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Abstract

As a newly discovered protein posttranslational modification, lysine lactyla-
tion (Kla) plays a pivotal role in various cellular processes. High throughput
mass spectrometry is the primary approach for the detection of Kla sites.
However, experimental approaches for identifying Kla sites are often time-
consuming and labor-intensive when compared to computational methods.
Therefore, it is desirable to develop a powerful tool for identifying Kla sites.
For this purpose, we presented the first computational framework termed as
DeepKla for Kla sites prediction in rice by combining supervised embedding
layer, convolutional neural network, bidirectional gated recurrent units, and
attention mechanism layer. Comprehensive experiment results demonstrated
the excellent predictive power and robustness of DeepKla. Based on the pro-
posed model, a web-server called DeepKla was established and is freely ac-
cessible at http://lin-group.cn/server/DeepKla. The source code of DeepKla is
freely available at the repository https://github.com/linDing-group/DeepKla.
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Highlights

« We presented the first computational tool, termed DeepKla, to identify Kla
sites in rice.

« Supervized embedding layer, convolutional neural network, bidirectional
gated recurrent units, and attention mechanism layer were applied to train
the model.

« A robust, generalized, and convenient web-server of DeepKla was estab-
lished at http://lin-group.cn/server/DeepKla.
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INTRODUCTION

Lysine lactylation (Kla) is a new type of posttranslational
modification (PTM) that exists in mammalian, plant, and
fungi cells [1-3]. Biochemically, Kla introduces a small lactyl
group on the ¢ amine group of the lysine residue, with a
mass of 72.021 Da [4]. Accumulating evidence indicates that
lactylation is associated with inflammatory response [1,5],
progression of lung fibrosis [6], and cellular reprogramming
[7]. However, the regulatory role of Kla in influencing the
establishment of cellular processes is still unclear.

The conventional characterization of Kla sites is a
mass shift-based high-performance liquid chromatography-
tandem mass spectrometry (MS/MS) technique following
peptide synthesis and isotopic [4]. However, the drawbacks
of experimental methods preclude the proteome-wide iden-
tification of Kla sites. Thus, there is a need for computational
methods to fill in the experimental void.

To the best of our knowledge, there is no computa-
tional model for Kla sites identification in rice. Thus, in
this study, we proposed a novel deep learning-based
model, named DeepKla, to accurately identify protein
lactylation sites. As an integrated deep learning archi-
tecture, DeepKla consists of four closely connected
sub-networks including a word embedding layer, con-
volutional neural network (CNN), bidirectional gated
recurrent units (BiGRU), and attention mechanism layer.
Specifically, the embedding layer automatically extracted
sequence features using protein sequences as the only
input, thereby avoiding the biased features resulting from
artificially designed. In addition, BIGRU and the atten-
tion mechanism were used to capture long-range and key
position information from protein sequences, respec-
tively. Benchmarking experimental results demonstrated
that the robust representations generated by the em-
bedding layer and CNN-BiGRU-attention mechanism
layer have a strong predictive performance in identifying
Kla sites. We believe that the proposed architecture can
also address other PTM sites identification problems
better than previous methods.

METHODS
Benchmark data set

In this study, lactylation data for rice were collected from
literature as training data [2]. The annotated lactylation
sites on lysine (K) were used as positive data, while the
same amino acid excluding annotated lactylation sites
from the same proteins was regarded as the negative
data. According to the preliminary evaluation using
windows of different lengths, a window size was set to 51

TABLE 1 The training data and independent data used in this
study

Training data Testing data

Data type Positive Positive

Number 1720 1767 177 177

Negative Negative

to maximize the extraction of Kla site information. To
construct a nonredundant benchmark data set, the
CD-HIT program [8] was used with the sequence simi-
larity threshold of 30%. As a result, many negative sam-
ples were yielded. To balance the positive and negative
data, we used oversampling of positive samples to keep
the positive and negative data with a ratio of 1:1. In ad-
dition, we collected 273 Kla data in Botrytis cinerea as
testing data from the literature [3] to objectively evaluate
the proposed model. A detailed description of the data
has been listed in Table 1.

Sequence representation and architecture
of DeepKla

Figure 1 summarized our deep-learning framework for Kla
site prediction. Given a protein sequence, we coded it by a
supervised embedding layer that has been successfully
adopted in PTM site prediction [9,10]. In the deep-learning
architecture of DeepKla, the multilayer CNN encoded an
input protein sequence into a fixed two-dimensional hid-
den state. Then, the two-dimensional hidden state was fed
into BiGRU. In addition to BiGRU architecture, the atten-
tion mechanism layer was also employed to capture the
position information of protein sequences. The detailed
descriptions of sequence representation and algorithm ar-
chitecture design in Supporting Information.

The model was implemented in Keras (version 2.0.6)
and carried out on a MacOS with 1.4 GHz Intel Quad-Core
i5. We chose the default learning rate for the RMSProp
optimizer during the training process and used 64 as the
batch size. Five-fold cross-validation was performed to
determine the model structure and hyperparameters on
the training data. To avoid overfitting, we selected three
data points on the validation set for early stop.

RESULTS
Workflow of DeepKla
The entire workflow of DeepKla is illustrated in Figure 1.

After the data collection and preprocessing, DeepKla
assigns integers to each protein sequence. The
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FIGURE 1 Flowchart of DeepKla. CNN, convolutional neural network; RNN, recurrent neural network
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FIGURE 2 Illustration to show the prediction indexes for identifying Kla sites by using the training data set and independent data set.

(A, B) The prediction indexes of training data set (A) and independent data set (B), respectively. (C, D). ROC curves of training data set and
independent data set, respectively. The performance evaluation metrics are defined as Sn (sensitivity) = TP/(TP + FN), Sp (specificity) = TN/
(TN + FP), Acc (accuracy) = (Sn + Sp)/2, MCC (Matthews correlation coefficient) = (TP X TN - FP X FN)/ \/ (TP + FP) (TP + FN) (TN + FP)

(TN + FN), where TP = true positive, FP = false positive, TN = true negative, and FN = false negative. AUC, area under the ROC curve;

ROC, receiver operating characteristic
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CNN-BiGRU-attention mechanism layers are performed
iteratively to capture features of protein sequences. In the
output step, a fully connected layer and a softmax layer
are used to produce the result.

Evaluate the performance

To evaluate the prediction performance of DeepKla, five-
fold cross-validation was performed. To do so, we ran-
domly divided the training data set into five non-
overlapping subsets. In each validation step, four-fifths of
the data were used to train the model, whereas the re-
maining one-fifth of the data were adopted to test its
performance. The sensitivity (Sn), specificity (Sp), accu-
racy (Acc), Matthews correlation coefficient (MCC), and
average receiver operating characteristic (ROC) of the
five tests were plotted in Figure 2A,C. By taking different
thresholds according to the scores by ROC curves, the
area under the ROC curves (AUC) was calculated. It
shows that the DeepKla could produce an AUC of 0.9901
(Figure 2C), demonstrating the robustness of DeepKla in
identifying Kla and non-Kla sites.

Independent data set has been widely used to assess
the robustness of a specified classifier. Thus, we collected
273 Kla data in B. cinerea from the literature [3] to fur-
ther evaluate the performance of DeepKla. After the
same processing criteria as the benchmark data set, 177
Kla sequences and 177 non-Kla sequences were obtained
and displayed in Table 1. As shown in Figure 2B,D, we
noticed that the DeepKla produced consistently sa-
tisfactory performance on Sn (0.9718), Sp (0.8927), Acc
(0.9322), MCC (0.8671), and AUC (0.9722). This result
indicated that DeepKla has excellent prediction ability
and transferability to identify Kla sites.

We evaluated the contribution of different strategies
that affect the performance of DeepKla. We compared the
performance of DeepKla with and without attention me-
chanism layer by testing on the same independent data set.
Results show that attention-contained architecture ob-
tained the better performance (accuracy=94.07% [333/
354]), while no attention architecture got the second-best
result (accuracy = 92.09% [326/354]). This result highlights
the effectiveness of the attention mechanism that could
capture key information in the Kla prediction problem. We
also compared the performance of DeepKla under
CNN-BiGRU-attention mechanism and CNN-BiLSTM-
attention mechanism, respectively. The results showed that
the architecture including BiLSTM produced weaker per-
formance (accuracy =85.59% [303/354]), indicating that
the improved version of BiLSTM, that is, BiGRU, has more
advantages in improving the prediction ability of Kla sites.

DeepKla web server

For the convenience of peers, we built an online web server.
The web server only accepts protein sequences in FASTA
format. The server sets two input options, one is to directly
paste the sequence to be predicted to the blank box, and the
other is to upload the local folder when the number of
query sequences is large. It should be noted that the
query sequence cannot contain special characters such as
“X,” otherwise the model will not recognize it and return an
error report. After the job is finished, the prediction results
are displayed in another interface, where all predicted Kla
sites are visualized together with their probabilities.

CONCLUSION

Here, we present DeepKla, an easily used and publicly
available deep learning-based tool for predicting Kla sites
in rice. We use an embedding layer following a
CNN-BiGRU-attention mechanism layer to encode and
learn representations of protein sequences. Comprehen-
sive tests showed the robustness of DeepKla. We believe
that our study will facilitate accurately predict the Kla
sites with massive data.
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