteroidales species, and supplementa-
tion with theses 11 strains could enhance both spontane-
ous and ICI‐mediated antitumour immunity via
induction of IFN‐γ‐producing CD8+ T cells in mice
intestine without causing colitis [83]. In addition to the
colonization of gut with defined commensal species of
remarkable clinical benefits in enhancing cancer treat-
ment outcomes, modulation of intestinal bacteria geneT
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circuits yields engineered bacteria, such as Escherichia
coli (E. coli), have recently been presented as innovative
anticancer agents by stimulating both innate and
adaptive immunity, either alone or as adjuvants when
combined with other modalities [84]. Programming
immunotherapeutic Escherichia coli loaded with anti‐
CD47 blocking nanobody could augment activation of
intratumoral T cells and effectively shrink tumor size in
multiple syngeneic murine tumor models, meanwhile
another preclinical study showed engineered E. coli
Nissle 1917 strain potentiated efficacy of PD‐L1 blockade
mediated by increasing L‐ arginine mediated T cells
production and activation [85, 86].

Prebiotics and probiotics

Prebiotics are nondigestible food ingredients that can
serve as nutrients for gut microbes. Studies have
investigated that selective enhancement of gut bacteria
can improve anticancer therapy outcomes. For example,
inulin can stimulate the growth of Faecalibacterium and
Bifidobacterium species which were associated with
improved efficacy of immunotherapy before [78]. Novel
classes of prebiotics have been discovered to potentiate
the antitumor effect of the anti‐PD‐1/anti‐PD‐L1 block-
ade in mouse models. Ginseng polysaccharides, a main
component of Panax ginseng, sensitized the tumor to ICI
therapy through increasing the microbial metabolites
valeric acid and reshaping gut microbial composition
from nonresponders towards that of responders in
combination with ICI treatment [87]. Diosgenin, a
natural steroidal saponin with similar activities to
prebiotics, promoted antitumor effects of PD‐1 mAb by
modulating intestinal microbiota with upregulation of
Clostridiales, Lactobacillus, and Sutterella, and down-
regulation of Bacteroides [88].

Probiotics, including the commonly found Lactobacil-
lus and Bifidobacterium species, are live microorganisms
that are generally acknowledged as a promoter of the
host's health in a positive manner [89]. It is reported that
cancer patients are prone to self‐administered probiotics
as adjuvant to the cancer immunotherapy. Preclinical and
clinical studies have reported that probiotic intervention,
including Lactobacillus casei BL23, Lactobacillus plantar-
um A, or combination of Bifidobacterium lactis Bl‐04 and
Lactobacillus acidophilus NCFM, demonstrated remark-
able antitumor immune effect and was capable of
restoring the imbalance gut microbial profile [90–92],
which confirmed its potential therapeutic benefits to fight
cancer. Furthermore, Sivan et al. found that treating
preclinical melanoma with PD‐L1‐specific antibodies
while oral gavage with Bifidobacterium could nearly

abolish tumor growth [43]. Another preclinical research
revealed that probiotic Enterococcus facilitated the efficacy
of checkpoint inhibitor immunotherapy by secreting
orthologs of the NlpC/p60 peptidoglycan hydrolase,
indicating that screening microbiota species genetically
coded with peptidoglycan remodeling activity may obtain
potential probiotic candidates capable of enhancing cancer
immunotherapy [93]. A recent study reported that oral
gavage of a frequently used probiotic Lactobacillus reuteri
in specific‐pathogen‐free mice challenged with melanoma
bolstered the ICI treatment efficacy via promoting the
production of probiotic‐released indole‐3‐aldehyde, and
such beneficial effect was further recapitulated in
melanoma patients [94]. However, there are still safety
concerns about over‐the‐counter probiotics use in patients
receiving ICI therapy for cancer. On the one hand,
probiotic supplements might not be effective if exogenous
bacteria colonize poorly in the host intestines and last only
a short period. On the other hand, an assessment of
commercially available probiotics in murine models of
melanoma and CRC showed defective antitumor response
to treatment with anti‐PD‐L1 and increased tumor
outgrowth [95, 96].

Novel biomarkers to predict host response
to immunotherapy

Previous studies have shown that different fingerprints
were detected between responders and nonresponders to
ICI therapies based on gut microbiota profiling [14],
indicating the potential of utilizing gut microbiota
composition and its metabolites to predict the clinical
outcomes of immunotherapy. Research have been
conducted on gut microbiota as a biomarker for
immunotherapy response in recent years, stratifying
responders versus nonresponders, as well as predicting
the incidence and severity of immune‐related toxicities in
a minimal invasive and easy way.

Relative enrichment of certain bacteria species (e.g.,
Akkermansia muciniphila [47], Bifidobacterium longum
[43], Bacteroides fragilis [38], and Ruminococcaceae
family [45]) was associated with favorable prognosis of
PD‐1/PDL‐1/CTLA‐4 inhibitors. Another relative abun-
dance of bacteria (e.g., Roseburia intestinalis and B.
thetaiotaomicron [97]) was reported negatively related to
immunotherapy responses. The genetic diversity of
bacteria in the gut might serve as an early predictor of
the effectiveness of anti‐CD19 CAR T‐cell therapy in
patients with large B cell lymphoma, and a high diversity
might favor better outcomes [98].

Further study has observed enhanced peptidoglycan
biosynthesis in patients who demonstrated a long‐term
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response to CAR‐T, while upregulated nonoxidative
branch of the pentose phosphate pathway was associated
with increased incidence of toxicities, indicating metabo-
lites from bacterial taxa might also serve as biomarkers
[50]. Therefore, establishing a multi‐parameter model
which not only relies on commensal microbial composi-
tion and its metabolites level but also takes variables like
tumor genomics, comorbidities, age, and germline
genetics into consideration might be the future tendency
to comprehensively predict whether patients are sensitive
to immunotherapies.

DISCUSSION

Previous studies have shed light on the relationship
between the gut, the immune system, the hypothalamic‐
pituitary‐adrenal (HPA) axis, and the autonomic nervous
system [99]. Consumption of certain food such as dietary
fibers will increase the production of short chain fatty
acids such as butyrate, which are generated by anaerobic
bacteria during fermentation. This will in turn influence
the production of neuropeptide such as neuropeptide Y
(NPY), and then significantly affect the suppression or
activation of certain immune cells [100]. The spleen, a
pivotal organ in the immune system, serves as a crucial
interface facilitating communication between the brain
and the immune system [101]. Use of antibiotic cocktail
(ABX) in cancer patients leads to a poor response to
T‐cell based immunotherapies via affecting the diversity
as well as composition of gut microbiota, but the
underlying mechanism remains unclear. Strong correla-
tions were recently observed after a 14‐day ABX
treatment between gut microbiota components, spleen
weight, splenic cell components and yield of certain
compounds in the spleen, brain and plasma, which infers
that depletion of microbiota following antibiotics appli-
cation may affect host immunity through altering the
spleen and brain function [102]. More investigations
need to be conducted on how gut microbiota influence
the immune system through the gut‐brain axis or
gut‐microbiota‐spleen‐brain axis.

The vagus nerve, as a major component of the
parasympathetic nervous system with dense innervation
of the gut, is capable of regulating microbiota‐gut‐brain
axis in a bidirectional way [103]. After sensing and
transferring the microbiota metabolites information
through its afferents to the brain, the vagus nerve fibers
subsequently initiate the activation of anti‐inflammatory
responses, reduce gut permeability, and thus regulate
microbiota composition [104]. Previous studies have also
reported that activation of the vagus nerve, namely vagus
nerve stimulation (VNS), has potent anti‐inflammatory

properties and antitumor effect via triggering antitumor
immune cells or upregulating the cholinergic anti‐
inflammatory pathway, inferring its potential to establish
a favorable intestinal microenvironment for cancer
immunotherapy while reducing the occurrence and
severity of colitogenic side effects [105–107]. These
findings highlight the importance of VNS in cancer
pathology and immunotherapy, suggesting that more
investigation should be conducted in the future to
unravel the clinical efficacy of a combinatory therapy
of VNS and immunotherapy, which may serve as a
promising anticancer treatment regimen with the ad-
vantages of prescribing less dose of immunotherapeutic
drugs to patients, reducing their pain, and suppressing
tumor growth effectively in a synergistic way.

While there have been significant research on how
the gut dysbiosis can influence the initiation and
development of tumors, it is equally important to
understand whether intestinal or extraintestinal malig-
nancies promote compositional shifts of the commensal
microbiota to their own benefit. During the onset of
tumorigenesis, a sustained gut dysbiosis with the
hallmark of the Clostridium species were recently
observed in both human and mice harbored with various
cancer types, accompanied with stress ileopathy due to
decrease in parasympathetic signaling in the ileal
mucosa. Besides, the inhibition of Clostridium species
by antibiotics vancomycin could overtly prevent cancer‐
induced ileopathy, restore intestinal homeostasis and
control tumor progression [108]. In addition, whatever
anticancer regimens patients received during treatment,
such as chemotherapy, radiation therapy, surgery and
even immunotherapy itself, could drive a convert on the
diversity and profile of microbiota [109], which may in
turn influence the efficacy of anticancer therapies. This
bidirectional relationship between tumors and the gut
microbiota is an intriguing and complex research field,
and a broader comprehension on this filed will contrib-
ute valuable insights into cancer biology, anticancer
treatment strategies and side effect management.

As a modern form of immunotherapy, the combina-
tion of cancer vaccines and standard therapies can also
enhance antitumor immune responses. However, the
unsatisfactory therapeutic efficacy of cancer vaccines in
phase III clinical trials has greatly inhibited its develop-
ment and clinical application. One possible reason is the
phenomenon of “immunosenescence” happening in the
elderly, who were the majority of cancer patients,
suggesting that finding a potent adjuvant in the
formulation of cancer vaccines to help restore and
stimulate the host immune system is an important tool
to improve clinical efficacy. Despite the lack of precise
data on cancer vaccines, there has been an apparent
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correlation between microbiota and vaccination effec-
tiveness against several pathogens, indicating that
microbiota might serve as a natural adjuvant to enhance
the action of cancer vaccines by providing inflammatory
cytokines (IL‐12, IL‐1β, and IFN‐γ) and PAMPs
to activate the immune system during vaccination
[110, 111]. A study in the murine model has taken one
step forward by using microbiota as a real cancer vaccine
adjuvant and reported enhanced immune response
against tumors [112]. Oncolytic virus, as a new class of
immunotherapy agents, has played a pivotal role in
cancer treatment by directly killing tumor cells and
inducing immunity when used as gene vectors carrying
specific checkpoint antibodies. Preclinical studies have
shown a plausible relationship between intestinal flora

and efficacy of oncolytic virus‐mediated immunotherapy.
Yi et al., suggested that gut microbiota may synergisti-
cally increase the antitumoral activity of oncolytic virus
via the common IFN‐mediated pathway in colorectal
cancer [113]. What's more, the antitumor effect of
oncolytic adenovirus Ad5D24‐CpG (Ad‐CpG) was
recently found to at least partially attribute to gut
microbiota, and Bifidobacterium supplementation could
hamper tumor progression and intratumoral Treg
infiltration in melanoma mice receiving Ad‐CpG treat-
ment [114]. Sarcomas are rare and heterogeneous
mesenchymal neoplasms derived from the bone or soft
tissues associated with several challenges due to their
less immunogenic portrait than other tumor types.
Although Immunotherapy has revolutionized cancer

FIGURE 4 Influence of beneficial gut microbiota in diverse cancer types during immunotherapy. Gut microbiota has contrast role in
cancer initiation and development, which not only affects gastrointestinal (GI) cancer locally, but also impacts cancer developed in distal
organs including nonsmall‐cell lung cancer, hepatocellular carcinoma, hematologic malignancies, renal cell cancer, and melanoma.
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treatment, immuno‐oncology agents have not yet been
approved for patients with sarcomas attributed to the
limitations of low tumor mutation burden and the
immunosuppressive TME [115]. However, several
research have indicated that immunotherapy may repre-
sent an efficient therapeutic strategy for this group of
diseases, including cancer vaccines, immune checkpoint
blockade and adoptive cell transfer [116]. Future studies
investigating novel immunotherapy strategies in rare
cancer types like sarcomas should incorporate the
analysis and intervention of commensal bacteria, which
will allow for a better understanding of the gut
microbiota involved in sensitivity and treatment resist-
ance to immune‐oncology agents.

Regarding the preliminary research and clinical
intervention of gut microbiota in immunotherapy, there
are still some issues to be resolved. For example, current
tools to explore the effect of gut microbiota mainly
include the antibiotics treatment models or germ‐free
(GF) mouse models, among which the GF mice were
widely acknowledged as the gold standard due to their
complete microbial depletion and ability to be exclu-
sively colonized with defined microbes [117]. However,
concerns have been raised regarding the impaired
development of the immune system in GF mice due to
a lack of early immune education, which potentially
impacts their applicability in microbiota studies in
terms of immune‐related conditions, including cancer
immunotherapy [118]. In addition, GF mouse models
are expensive to acquire and maintain, thus antibiotics
treatment may present as a cost‐effective and easily
accessible alternative to germ‐free models with less
limitation. In addition, as for microbiota modulation
approaches, the conventional screening measure is
unable to detect side effects of FMT [119], necessitating
meticulous collection of stools from healthy donors to
prevent potential infection caused by transfer of
pathogenic bacteria during FMT. Using defined bacte-
rium as daily medication might face technological
obstacles like finding optimal culture conditions and
encapsulation which allows large‐scale manufacture in
vivo and preserved biological activities before it takes
effect in our gut.

Microbiota effects are not likely dependent on one
species and might be caused by diverse microbiota
compositions, and future research should focus on
identifying a group of microbe consortium with great
benefit to optimizing cancer immunotherapy. Compre-
hensive mapping of the biological effects and modes of
action of prebiotics and probiotics for each cancer type
still has not been well‐elucidated, which inhibits their
application in individual precision medicine (Figure 4).
Therefore, the development of cheap, rapid and accurate

testing techniques on patient serum and stool samples,
which combines meta‐transcriptomic sequencing, meta-
genomic or metabolomic analysis, will help elucidate the
underlying molecular mechanism involved in different
therapeutic responses and propose novel therapeutic
targets for cancer patients with microbiota‐related
immunotherapy resistance.

CONCLUSION

Gut microbiota serves as pivotal intermediate between
the gut, brain, spleen and immune system, maintaining
homeostasis of the organic whole. Unfavored intestinal
flora leads to intestinal or extraintestinal malignancies,
hampers anticancer immunity and participates in
shaping the immunosuppressive TME. Accumulating
studies have observed that the diversity and composi-
tion of host gut microbiota were associated with the
efficacy of immunotherapy as well as the incidence of
irAEs, which shed lights on utilizing microbiota as
novel biomarkers to predict patients' response to
immunotherapy and targeting microbiota as potential
anticancer agents alone or as adjuvant. This highlights
the importance of investigating precise and safe
approaches which could alter microbiota profile in
cancer patients towards a more diverse composition in
favor of “beneficial bacteria.” Meanwhile, more studies
are needed to comprehensively mapping the blueprints
of beneficial commensal strains across various cancer
types and tracking the dynamic change of gut micro-
biota throughout the treatment course, and focus on the
complex role of gut microbiota in new form of
immunotherapy in the future.
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