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ABSTRACT
DNA methylation (DNAm) plays a crucial role in a number of complex diseases. However, the 
reliability of DNAm levels measured using Illumina arrays varies across different probes. Previous 
research primarily assessed probe reliability by comparing duplicate samples between the 450k- 
450k or 450k-EPIC platforms, with limited investigations on Illumina EPIC v1.0 arrays. We con-
ducted a comprehensive assessment of the EPIC v1.0 array probe reliability using 69 blood DNA 
samples, each measured twice, generated by the Alzheimer’s Disease Neuroimaging Initiative 
study. We observed higher reliability in probes with average methylation beta values of 0.2 to 0.8, 
and lower reliability in type I probes or those within the promoter and CpG island regions. 
Importantly, we found that probe reliability has significant implications in the analyses of 
Epigenome-wide Association Studies (EWAS). Higher reliability is associated with more consistent 
effect sizes in different studies, the identification of differentially methylated regions (DMRs) and 
methylation quantitative trait locus (mQTLs), and significant correlations with downstream gene 
expression. Moreover, blood DNAm measurements obtained from probes with higher reliability 
are more likely to show concordance with brain DNAm measurements. Our findings, which 
provide crucial reliability information for probes on the EPIC v1.0 array, will serve as a valuable 
resource for future DNAm studies.
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Introduction

DNA methylation (DNAm) is a widely studied 
epigenetic mechanism characterized by the addi-
tion or removal of a methyl group at the 5th posi-
tion of cytosine [1]. Alterations in DNAm levels 
have been implicated in many diseases, such as 
Alzheimer’s disease [2–6]. Methylated DNA is 
relatively stable and can be easily detected; thus, 
it is a viable source of biomarkers [7]. Although 
whole-genome bisulphite sequencing and long- 
read platforms are still too costly for large-scale 
epidemiological studies, array-based technologies 
offer a cost-effective and comprehensive approach 
to measure DNAm profiles on a genome-wide 
scale. The Illumina Infinium Human Methylation 
450 BeadChip and its updated version, the 
Infinium MethylationEPIC version 1.0 BeadChip, 
provide probes that target over 485,000 and 

850,000 CpG sites per sample, respectively [8,9]. 
Most recently, the newly developed Infinium 
MethylationEPIC version 2.0 contains more than 
900,000 CpG probes covering the human genome.

Several studies examined the reliability (i.e., 
reproducibility) of DNAm levels from the same 
DNA samples measured twice using Illumina 
arrays, and found that probe reliability varies 
across different probes [10–15]. However, most 
previous studies have compared duplicate samples 
between the 450k-450k or 450k-EPIC platforms, 
and there is a lack of larger studies on EPIC-EPIC 
comparisons (Supplementary Table S1).

To address this critical gap and assess the reliability 
of blood DNAm levels measured using EPIC arrays, 
we conducted an analysis of 69 blood DNA samples, 
each measured twice, generated by the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) study [16]. 
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We compared the magnitudes and patterns of relia-
bility observed in the EPIC-EPIC comparison with 
findings from previous studies. Our study aimed to 
provide valuable insights into the reliability of blood 
DNAm levels measured by EPIC v1.0 arrays. In addi-
tion, we evaluated the impact of probe reliability on 
epigenome-wide association studies (EWAS). Higher 
reliability of methylation levels increases the likeli-
hood of reproducible findings, which are essential 
for the development of biomarkers or identifying 
actionable targets. Our study provides a valuable 
resource for future DNA methylation studies.

Materials and methods

Study dataset

We analysed a subset of whole-blood DNAm sam-
ples generated by the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) study [16], in 
which the same blood samples were measured 
twice (technical replications). To create a dataset 
of samples from independent subjects, we selected 
the initial visit data for each subject from the long-
itudinal ADNI study. Our study included 138 sam-
ples measured on 69 independent subjects aged 
65–94 years during their initial visits. To avoid 
confounding batch effects (see also Discussion), 
only duplicates measured on different methylation 
plates were analysed. The ADNI study datasets can 
be accessed at adni.loni.usc.edu.

Preprocessing of DNA methylation data

DNA methylation was measured using the 
Illumina HumanMethylation EPIC v1.0 
BeadChip, which includes more than 850,000 
CpGs. We preprocessed the DNAm data using 
the SeSAMe 2 pipeline described by Welsh et al. 
(2023) [17]. Supplementary Table S2 shows the 
number of CpGs at each pre-processing step. 
Throughout these preprocessing steps, we retained 
all the samples.

First, we removed CpGs that overlapped with 
single nucleotide polymorphisms (SNPs), non- 
CpG probes, cross-reactive probes [18], and 
probes located on X or Y chromosomes. Samples 
and probes were further filtered using the iterative 
Greedy-cut algorithm (with a p-value threshold of 

0.01) in the RnBeads R package, which iteratively 
removes the probe with the highest fraction of 
unreliable measurements one at a time [19]. 
Next, using the SeSAMe R package, we removed 
additional probes that had missing values in more 
than 5% of samples or were masked by the 
pOOBAH (p-value with out-of-band array hybri-
dization) algorithm in more than 20% of samples; 
and performed a noob (normal-exponential using 
out-of-band probes) background correction and 
nonlinear dye-bias correction [20].

Estimation of probe reliability and surrogate 
variables

To estimate the reliability of CpG probes, we 
computed intraclass correlations (ICCs) for each 
probe based on methylation beta values, which 
were measured in duplicates of blood samples 
collected from the same subject and at the same 
visit. The ICC is defined as σ2

b
σ2

bþσ2
w
, where σ2

b is the 
between-subject variance and σ2

w is the within- 
subject variance. As recommended by Koo and Li 
(2016) [21], ICC values were computed using 
a two-way random effect, absolute agreement, 
and single-rating model, as implemented in the 
icc() function of the irr R package.

To evaluate the reliability of the estimated cell- 
type proportions, we computed major immune 
cell-type proportions in the blood, including 
B lymphocytes, natural killer cells, CD4+ 
T lymphocytes, CD8+ T lymphocytes, monocytes, 
neutrophils, and eosinophils using the EpiDISH 
R package [22]. The coefficients for DNA methy-
lation-based surrogate variables for BMI, smoking, 
alcohol use, total cholesterol, HDL cholesterol, 
LDL cholesterol, and total-to-HDL ratio were 
obtained from Additional file 1 in McCartney 
et al. (2018) [23].

Comparison of reliability of probes with different 
characteristics

To compare the reliability of probes with different 
characteristics (e.g., type I probes vs. type II 
probes), we performed mixed-effects model ana-
lyses using the lmerTest R package [24]. For each 
comparison, we fitted a mixed-effects model with 
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probe reliability as the outcome variable and probe 
characteristics (e.g., type I vs. type II probes) as the 
fixed effect variable. To account for correlations in 
the probes on the EPIC v1.0 array, we additionally 
included random effects for chromosomes, genes, 
and co-methylated clusters. The co-methylated 
clusters of probes were identified using the 
coMethDMR R package [25] with methylation 
beta values as input. As both fixed and random 
effects are included, these models fall into the 
general class of linear mixed-effects models. By 
including random effects, the mixed-effects 
model acknowledges that the observations (i.e., 
probes) within the same random effect (i.e., chro-
mosomes, genes, or co-methylated clusters) are 
more similar to each other than to observations 
from different groups or clusters. This allows for 
a more accurate estimation of the fixed effects, 
while properly accounting for the correlation 
structure of the data. We also assessed the rela-
tionship between reliability and the mean and 
standard deviation of the methylation beta values. 
The means of beta values were computed using all 
samples, and the standard deviations of beta values 
were computed after randomly selecting one sam-
ple from two duplicate samples. A total of 22 
statistical tests were performed in this study, there-
fore, we considered P-values less than 2.27 × 10−3 

(i.e., 0.05/22) as statistically significant.

Evaluating the impact of probe reliability on 
mQTL analysis, DNAm-to-gene expression 
correlations, and surrogate variables

We searched mQTLs for CpG probes using the 
GoDMC database [26], which was downloaded 
from http://mqtldb.godmc.org.uk/downloads. To 
select significant blood mQTLs in GoDMC, we 
used the same criteria as in the original study 
[27], that is, considering a cis p-value smaller 
than 10−8 and a trans p-value smaller than 10−14 

as significant. For DNAm-to-mRNA association 
analysis, we analysed matched gene expression 
(Affymetrix Human Genome U 219 array) and 
DNA methylation (EPIC v1.0 array) data from 
263 independent subjects in the ADNI study. In 
this analysis, we examined probes located in pro-
moter regions (within ±2k bp of the transcription 
start site; TSS) and distal regions (> ±2k bp of the 

TSS) separately. Specifically, for CpGs located in 
the promoter region, we computed Spearman cor-
relations between CpG methylation and expression 
levels of the target genes. On the other hand, for 
CpGs in distal regions, we computed the 
Spearman correlations between CpG methylation 
and expression levels of 10 genes upstream and 
downstream, following the approach used in pre-
vious integrative DNAm-to-gene expression ana-
lyses for probes in distal regions [28,29]. 
Subsequently, we selected the most significant 
P-value for each probe and considered P-values 
less than 1 � 10−5 to be statistically significant, 
as in several previous analyses of DNA methyla-
tion in blood samples [5,16,30].

Results

Probe reliability of EPIC v1.0 arrays

The estimated ICCs for individual probes are 
available in Sugden et al. (2020) [15], Logue et al. 
(2017) [12], and Bose et al. (2014) [10] 
(Supplementary Table S1). Therefore, we first 
compared the distributions of the ICCs in our 
EPIC-EPIC comparison with results from these 
studies. Overall, we found a substantial correlation 
between the ICC values estimated in our EPIC- 
EPIC comparison and those estimated in previous 
studies. The Spearman correlations between the 
ICC values estimated in our study and those 
from Sugden et al. (2020) [15], Logue et al. 
(2017) [12], and Bose et al. (2014) [10] were 
0.703, 0.724, and 0.729, respectively. Consistent 
with previous studies [14,15], we observed similar 
ICC estimates when using either methylation 
M-values or methylation beta values (data not 
shown).

Figure 1 shows the distribution of ICCs for 
probes in our EPIC-EPIC comparison, which ran-
ged from −0.362 to 0.999. Consistent with findings 
in a previous reliability study [10], our analysis 
revealed two distinct clusters of probes. These 
clusters are centred around 0.025 and 0.825, cor-
responding to probes with low and high reliability, 
respectively. The ICC values are generally inter-
preted as follows: < 0.4 (Poor), 0.4–0.6 (Fair), 0.6– 
0.75 (Good), and > 0.75 (Excellent) [31]. The mean 
and median of the EPIC-EPIC comparison were 
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0.381 and 0.325, respectively. In comparison, 
Sugden et al. (2020) found the estimated ICCs 
for the 450k-EPIC comparison ranged from 
−0.28 to 1.00, with a mean of 0.21 and a median 
of 0.09 [15]. A comparison of the 333,588 com-
mon probes in both studies showed that a larger 
number of probes achieved good reliability (n =  
38,528) and excellent reliability (n = 64,141) in our 
EPIC-EPIC comparison study compared to the 
450k-EPIC comparison in Sugden et al. (2020) 
study (good reliability: n = 21,936, excellent relia-
bility: 
n = 18,865) (Supplementary Table S3). Overall, 
214,951 probes (64.44%) had the same classifica-
tion in both the studies.

In the 450k–450k comparison estimated by Bose 
et al. (2014), ICCs ranged from 0 to 0.998, with 
a mean of 0.366 and a median of 0.296 [10]. When 
comparing the 333,600 common probes in both 
studies, we found a larger total number of probes 
with good or excellent reliability (good probes: 
n = 38,528, excellent probes: n = 64,144) in our 
EPIC-EPIC comparison compared to the 450k- 
450k comparison in the Bose et al. (2014) study 
(good probes: n = 49,008, excellent probes: n = 
40,001). Overall, 226,289 (67.83%) probes had the 
same classification in both the studies 
(Supplementary Table S4). Taken together, these 

results showed that, for the majority of probes, the 
reliability observed in our EPIC-EPIC comparison 
was congruent with those in prior studies.

The distribution of ICC in the EPIC-EPIC 
comparison shows similar patterns as those 
obtained in prior studies

We found that the distribution of ICC values in 
our EPIC-EPIC comparison showed patterns 
similar to those of previous comparisons [10– 
15]. Specifically, we observed that ICC values 
increased as the between-subject variance of 
DNA methylation levels increased (Figure 2). 
The highest ICCs values were observed for 
probes with average methylation values ranging 
between 0.2 and 0.8 (Supplementary Figure S1). 
Overall, the ICC values were lower for probes 
located in the CpG island and TSS200 regions 
(Supplementary Figures S2-3). Type II probes on 
the EPIC v1.0 array, which use a single sequence 
per CpG site to measure DNAm levels, showed 
significantly higher ICC values than type 
I probes, which use two separate sequences per 
CpG site (p-value < 2.2 × 10−16, Supplementary 
Figure S4). Given that a substantial proportion 
of type I probes are located in CpG-rich regions, 
such as CpG islands and promoter regions 

mode 1 = 0.025   mode 2 = 0.825
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Figure 1. Distribution of estimated intraclass correlation coefficient (ICC) of DNA methylation levels in EPIC-EPIC comparison, using 
69 blood DNA samples, each measured twice, generated by the Alzheimer’s disease neuroimaging initiative study. Dashed lines 
indicate mode of the distribution.
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[9,32], this result is consistent with the observed 
lower ICC values at CpG islands and promoter 
regions.

In the following sections, we will assess the 
impact of probe reliability, as measured by ICC, 
in relation to different types of analyses in epigen-
ome-wide association studies (EWAS).

Higher probe reliability is associated with the 
presence of mQTLs and significant correlations 
with downstream gene expression

We hypothesized that probe reliability might affect 
the effectiveness of integrative analyses that correlate 
DNAm with other types of omics variants, such as 
mQTLs or downstream gene expression. 
Methylation Quantitative Trait Locus (mQTLs) 
refers to genetic variations that influence the patterns 
of DNAm. Min et al. (2021) performed a large 
mQTL study involving 32,851 subjects and found 
that approximately 45% of DNAm sites on the 
Illumina array were influenced by genetic variants 
[26]. Supplementary Figure S5 shows that consistent 

with previous observations [15], CpG probes with 
mQTLs have significantly higher reliability (p-value 
< 2.2 × 10−16). Specifically, CpG probes influenced 
by mQTLs had a median ICC of 0.625 compared to 
the other CpGs with a median ICC of 0.257.

Similarly, as DNAm is a key epigenetic modifica-
tion that influences gene activity by regulating gene 
expression, we next investigated the impact of 
probe reliability on DNAm-to-mRNA correlations 
in blood samples. In this analysis, we examined 
probes located in promoter regions (within ±2k 
bp of the transcription start site; TSS) and distal 
regions (> ±2k bp of the TSS) separately. For both 
groups of probes, we found that the ICCs were 
higher for those probes significantly associated 
with downstream gene expression levels compared 
to other probes (p-value = 2.51 × 10−5 for promoter 
region probes and p-value = 1.55 × 10−10 for distal 
probes; Supplementary Figure S6). These findings 
highlight the importance of considering probe relia-
bility in EWAS and its potential implications for 
understanding the relationship between DNAm, 
genetic variation, and gene expression.
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C

0.0

Q1: 0−0.01 Q2: 0.01−0.03 Q3: 0.03−0.05 Q4: 0.05−0.37
Quartile of probe standard deviations

Quartiles of probe SD Number of probes
Probe Reliability (ICC)

Mean SD Min Median Max
Q1: 0-0.01 160240 0.147 0.159 -0.362 0.123 0.972

Q2: 0.01-0.03 160240 0.267 0.256 -0.325 0.217 0.991
Q3: 0.03-0.05 160240 0.452 0.316 -0.305 0.538 0.997
Q4: 0.05-0.37 160240 0.658 0.290 -0.281 0.763 0.999

Figure 2. Probe reliability (ICC) increased as standard deviation (SD) of DNA methylation levels increased.
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Higher probe reliability is associated with larger 
blood-brain DNAm correlations

For neurological disorders, such as AD, it is pre-
ferable to use disease-relevant tissues for epige-
netic studies. However, obtaining methylation 
levels in brain tissue from living human subjects 
is currently not feasible. As a practical alternative, 
measuring methylation levels in accessible tissues, 
such as the blood, is often employed. Previous 
research by Hannon et al. (2015) examined 
matched DNAm profiles of pre-mortem blood 
samples and post-mortem brain tissues in the 
London dataset and found that only a small pro-
portion of CpGs showed significant brain-blood 
correlations in DNAm levels [33].

To assess the impact of probe reliability on 
cross-tissue associations, we examined ICCs for 
the probes in relation to the correlation of 
DNAm measured in the brain prefrontal cortex 
and blood in the London dataset [33]. 
Supplementary Figure S7 demonstrates that probes 
with higher brain-blood correlations in DNAm 
levels also had higher reliability. Specifically, for 
probes with high (> 0.75), medium (0.4–0.75), and 
low (< 0.4) brain-blood correlations, the median 
ICCs were 0.948, 0.869, and 0.253, respectively. 
These results are consistent with another recent 
study, which found an increase in reliability esti-
mates in the 450k-EPIC comparison [15] for 
probes with moderate to high brain-blood correla-
tions. These findings suggest that reliable probes, 
by providing more accurate representations of 
DNAm levels, could facilitate the identification of 
potential biomarkers in brain disorders, such as 
dementia.

Higher probe reliability is associated with more 
consistent association signals

A previous study by Sugden et al. (2020) analysed 
the effect of tobacco smoking on DNAm across 22 
studies and observed that the number of replica-
tions of individual probes across studies positively 
correlated with reliability [15]. We previously con-
ducted a study on DNAm associated with 
Alzheimer’s disease diagnosis using two large clin-
ical datasets generated by the ADNI and 
Australian Imaging, Biomarkers, and Lifestyle 

(AIBL) consortia. We hypothesized that poor 
probe reliability would impact the consistency of 
the DNAm-to-AD associations estimated in the 
ADNI and AIBL datasets. Indeed, we found that 
the differences in estimated effect sizes for 
DNAm-to-AD associations between the two stu-
dies were smallest for probes with excellent relia-
bility (ICC > 0.75) and largest for probes with poor 
reliability (ICC <0.4) (Figure 3). Furthermore, we 
also analysed the results of our sex-specific study 
in AD [34] and found that the pattern of associa-
tion between probe reliability and consistency in 
estimated effect sizes was similar for both males 
and females (Supplementary Figure S8).

Biologically, DNAm levels are often correlated 
across the genome and occur as a regional phe-
nomenon [35]. Differentially methylated regions 
(DMRs) refer to specific regions in the genome 
where the levels of DNAm consistently and sig-
nificantly differ between different conditions. We 
also considered the impact of probe reliability on 
DMR identification. Interestingly, as shown in 
Figure 4, we found that probes located within 
DMRs associated with AD [34] exhibited higher 
ICCs than other probes (p-value < 2.2 × 10−16 for 
both male and female samples analyses). These 
findings highlight the importance of probe relia-
bility in studying DNAm associations, as reliable 
probes help to minimize discrepancies between 
different datasets and lead to more consistent 
results. Therefore, probe reliability is crucial for 
detecting genuine DNAm associations in EWAS.

DNA methylation surrogate variables for 
cell-type proportions, smoking, alcohol use, and 
total cholesterol are reliable

In EWAS, one common approach for accounting 
for cell-type heterogeneity across different samples 
is to estimate the proportions of various cell types 
within each sample. These estimated cell-type pro-
portions were then included as covariates in the 
regression models. We assessed the reliability of 
these estimated cell-type proportions and found 
that they showed good agreement between dupli-
cate samples (Supplementary Table S5). 
Specifically, the ICC ranged from 0.752 to 0.956 
across the different cell types. Notably, the propor-
tions of NK (Natural Killer) cells and B cells were 
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observed to have the lowest and highest reliabil-
ities, respectively. These results are consistent with 
a previous study that examined DNAm levels in 
newborn and 14-year-old samples, which reported 
a high correlation in estimated cell-type propor-
tions between duplicate samples [13].

In addition, we also assessed the reliability of var-
ious additional DNA methylation-based surrogate 
variables (SVs). Supplementary Figure S9 shows the 
SVs for smoking, alcohol use, and total cholesterol had 
good reliability (95% CI for ICC > 0.6), while SVs for 
BMI, HDL cholesterol, LDL cholesterol, total-to-HDL 
ratio had lower reliability (95% CI for ICC < 0.6). 
Previously, McCartney et al. (2018) also demonstrated 

that DNAm-based SV for smoking accurately predicts 
smoking status (AUC = 0.98) [23]. Taken together, 
these findings provide strong support for using cell- 
type proportions to adjust for cell-type heterogeneity 
and the adoption of epigenetic surrogate variables, 
particularly for smoking, in EWAS.

Discussion

In this study, we comprehensively evaluated the 
reliability of probes on Illumina EPIC v1.0 arrays 
and created a valuable resource for EWAS studies 
(Supplementary Table S6). We carefully selected 
DNAm samples from the ADNI dataset. To avoid 
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Number of |ADNI effect size - AIBL effect size| for DNAm-to-AD association

probes Mean SD Min Median Max
Excellent ( > 0.75) 117325 4.270 4.727 0 2.824 151.014
Good ( 0.6 - 0.75) 81337 5.348 5.221 0 3.904 132.904

Fair (0.4 - 0.6) 77774 6.481 6.620 0 4.679 121.391
Poor ( < 0.4) 328856 11.189 13.134 0 7.144 345.643

Figure 3. Higher probe reliability (ICC) is associated with smaller absolute difference in the estimated effect sizes of DNAm-to-AD 
diagnosis associations in ADNI and AIBL studies (p < 2.2 × 10−16). The effect sizes for DNAm-to-AD associations were obtained from 
Silva et al. (2022) (PMID: 35982059). Reliability of the probes were determined based on ICC: excellent (>0.75), good (0.6–0.75), fair 
(0.4–0.6), or poor (<0.4). AD: Alzheimer’s disease.
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batch effects and ensure accurate assessment of 
probe reliability, we included duplicate samples 
that were placed on different methylation plates 
within the ADNI dataset.

Our results are consistent with existing literature 
that indicated a trend towards higher reliability in 
EPIC v1.0 arrays compared to the older 450k arrays 
[15]. However, it is important to note that the 
reliability estimates in previous studies were drawn 
from literature results rather than directly compar-
ing reliability experiment results for 450k-450k 
arrays vs. EPIC-EPIC arrays using the same set of 
samples. Therefore, differences in sample quality, 
experimental conditions, and laboratory practices 
can significantly impact reliability outcomes.

Several additional factors could potentially 
account for the higher reliability estimates 
observed in our EPIC-EPIC comparisons. First, 
compared to the 450k arrays, the EPIC v1.0 arrays 
included a significantly larger number of type II 
probes [9], which tend to have higher reliability 
than type I probes (Supplementary Figure S4). 
Additionally, during the design of EPIC v1.0 
arrays, some probes from the 450k arrays that 
were found to be unreliable were removed [9,36].

During our preprocessing step, we incorporated 
the pOOBAH algorithm (p-value with Out-Of- 
Band Array Hybridization) in the SeSAMe 
R package. This step specifically identifies and 
removes probes with hybridization issues [20]. 

Therefore, low reliability is unlikely to be attributed 
to failed probe hybridization with the target DNA, 
as previously demonstrated [15]. However, an 
important factor that might impact reliability esti-
mates is batch effects [10]. Notably, when we calcu-
lated the reliability using duplicated samples placed 
on the same methylation plate, we observed an 
increase in the median ICC for the EPIC-EPIC 
comparison from 0.325 to 0.733. This highlights 
the impact of the batch effect on reliability estimates 
and emphasizes the importance of accounting for 
batch effects in methylation studies.

Consistent with previous studies, we observed 
that the reliability of the probes was influenced by 
the mean and variance of methylation levels as 
measured by beta values [14,37,38]. To understand 
the dependency of ICC on DNAm variances, note 
that ICC is defined by σ2

b= σ2
b þ σ2

w
� �

where σ2
b and 

σ2
w are between-subject and within-subject var-

iances, respectively. Therefore, ICC is influenced 
by between-subject variances of the probes, and 
probes with low variation in methylation levels, 
corresponding to low between-subject variance, 
would result in low ICC values.

It is well known that the mean and variance of 
methylation beta values follow an inverse 
U relationship. If we consider the beta value as 
the proportion (p) of methylated cells in a large 
population of cells, the mean-variance relationship 
of beta values is consistent with the theory that for 

(a) Analysis of male samples
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of Media
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No 640858 0.381 0.326 -0.362 0.325 0.999

(b) Analysis of female samples
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probes located within AD−associated DMRs

CpGs located Number ICC
of Media

within DMRs Mean SD Min Maxprobes n
Yes 194 0.792 0.138 0.197 0.823 0.989
No 640766 0.381 0.326 -0.362 0.325 0.999

Figure 4. CpGs probes located within DMRs had higher probe reliability (ICC) compared to other probes in the analysis of (a) Male 
samples and (b) Female samples (p < 2.2 × 10−16 for both comparisons). The AD-associated DMRs were obtained from table 2 of Silva 
et al. (2022) (PMID: 36109771).
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a binomial proportion p, the variance p 1 � pð Þ=n, 
where n is the total number of cells, is the highest 
when p is 0.5. Therefore, between-subject variance 
peaks around a mean beta value of 0.5, and is 
lower for probes with the lowest and highest beta 
values [15].

Consequently, probes with extremely low or high 
average beta values have lower variances and are 
more likely to be classified as unreliable than probes 
with intermediate beta values. Notably, technical 
variation, which includes errors introduced during 
the process of methylation measurement (e.g., bisul-
phite conversion efficiency, PCR biases), tends to be 
random. This randomness can disproportionately 
affect the extremes (i.e., hypo-methylated sites close 
to 0% methylation and hyper-methylated sites close 
to 100% methylation) where biological variation is 
low. On the other hand, at sites with intermediate 
methylation levels, there’s a mix of both methylated 
and unmethylated cytosines, so the technical noise 
might be diluted or less impactful in the context of 
the overall biological signal. Consistent with pre-
vious observations by Xu and Taylor (2013) [14], 
we also found that among probes with very low or 
high average methylation beta values (below 0.1 or 
above 0.9), only a small portion (14.12% or 52,471 
out of 371,531 probes) were classified as having good 
or excellent reliability (i.e., ICC > 0.6). In contrast, 
for probes with intermediate average methylation 
beta values, a significantly higher proportion 
(58.5% or 157,617 out of 269,429 probes) was classi-
fied as having good or excellent reliability. These 
results are consistent with our observation of lower 
ICC values in the TSS and CpG island regions, which 
are evolutionarily conserved in gene regulation [39].

We next studied the implications of probe relia-
bility in the EWAS, and our findings highlight its 
significant impact on downstream analyses. 
Consistent with observations in previous studies 
[10,15], our analyses also revealed that probe relia-
bility plays a crucial role in the success of integra-
tive analyses involving DNAm and other types of 
omics data, such as mQTLs and mRNA gene 
expression. Furthermore, we observed that blood 
DNAm measurements obtained using probes with 
higher reliability were more likely to show concor-
dance with brain DNAm. Finally, we demon-
strated that higher reliability is associated with 
more consistent effect sizes and the identification 

of DMRs in EWAS. This is likely because methyla-
tion signals from unreliable probes can be con-
taminated with noise, thereby increasing the 
likelihood of generating false positives. Our results 
are consistent with the results of Dugue et al. 
(2015) [40], who examined the impact of the ICC 
on EWAS power. They found that probe reliability 
significantly affects the statistical power for detect-
ing differential methylation, with probes having 
lower ICC also had reduced power.

We found that surrogate variables (SVs) for 
cell-type proportions demonstrated excellent relia-
bility across all major immune cell types in the 
blood, supporting the use of estimated cell-type 
proportions in addressing cell-type heterogeneity 
in EWAS. Similarly, our analysis of various addi-
tional DNAm-based SVs revealed that the SVs for 
smoking, alcohol use, total cholesterol had high 
reliability (95% CI for ICC > 0.6), whereas those 
for BMI and cholesterol ratios were less reliable 
(95% CI for ICC < 0.6). These results demon-
strated that surrogate variables that leverage infor-
mation from many probes increase reliability by 
diluting noise from individual CpGs [41].

Several limitations and areas for future study are 
in order. First, our analyses focused on methylation 
levels measured in whole blood; therefore, the 
results may be applicable only to EWAS conducted 
using blood samples. Additional studies that assess 
the reliability of DNAm measured by EPIC v1.0 
array probes in target tissues (e.g., the brain) and 
other accessible tissues (e.g., saliva) are needed. 
Second, due to the specific criteria we applied, 
including selecting independent subjects and ensur-
ing that samples were placed on different methyla-
tion plates, we were able to include only a relatively 
small number of 69 pairs of duplicate samples in 
this study. Future studies with larger sample sizes 
are needed to confirm our findings. Finally, it is 
important to note that reliability estimates can be 
influenced by the choice of normalization proce-
dure. In this study, we used the SeSAMe 2 pipeline 
for pre-processing the DNAm data [17]. Additional 
studies with large sample sizes are needed to thor-
oughly evaluate and compare different preproces-
sing procedures for estimating the reliability of 
DNAm levels in EPIC v1.0 arrays.

To reduce the burden of multiple comparisons 
in EWAS, some authors have proposed excluding 
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probes with low reliability a priori [10,42], whereas 
others cautioned against this approach, as it may 
potentially exclude probes with low variability that 
are located in important gene regulatory regions 
[14]. To this end, we recommend a practical strat-
egy for performing EWAS analysis: first, based on 
the specific sample size, determine the maximum 
number of probes, denoted as m, that can be tested 
with sufficient power (e.g., 80%), considering cor-
rections for multiple comparisons [43]. The pri-
mary analysis would concentrate on 
examining m probes with the highest reliability. 
Subsequently, secondary analyses can be carried 
out to investigate the remaining probes. This 
ensures a focused and structured approach to 
exploring associations in EWAS, prioritizing relia-
bility, and ensuring power in the analysis. An 
interesting topic for further research is to rigor-
ously design sequential multiple comparison pro-
cedures that maximally leverage the reliability 
information of all probes while controlling the 
overall Type I error rate in EWAS. The idea is to 
test all the probes, but with the most reliable 
probes first, and appropriately adjust the signifi-
cance level of each probe analysis to account for 
the increased chance of obtaining a false-positive 
result when conducting multiple comparisons. An 
alternative strategy is to employ sequencing-based 
technology, which potentially offers greater accu-
racy in regions with low methylation levels (e.g., 
CpG islands) compared to array-based methods. 
However, currently sequencing technologies, such 
as whole-genome bisulphite sequencing (WGBS), 
are more expensive and require more DNA input, 
which might not be feasible for large population- 
based studies.

In summary, we comprehensively evaluated the 
reliability of probes on EPIC v1.0 arrays. We 
observed higher reliability in probes with average 
methylation beta values of 0.2 to 0.8, and lower 
reliability in type I probes or those within the 
promoter and CpG island regions. Our findings 
revealed that probe reliability has significant impli-
cations for various downstream analyses of the 
EWAS. Importantly, we generated a valuable 
resource for DNAm research by identifying a set 
of high-quality probes on the EPIC v1.0 array, 
which will contribute to optimizing the robustness 
and potential of EWAS.
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