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Abstract

The increasing application of meta‐omics approaches to investigate the

structure, function, and intercellular interactions of microbial communities

has led to a surge in available data. However, this abundance of human and

environmental microbiome data has exposed new scalability challenges for

existing bioinformatics tools. In response, we introduce Wekemo Bioincloud—a

specialized platform for ‐omics studies. This platform offers a comprehensive

analysis solution, specifically designed to alleviate the challenges of tool

selection for users in the face of expanding data sets. As of now, Wekemo

Bioincloud has been regularly equipped with 22 workflows and 65 visualization

tools, establishing itself as a user‐friendly and widely embraced platform for

studying diverse data sets. Additionally, the platform enables the online

modification of vector outputs, and the registration‐independent personalized
dashboard system ensures privacy and traceability. Wekemo Bioincloud is freely

available at https://www.bioincloud.tech/.
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Highlights

• Wekemo Bioincloud offers not just workflows for diverse meta‐omics data

analysis but also a rich array of tools for effective data visualization.

• Enables modifying vector outputs online, achieving publication‐ready
figures.

• Displays tools' popularity/usage trends, enhancing the platform's flexibility

and user‐friendly experience.

INTRODUCTION

Recent development of meta‐omics approaches, span-
ning metagenomics, metatranscriptomics, metaproteo-
mics, metaviromics, metabolomics, and physicochemical
data, mark a transformative era in the comprehensive

understanding of intricate biological systems [1–3].
The resulting multi‐omics data sets, encompassing the
richness of microbial communities, present a profound
need for robust bioinformatics tools that are both robust
and user‐friendly [4], to unveil the profile of microbial
communities and elucidate the nuanced interactions
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between environmental conditions and microbiome.
Advancements in analytic platforms tailored for high‐
throughput omics data further underscore the evolution
in bioinformatics capabilities. Noteworthy examples
include the application of QIIME 2 [5] and Easy-
Amplicon [6] for amplicon data analyses, Trimmomatic
[7] or fastp [8] for stringent quality control, Kraken 2 [9]
for precise taxonomic classification, HUMAnN3 pipeline
[10] for comprehensive functional profiling, MultiPrime
[11] for efficient minimal primer design, imageGP [12]
for data visualization, and more, which collectively
contribute to a more profound exploration of diverse
omics data sets.

Conceptually, the standard omics data analysis work-
flow contains raw data processing, taxonomy annotation,
functional profiling, and statistical analysis. Several
workflows have been developed to streamline these
processes [4, 13–15]. However, in diverse research contexts,
personalized analysis approaches are crucial, emphasizing
the necessity for customized analyses. Nowadays, various
tools, pipelines, and online web services have been
developed for ‐omics analyses. For instance, QIIME 2 [5]
is a software primarily designed for amplicon sequencing
analyses, which has expanded its capabilities to include
metagenomic analyses. EasyAmplicon [6] is a pipeline
specialized in amplicon sequencing analyses on the local
server. MicrobiomeAnalyst [16] operates as a web server,
mainly for amplicon sequencing analyses, metagenomic
analyses, and metabolomic profiling. Notame [17] presents a
dedicated workflow for metabolomic profiling. MetaProteo-
meAnalyzer [18] is a workflow for metaproteomic data
analyses. Meanwhile, numerous innovative approaches
have emerged for identifying reliable and stable biomarkers
from ‐omics data [19–22], and several research have
diligently summarized and compared various R packages
or software tools designed for ‐omics data [23–31]. However,
the majority of these tools are oriented toward one or two
specific types of ‐omics data analyses. Currently, integrative
analysis across multiple ‐omics has become crucial for
addressing scientific questions [1, 2]. Nevertheless, the
diversity and complexity of analytical approaches mean
that researchers not only need to install various tools or
R packages for data analysis but also invest significant time
in adapting to different tools or platforms. This highlights a
considerable gap in the scientific community, emphasizing
the need for an easily accessible web service specifically
designed for the analysis and visualization of meta‐omics
data [32].

Here, we present Wekemo Bioincloud, tailored for
specific ‐omics studies, offering a comprehensive analysis
solution that addresses the challenge of tool selection for
users. The Wekemo Bioinclud platform securely stores
users' raw sequencing data in the cloud and performs

preprocessing tasks for various analysis tools in advance.
Comprising two key modules, workflows and tools,
the Wekemo Bioinclud platform satisfies a spectrum of
requirements. Notably, this platform empowers users to
oversee critical steps with dependencies in the workflow,
facilitating systematic exploration of data and unveiling
biological significance. This platform is openly accessible
at https://www.bioincloud.tech/. For an in‐depth under-
standing of the platform, its usage, and result interpreta-
tion, comprehensive details can be found on the website.

RESULT

Overview of Wekemo Bioincloud

The Wekemo Bioincloud comprises two main components:
the workflows and the tools. In the workflow module, users
can analyze omics data step by step, generating reports that
detail the software used and their respective parameters for
each analysis (Figure 1). The tool module allows users to
easily showcase their data, referencing our demo files. The
platform is designed to be as convenient as possible for
researchers to access analyses, which can modify all groups
with one click in all analyses, and also run all analyses with
one click. Notably, we offer more than just scalable vector
graphics (SVG) editors for refining output images; users can
also set up email reminders for each step, saving them
valuable time. Additionally, we provide instructional videos
covering tool usage, various workflows, and result analyses,
enhancing user comprehension of their data. Our
registration‐independent personalized dashboard system
ensures privacy, traceability, and collaboration. There are
two ways for researchers to use our platform. First, they
have the option to analyze their data by providing tables
through our tool module, referring to our online demo
table. Alternatively, they can choose to submit their raw
data to us. In return, we furnish them with standard
analysis tables, then users have the flexibility to conduct
personalized analyses either through our workflows or by
using our tools online. All raw data and result reports for
workflow analyses will be retained for 2 years, offering
ample time for users to mine the data in depth, while the
data used for tools will be deleted every day.

After a thorough examination of all publications
referencing Wekemo Bioincloud on Google Scholar until
December 6, 2023, we observed that 157 publications
have cited our platform. Following the removal of
17 publications due to unknown or repeated entries, a
total of 140 distinct publications were identified. Notably,
42.14% of these publications opted for our workflows
module, while the remaining 57.86% chose the tools
module for visualizing their results. Common techniques
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employed for visualization include correlation tests,
orthogonal partial least‐squares discriminant analysis
(OPLS‐DA), principal coordinate analysis (PCoA), and
linear discriminant analysis effect size (LEfSe) analysis
(see Table S1).

Cloud workflows for meta‐omics data

The workflows module has currently been updated with
22 data analysis workflows, encompassing one‐step

analyses of various types of data, including metagenome,
metatranscriptome, metaproteome, metavirome, metabo-
lome, genome, and physicochemical data (Figure 1). Each
workflow comes with a comprehensive demo report,
example processes, and interpretation of results, facilitat-
ing a quick start for new users. For routine ‐omics
analysis, users only need to prepare raw sequencing data
and metadata information by referring to our demo
pipeline. Faced with plenty of meta‐omics analysis
software, our workflows also include various software
options. Users can easily choose different analysis

FIGURE 1 The framework of 22 analysis workflows for Wekemo Bioincloud. The platform now provides diverse workflows for
meta‐omics data and accommodates both standardized and personalized analyses for various research. CDS, coding sequences;
mRNA, messenger RNA; rRNA, ribosomal RNA; TMT, tandem mass tag.
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algorithms/software based on the specific characteristics
of their data, and all processing methods will be
showcased in the output report.

Furthermore, we also provide some flexible choices
for users to gain their personalized analysis. For example,
the metagenomic pipeline can categorize the enterotypes
of microbiome samples [33], and predict the prophage or
secreted proteins of metagenomic binning. For profiling
the transcriptional activity of individual cells, the 10×
single‐cell transcriptome workflow empowers CellRan-
ger (http://10xgenomics.com) to handle output results,
incorporating processes such as alignment, quantifica-
tion, clustering, and gene expression analysis. In addi-
tion, we have integrated different technologies for
analyzing bacterial and fungal genomes using only
Illumina short‐read sequencing, or Illumina short‐read
sequencing with PacBio long‐read sequencing, facilitat-
ing the systematic exploration of data and unveiling
biological significance.

Graphical tools for different purposes

To facilitate the intuitive presentation of scientific
discoveries, the Bioincloud platform offers a diverse
array of tools for visualizing, analyzing, and comparing
the ‐omics data (Figure 2). Currently, it has launched
65 subfunctions, covering the analyses of (1) contribution,
richness, composition of features or genes, (2) group
comparison, (3) differences in data structure, (4) statistical
analyses, (5) functional or metabolic pathways, (6)
differentially expressed genes, (7) phylogenetic relation-
ship, (8) correlation tests, (9) visualization pipelines, and
(10) others. All subfunctions with popularity and difficulty
scores help users gauge the usage frequency and
complexity of each tool. The grouped cluster heatmap,
LEfSe plots, and grouped percentage stacked bar plots
are currently the three most popular tools, with usage
counts reaching 36,098, 34,261, and 33,341, respectively,
by December 10, 2023.

FIGURE 2 Example outputs generated by Wekemo Bioincloud Tools. The tools now contain 65 subfunctions, serving various purposes,
including (1) the presentation of contribution, richness, composition of features or genes; (2) group comparison; (3) analysis of differences in
data structure; (4) statistical analyses, such as analysis of variance tests, Kruskal–Wallis tests, and so forth; (5) enrichment of functional or
metabolic pathways; (6) identification of differentially expressed genes; (7) construction of phylogenetic relationship; (8) correlation tests;
(9) visualization pipelines, such as amplicon sequencing pipeline, metagenome taxonomy annotation pipeline, and so forth; (10) others,
such as primer design, and so forth.
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The tools module covers the majority of daily needs
for ‐omics researchers through its 65 visualization and
analysis functions, involving scatter plots, bar plots,
bubble plots, violin plots, network plots, ternary plots,
volcano plots, petal plots, heatmaps, pathway dia-
grams, and more (Figure 2). Additionally, basic
significance tests such as analysis of variance (ANO-
VA), Kruskal–Wallis, and Dunn tests are available,
along with common molecular tools like 16S ribosomal
RNA (rRNA) gene blast and primer design. Moreover,
it provides features such as the conversion of SVG to
various formats, including PDF, JPG, PNG, and others.
All detailed explanations and demo data sets are
available on the website to address any potential user
misunderstandings.

Case 1: Metagenomic data analysis
workflows

The platform offers three workflows for analyzing
metagenomic data, the reference‐based workflow, the
de novo workflow, and the binning workflow (Figure 3).
All raw reads are processed using KneadData (https://
github.com/biobakery/kneaddata) to obtain clean reads,
with Trimmomatic [7] used for the trimming of adapter
sequences and low‐quality reads, and Bowtie employed
for the removal of host genome contamination. Follow-
ing this, all clean reads undergo further processing for
various purposes.

Notably, we leverage 12 commonly used bioinformatics
databases in metagenomic analyses to predict the functions.

FIGURE 3 Metagenomic data analyses using Wekemo Bioincloud platform. The clean data could be analyzed with three different
workflows, the reference‐based, the de novo, and the binning. The main software and visualization during assembly, binning, taxonomic
analyses, and functional analyses were presented, making it suitable for various purposes or scenarios. The functional analyses include
12 diversity databases. ARDB, Antibiotic Resistance Genes Database; BacMet, Antibacterial Biocide and Metal Resistance Genes;
CARD, Comprehensive Antibiotic Resistance Database; CAZy, Carbohydrate‐Active EnZymes; COGs, Clusters of Orthologous Groups of
proteins; EC, Enzyme Commission; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MetaCyc, Metabolic Pathway;
MGE, Mobile Genetic Element; QS, Quorum Sensing; VFDB, Virulence Factors Database.
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• ARDB [34]: Antibiotic Resistance Genes Database is
used to track antibiotic resistance genes.

• BacMet [35]: Antibacterial Biocide and Metal Resist-
ance Genes Database is used to confer the resistance to
metals or antibacterial biocides.

• CAZy [36]: Carbohydrate‐Active EnZyme is used to
describe enzyme families responsible for cleaving or
building complex carbohydrates.

• CARD [37]: Comprehensive Antibiotic Resistance
Database is employed to identify antibiotic resistance
and virulence factors.

• COGs [38]: Clusters of Orthologous Groups of
proteins are attempted on a phylogenetic classification
of the proteins.

• EC [39]: Enzyme Commission, the numbers repre-
sent enzymes and enzyme genes. Evolutionary gene
genealogy.

• GO [40]: Gene Ontology, annotations report connec-
tions between gene products and the biological types.

• KEGG [41]: Kyoto Encyclopedia of Genes and
Genomes is utilized to identify functions within the
biological system.

• MGE [42]: Mobile Genetic Elements is used to carry
various kinds of genes endowing their hosts with
resistance to antibiotics and/or metals, pathogenicity,
symbiosis, and metabolism of new substrates.

• MetaCyc [43]: It contains pathways involved in both
primary and secondary metabolism.

• QSDB [44]: Quorum Sensing Database, a phenomenon
in which the accumulation of signaling molecules
allows a single cell to perceive the number of bacteria,
enabling coordinated responses and behaviors among
bacterial cells.

• VFDB [45]: Virulence Factors Database is accessed to
get bacterial virulence factors.

The reference‐based workflow involves mapping raw
reads to different databases, including gene, nucleotide,
or protein sequences. In this approach, Kraken [9] is
utilized for taxonomic analyses with clean reads, and
Bracken [46] is employed for estimating the species‐ or
genus‐level abundance. To present the annotation or
composition of species, bar plots, heatmaps, and Venn
plots can be used. Comparisons between groups or
samples can be demonstrated using ANOVA [47],
DESeq2 [48], Kruskal–Wallis [49], and LEfSe [50]. The
diversity of groups can be visualized through Bray–Curtis
nonmetric multidimensional scaling, Bray–Curtis PCoA,
and α‐diversity analyses. Correlations between groups or
different factors can be explored using heatmaps, net-
works, and redundancy analysis/canonical correspon-
dence analysis. Furthermore, clean reads are assigned to
microbial metabolic pathways and functions using

HUMAnN and the UniRef90 diamond annotated full
reference database. CARD, COG, KEGG, MetaCyc, GO,
EC, and CAZy are employed for function analyses. Then,
the annotation or composition, comparison, or correlation
of functional analyses can be shown like taxonomic
analyses. In addition, using DiTing [51] enables the
analysis of elemental cycles (carbon, nitrogen, phospho-
rus, sulfur) and the creation of cycle pathway diagrams.
Besides, users can also select differential genes, comparing
their differences or functional pathways.

The de novo workflow revolves around generating
assembled contigs without relying on existing reference
sequences, which allows for the discovery of more poorly
described taxonomic groups. In this process, the classifi-
cation and analyses of taxonomy follow a similar
approach to the reference‐based workflow, which was
mentioned earlier. However, the function analyses are
based on the assembled contigs, and assembly is
conducted using MEGAHIT [52], followed by gene
prediction using Prodigal [53]. The CARD, COG, KEGG,
GO, CAZy, MEG, ARDB, BacMet, and VFDB databases
are used for functional annotation. Gene counting, which
refers to the number of genes within a particular
functional category, can also be calculated.

The binning workflow takes advantage of multiple
features, such as the co‐abundance and coverage of
contigs across samples, as well as the grouping of
contigs based on similar Kmer frequencies and GC
content. In this pipeline, the MEGAHIT [52] is applied
to assemble clean reads and yields contigs. Then,
MetaBAT [54] is employed to bin the contigs, RefineM
[55] is used to eliminate contigs for removing the high
contamination contigs, CheckM [56] is utilized to
evaluate the completion and contamination of each
bin, and dRep [57] is used to obtain a nonredundant
bin. Then, the analyses and visualization for composi-
tion and function of bins can be shown as described
in reference‐based workflow. The CAZy, COG, GO,
KEGG, VFDB, MGE, and CARD databases are used for
functional annotation. In addition, the metagenomic
assembled genes of bins can be created to display the
information about chromosome orientation GC content
or GC skew of different contigs.

Case 2: Metabolomics data analysis
workflow

Metabolomics can be broadly categorized into nontar-
geted and targeted metabolomics. Here, we offer three
workflows, the nontargeted workflow, the targeted
workflow, and the high‐throughput targeted workflow
(Figure 4). Nontargeted metabolomics, characterized by
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its unbiased approach, facilitates a comprehensive
analysis of the metabolites derived from the organisms,
helping us to find some novel biomarkers. Targeted
metabolomics employs standards, providing the absolute
quantification of targeted metabolites, and it is reproduc-
ible. The high‐throughput targeted metabolomics allows
the rapid and efficient analysis of a large number of
metabolites in a sample, contributing to a more thorough
understanding of the targeted metabolic profile. How-
ever, only targeted metabolomics can achieve absolute
quantification of metabolites, the nontargeted and the
high‐throughput targeted metabolomics are generally
considered quantitative rather than absolute. The data
analyses of the three different methods to gain metabo-
lomics are mostly similar, containing compound

detection, data preprocessing, statistical analyses, feature
selection, and functional analyses.

MetaboAnalystR [26] is used to perform the non-
targeted and targeted metabolomics data for potential
detection of metabolite compounds in our platform.

• For data preprocessing, we implement quality assess-
ment and quality control to detect the outliers, and to
remove metabolites or samples beyond threefold stan-
dard error. Then, users have the option to decide
whether to perform data normalization, eliminating
potential systematic biases during sample collection or
metabolite detection.

• After that, all metabolites are compared with the
KEGG database br08001 [41] to determine the

FIGURE 4 Metabolomic data analyses using the Wekemo Bioincloud platform. After employing three ways (nontargeted screening,
targeted screening with high throughput and targeted screening) for compound detection, data preprocessing, statistical analyses, feature
selection, and functional analyses are implemented in three workflows. Nontargeted screening provides the highest metabolite coverage,
whereas targeted screening yields the lowest coverage. OPLS‐DA, orthogonal partial least‐squares discriminant analysis; PLS‐DA, partial
least‐squares discriminant analysis.

WEKEMO BIOINCLOUD | 7 of 12



percentage content of each biological role. Standard
statistical analyses, including compound summaries
and the identification of structural differences, are
then conducted.

• For feature selection, we offer partial least‐squares
discriminant analysis (PLS‐DA) [58] or OPLS‐DA [59]
to underlying metabolite patterns discriminating
between sample groups. Then, the univariate analysis
and machine learning techniques, such as random
forest and support vector machine, are also employed
for the selection of differential metabolites.

• For functional analyses, we offer the correlation
analyses, over‐representation analysis (ORA) of
pathways [60], topology analysis of pathways, and
metabolic pathway maps, for providing intuitive
insights into the relationships, functional patterns,
and topological structure of metabolites within
pathways.

Additionally, we apply maSigPro [61] package to
enhance the analysis of metabolism time‐series data for
nontargeted workflow and targeted workflow. This is
achieved by implementing a generalized linear model,
allowing users to identify significant regression rela-
tionships between various elements (such as genes,
metabolites, or features) and temporal factors (like
time, time squared, or specified groups). As part of our
efforts, we have constructed a comprehensive high‐
throughput targeted metabolism database, with more
than 2500 plant metabolites and approximately 1800
animal metabolites.

DISCUSSION

Wekemo Bioincloud platform offers a robust and user‐
friendly service, contributing to global collaborative
initiatives in the field of multi‐omics research. In
comparison to existing online servers for ‐omics data
analyses, such as MicrobiomeAnalyst [16], which
focused mainly on metagenomic analyses, MetaboA-
nalystR [26] was specifically tailored for metabolomic
analyses, and GeNets [62] was dedicated to genomic
analyses. Our platform stands out by providing 22
workflows (Figure 1), encompassing the analysis of
amplicon sequencing data, metagenomic data, meta-
transcriptomic data, metaviromic data, metaproteomic
data, genomic data, and physicochemical data. This
extensive coverage facilitates the integrated analyses of
multiple ‐omics data types, offering researchers a
comprehensive and user‐friendly solution.

sMeanwhile, Wekemo Bioincloud platform also
provides some personalized analyses tailored to

researchers, aligning with their diverse research scopes.
For instance, we provide comprehensive bioinformatics
databases (ARDB, BacMet, CAZy, CARD, COGs, EC, GO,
KEGG, MGE, MetaCyc, QS, VFDB) for in‐depth func-
tional analyses of metagenomic data (Figure 3). The
platform supports comparison of enterotypes in different
groups, and the prediction secreted of proteins or
prophage in samples (Figure 1). To our knowledge,
while Majorbio Cloud is also a bioinformatic platform for
multi‐omics analyses [13], our platform additionally
offers 65 tools (Figure 2) and online SVG editors,
empowering researchers to freely adjust their plots for
publication.

In the future, we intend to integrate EasyMicrobiome
[23] and EasyMetagenome [29] pipelines in our platform,
and constantly update the platform within half a year.
Additionally, we will enhance the platform with English
video tutorials. While the website is currently accessible
through Google Translate, our future plans include
updating the English version to enhance accessibility
for international researchers.

CONCLUSION

In summary, the Wekemo Bioincloud platform
emerges as a valuable solution to the escalating
challenges presented by the growing volume of meta‐
omics data in microbial community studies. This
specialized platform encompasses 22 workflows and
65 graphical tools, allowing for the modification of
vector outputs. By addressing scalability issues
inherent in existing bioinformatics tools, Wekemo
Bioincloud enhances the platform's flexibility and
user‐friendly experience.

METHODS

The Wekemo Bioincloud is designed as a web applica-
tion, employing Javascript, HTML, Vue, and Bootstrap
for front‐end development. For back‐end data preproces-
sing and analysis, it incorporates various widely used ‐
omics analysis software/tools. The steps include, but are
not limited to, quality control, removal of host contami-
nation, filtering rRNA reads and chimeras, addressing
redundancy, binning or mapping, splicing or assembling,
species or gene annotation, quantification of species,
genes, metabolites, proteins, and functional prediction or
annotation, as well as the analysis of diversity, differ-
ences, correlations, and phylogeny.

All detailed information on all software/tools for
each workflow is available on our website. Here, we
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briefly outline the steps of metagenome workflow
(reference‐based). In summary, Trimmomatic [7] is
employed for quality control, read filtering, and base
correction for FASTQ data. The remaining reads were
aligned to the host genome reference by Bowtie [63] to
remove host DNA contamination. Kraken [9] is
utilized to sequence abundance, MetaPhlAn and
mOTUs3 for taxonomic abundance [64], and HU-
MAnN [10] is employed to identify microbial func-
tions. The output file with .qzv file can be viewed
using QIIME 2 [5], and most statistical analyses and
plots are generated based on R scripts.
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SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

Table S1: Overview of publications citing Wekemo
Bioincloud on Google Scholar until December 6, 2023.
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