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Abstract

Microbes dominate terrestrial ecosystems via their great species diversity and
vital ecosystem functions, such as biogeochemical cycling and mycorrhizal
symbiosis. Fungi and other organisms form diverse association networks.
However, the roles of species belonging to different kingdoms in multi-
kingdom community networks have remained largely elusive. In light of the
integrative microbiome initiative, we inferred multiple-kingdom biotic
associations from high elevation timberline soils using the SPIEC-EASI
method. Biotic interactions among plants, nematodes, fungi, bacteria, and
archaea were surveyed at the community and network levels. Compared to
single-kingdom networks, multi-kingdom networks and their associations
increased the within-kingdom and cross-kingdom edge numbers by 1012 and
10,772, respectively, as well as mean connectivity and negative edge
proportion by 15.2 and 0.8%, respectively. Fungal involvement increased
network stability (i.e., resistance to node loss) and connectivity, but reduced
modularity, when compared with those in the single-kingdom networks of
plants, nematodes, bacteria, and archaea. In the entire multi-kingdom
network, fungal nodes were characterized by significantly higher degree and
betweenness than bacteria. Fungi more often played the role of connector,
linking different modules. Consistently, structural equation modeling and
multiple regression on matrices corroborated the “bridge” role of fungi at the
community level, linking plants and other soil biota. Overall, our findings
suggest that fungi can stabilize the self-organization process of multi-kingdom
networks. The findings facilitate the initiation and carrying out of multi-
kingdom community studies in natural ecosystems to reveal the complex
above- and belowground linkages.
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INTRODUCTION

Among all terrestrial ecosystems, forests constitute the
largest carbon (C) sink, slowing the continuous increase
in atmospheric carbon dioxide concentrations, with
implications for global climate change [1]. For example,
the global forest ecosystems reportedly sequestered
21.5Pg C in 2001-2010 [2]. In addition, forests play
important roles, such as wood production and water, soil,
and biodiversity conservation. Human activities and
climate change pose threats to forest ecosystems through
deforestation, wildfire, drought, as well as disease and
insect pest outbreaks [3]. The responses of forest
ecosystems to such general disturbances are influenced
considerably by biotic interactions among plants and
soil biota [4]. A comprehensive investigation of the
characteristics and structures of the hyper-diverse
belowground biota in forests is essential, considering
belowground biodiversity actively shapes aboveground
biodiversity and biogeochemical processes [5, 6].

Network theory and its application have greatly
enhanced our understanding of various biotic interac-
tions in complex systems [7, 8]. Network analyses not
only model the general co-occurrence patterns of
microbes and hosts [9, 10] but also disentangle the
microbe-microbe and microbe-host interactions [11, 12].
In such cases, the keystone species (e.g., connectors,
module hubs, and network hubs [7, 13]) and major
modules [14, 15] essential for community assembly and
ecosystem functioning are determined, and the signifi-
cant influences of biotic interactions on system stability
or host health are deduced [16].

Recently, the concept of “integrative microbiome”
has been proposed as a direction for future microbiome
studies, to include all protists, fungi, bacteria, archaea,
and viruses [17]. Such multiple-kingdom network
analyses can reveal the co-occurrence patterns of
different microbial kingdoms in the same area as well
as the respective roles of different taxonomic groups in
multi-kingdom communities. In the Tibetan plateau, we
observed that archaea play a critical role in constructing
soil microbial co-occurrence networks; the omission of
the archaeal community resulted in a remarkable decline
in natural connectivity in the entire network [18].

« Multi-kingdom network construction increased network complexity.

« Multi-kingdom network construction increased negative edge proportion.
« Fungi stabilized multi-kingdom network structure.

« Fungi linked above- and below-ground biota at the community level.

Similarly, fungi have been observed to play a pivotal
role in stabilizing association networks in some environ-
ments, such as in human lung and skin systems [19], and
in a grassland under drought stress [20].

High elevation timberline ecosystems are character-
ized by a unique temperature-limited upper elevational
boundary of closed forests that is highly sensitive to
climate change and human activity [21, 22]. In most
cases, the upper elevational boundary is not a clear line.
Instead, it is often a broad ecotone between closed forests
and alpine grasslands or tundra. In addition, one or two
timberline tree species that cover the entire high
elevation timberline ecosystem wusually inhabit the
ecotone. Ectomycorrhizal (EcM) fungi are mutualistic
with timberline trees across temperate and boreal
mountains; they enhance water [23] and nutrient uptake
(mainly nitrogen [N] [24]) in host plants and thus
broaden plant distributional ranges [25]. In addition to
the underground EcM fungi [26], there are other
abundant belowground or soil surface fungi (hereafter
referred to as non-EcM fungi) in the timberline, such as
saprotrophic fungi in leaf litter [27], ericoid\arbuscular
mycorrhizal fungi (AMF), and non-mycorrhizal endo-
phytic fungi at the root-soil interface [28-30]. Such
diverse fungal community jointly constitutes a complex
and advanced fungal network in belowground ecosys-
tems [31], which drives plant population and community
as well as soil nutrient dynamics [32, 33]. Despite the
vital roles of the belowground fungal community, our
understanding of the relationships between the under-
ground fungal community and other soil biota, especially
in timberline ecosystems, remains poor.

The Erman's birch forest on Changbai Mountain is
one of the most well-protected alpine forests in northeast
Asia. The timberline tree species, Betula ermanii Cham.,
covers a ca. 450-m vertical range in the upper part of the
mountain forest [34]. In the present study, we surveyed
the multi-kingdom community, including nematodes,
fungi, bacteria, and archaea, in neighboring soils of a
single tree species (B. ermanii) across its native range on
Changbai Mountain, China. We constructed the multi-
kingdom association network (including plants, nema-
todes, fungi, bacteria, and archaea) and examined the
respective roles of taxa belonging to different kingdoms
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in the entire network. We hypothesized that (1) multi-
kingdom network construction would largely increase
the complexity and negative edge proportion (negative
edge number/total edge number) when compared with
that in single-kingdom networks because introducing
more species from different kingdoms is assumed to add
to trophic complexity and inter-specific competition for
available nutrients, particularly under harsh environ-
ments. For example, introducing nematodes will add
prey-predator relationships, such as plant feeder, hyphal
feeder, and bacterial feeder [35], which will increase
trophic complexity in food webs. In forests, the presence
of EcM fungi can help plants to compete with soil free-
living microbes for limited N [36]. This high-order
interaction, namely, that the presence of a species
influences the interaction between other species, has
been proven to stabilize the competitive network models
[37]. (2) Considering the predominance of EcM networks
and high fungal biomass in timberline ecosystems,
species belonging to the fungal kingdom are crucial for
the stability of multi-kingdom community association
networks. In addition, EcM fungi are more important for
stabilizing multi-kingdom networks than non-EcM fungi.
(3) Considering the reported associations in community

(A)

Plants (6.6%)
@D Nematodes (2.2%)
@ Fungi (11.5%)
Bacteria (74.8%)
@ Archaea (4.9%)

Positive (64.7%)
—— Negative (35.3%)

Fungi
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composition between fungi and other biota (including
plants) [38-40], the fungal community would be the
“bridge” of the multi-kingdom community, namely,
fungal community composition would significantly affect
the communities of plants and other soil biota, and vice
versa.

RESULTS

Comparison of multi- and single-kingdom
networks

By using multi-marker metabarcoding, we constructed
multi- and single-kingdom networks of plants, nema-
todes, fungi, bacteria, and archaea, separately (Figure 1).
There were 88, 0, 286, 15,824, and 50 edges for the single-
kingdom networks of plants, nematodes, fungi, bacteria,
and archaea, respectively. The multi-kingdom network
contained 1550 nodes and 28,032 edges, including 38.4%
of cross-kingdom edges and 35.3% of negative edges.
Among the single-kingdom networks, bacterial and
fungal networks had the largest node number, edge
number, and mean connectivity; however, they had the
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FIGURE 1 The multi-kingdom (A) and single-kingdom (B) association networks in the timberline ecosystem of Changbai Mountain.

The single-kingdom network of nematodes did not have any edges.
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lowest modularity (Table 1). The plant and fungal
networks were characterized by low proportions of
negative edges (<10%), while bacterial and archaeal
networks had 34.9% and 28.0% of negative edges,
respectively (Figure 1B). Compared to those in the
single-kingdom networks, the edge number and mean
connectivity were enhanced by 1012 and 0.6, respec-
tively, in the within-kingdom subsets of the multiple-
kingdom network, and the negative edge proportion
increased by 2.9% (Table 2, Figures 1 and 2). In
particular, the increases in mean connectivity and
negative edge proportion were the most significant for
the fungal subset: the mean connectivity increased from
3.2 to 8.7, and the negative edge proportion increased
from 8.0% to 29.7% (Table 2, Figures 1B and 2B).

In the multi-kingdom network, fungi and bacteria
were the two largest kingdoms in terms of node number,
edge number, and mean connectivity (Table 2). At the
node level, the normalized degree and betweenness of
fungi were significantly larger than those of bacteria, and
the normalized degree and betweenness of nematodes
were the highest among all the groups (Figure 3).
Normalized degree and betweenness were not signifi-
cantly different between EcM and non-EcM fungi
(Figure S1). The z-c plot showed the relative roles of
plants, nematodes, fungi, bacteria, and archaea in the
multiple-kingdom network structure (Figure S2). Specif-
ically, there were 13, 4, 41, 296, and 27 connectors for
plants, nematodes, fungi, bacteria, and archaea, respec-
tively. The taxonomic and functional affinities of 41
fungal connectors are summarized in Table S1. Twenty
out of the 41 fungal connectors were species of EcM
fungi, including Cortinarius (9 nodes), Russula (4 nodes),
and Tomentella (4 nodes). In addition, seven fungal
connectors belonged to the saprotrophic mold genus,
Mortierella, and five nodes belonged to the AMF phylum
Glomeromycota. Among other organisms, there were
two network hubs: one archaeal (uncultured Thermo-
plasmata) and one bacterial (Geobacter sp.), and one

archaeal module hub (uncultured Nitrososphaeria); plant
and nematode species did not act as network or
module hubs.

Roles of fungi and other kingdoms in
multi-kingdom networks

We examined the stability of association networks in the
presence and absence of fungi and other kingdoms.
Following the addition of fungal interactions into the
single-kingdom networks of plants, nematodes, bacteria,
and archaea, the networks became more connected and
less modular (Figure 4A, Table S2). The addition of a
bacterial network had effects similar to those of the
addition of a fungal network; however, neither nema-
todes nor archaea had similar effects (Tables S3-S5). In
particular, the addition of fungi enhanced the network
stability of plants, nematodes, and archaea substantially
(Figure 4B). For example, the natural connectivity of
single-kingdom networks of plants and archaea
decreased, with slopes of —0.018 and —0.021, respec-
tively, whereas the slopes were elevated to —0.006 and
—0.007, respectively, following fungal network addition.
Fungal network stability was not enhanced following the
addition of nematodes, bacteria, and archaea into the
fungal network (Figure S3). Furthermore, the addition of
EcM and non-EcM fungi, separately, enhanced the
network stability of plants, nematodes, and archaea
(Figure S4). The effects of the addition of EcM and non-
EcM fungi on network topological properties were
similar (Table S6).

Plant-fungus networks had remarkably large positive
edge proportions (>92.2%), implying the dominance of
coexistence rather than mutual exclusion between plants
and fungi in timberline ecosystems. Among all the
single-kingdom networks, the lowest absolute value of
natural connectivity slope was observed in the fungal
network (slope = —0.005; Figure S5A). When the fungal

TABLE 1 Topological characteristics of multi- and single-kingdom networks
Node Edge Mean Average

Network type Number Number connectivity Modularity path length
Multi-kingdom 1550 28,032 36.2 0.182 2.51

Plants 102 88 1.7 0.840 2.46
Nematodes 34 0 0 0 0

Fungi 178 286 3.2 0.695 5.81

Bacteria 1160 15,824 27.3 0.208 2.67
Archaea 76 50 1.3 0.847 2.46
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TABLE 2 Differences in topological characteristics between single-kingdom networks and the within-kingdom subsets of the multi-
kingdom network

Network Node Edge Mean Average
type Number Number connectivity Modularity path length

Single-kingdom networks

Plants 102 88 1.7 0.840 2.46
Nematodes 34 0 0 0 0

Fungi 178 286 3.2 0.695 5.81
Bacteria 1160 15824 27.3 0.208 2.67
Archaea 76 50 1.3 0.847 2.46

Within-kingdom subsets of multi-kingdom network

Plants 102 262 5.1 0.615 3.62

Nematodes 34 30 1.8 0.595 3.57

Fungi 178 771 8.7 0.355 2.69

Bacteria 1160 16010 27.6 0.212 2.63

Archaea 76 187 4.9 0.436 2.98
(A) (B)

=== Positive (68.2%)

Cross-kingdom part
== Negative (31.8%)

=== Positive (84.3%) === Positive (56.7%)
Archaea
== Negative (15.7%) == Negative (43.3%)

Plants

=== Positive (43.3%)
= Negative (56.7%

Nematodes
=== Positive (62.0%)

== Negative (38.0%)

) Bacteria

—— Positive (70.3%)

Fungi ]
=== Negative (29.7%)

[ Plants (6.6%)
B Nematodes (2.2%) | Bacteria (74.8%)
I Fungi (11.5%) [ Archaea (4.9%)

FIGURE 2 Disassembly of the entire multi-kingdom association network. (A) The cross-kingdom subset showing all the cross-kingdom
edges in the entire multi-kingdom network, such as plant-fungus, fungus-bacterium, and bacterium-archaea links. (B) The five within-
kingdom subsets showing all the within-kingdom edges in the entire multi-kingdom networks, including plant-plant, nematode-nematode,
fungus-fungus, bacterium-bacterium, and archaea-archaea links.
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FIGURE 3 Node connectedness and centrality of plants, nematodes, fungi, bacteria, and archaea in the multi-kingdom network. (A)

Node connectedness is represented by logl0 normalized degree, and (B) centrality is represented by logl0 betweenness. The results of post-
hoc Kruskal-Wallis test are shown in diagrams. *<0.05, **<0.01, and ***<0.001.

network was removed from the entire multi-kingdom
network, natural connectivity (Figure S5B), edge num-
ber, and mean connectivity decreased; however, the
modularity increased (Table S2). Only plant, fungal, and
archaeal kingdom network removal decreased the
stability of the entire multiple-kingdom network, and
fungal removal led to the lowest natural connectivity
(Figure S5B). There were no obvious differences in
network stability between different fungal guilds in both
the individual networks of EcM and non-EcM fungi or
within the entire multi-kingdom network, excluding
EcM and non-EcM fungi; the only difference might be
that EcM fungal network could be more connected
compared with non-EcM fungi (Figure S6).

There were 5487 links between fungi and other
kingdoms, which accounted for 50.9% of the total cross-
kingdom links (Figure 5). Based on the node numbers of
plants and other soil biota, the expected proportions of
fungal links were 7.4%, 2.5%, 84.5%, and 5.5% for plants,
nematodes, bacteria, and archaea, respectively. How-
ever, the observed proportions of fungal links were
13.8%, 4.5%, 72.7%, and 9.0% for plants, nematodes,
bacteria, and archaea, respectively (Figure 5). The
positive edge proportions for the fungal links with
plants and archaea were the highest (77.5%) and lowest
(59.2%), respectively (Figure 5). In addition, signifi-
cantly higher negative edge proportions were observed
in the links of saprotrophic and EcM fungi than in the

remaining links within fungi, based on the null model
comparison (Figure S7).

Associations among fungi and other
kingdoms at the community level

Considering the 40 noncollinear environmental variables
(Figure S8), as well as geographic distance and neighbor-
ing plant community as the candidate predictors, we
constructed the conventional multiple regression on
matrices (called MRM #1) to determine the predictors
of nematode, fungi, bacteria, and archaea community
composition (Table S7). Soil pH was the strongest
predictor of nematode community composition, explain-
ing 20.1% of the variation in community composition.
Fungal community composition was mainly influenced
by plant community composition, soil pH, and conduc-
tivity. Soil pH and available Mg jointly explained 17.3% of
the wvariation in bacterial community composition.
Archaeal community composition was mainly affected
by tree richness and soil total Fe concentration. When
the community composition of soil biota was added, the
full MRM (referred to as MRM #2) explained a greater
variation in community compositions of nematodes, fungi,
and archaea (Table S8). The fungal community strongly
affected nematode and archaea community composition
(p=0.001); in particular, fungal community composition
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FIGURE 4 The additive impacts of fungal interactions on single-kingdom networks of plants, nematodes, bacteria, and archaea.

(A) Changes in network topology with fungal interaction addition. (B) Changes in network stability with fungal interactions addition.

The decreasing trend of natural connectivity is fitted with 50% nodes lost, and the R? and slope are shown in diagrams. The lower the

absolute value of the slope, the more stable the network. “+F” represents the addition of fungal interactions on the basis of single-kingdom

networks.

was the strongest predictor of archaeal community compo-
sition (Table S8). Coincidentally, the nematode and archaea
community compositions also significantly affected fungal
community composition, and plant community composition
was still the strongest predictor of fungal community
composition (Table S8).

Structural equation modeling (SEM) results
revealed similar patterns, whereby plant community
composition strongly and directly affected fungal
community composition, and indirectly affected the
compositions of other soil communities through its
effects on fungal community composition (Figure 6).
Based on the standardized path coefficients (SPC), the

fungal community was mostly associated with the
plant community and archaeal community (SPC =
0.73, respectively). In addition, the plant community
directly affected soil pH, and indirectly affected the
communities of nematode, fungi, bacteria, and
archaea through its effect on pH (Figure 6).

DISCUSSION

According to the results of the network analyses in the
present study, fungi and bacteria were the two largest
biological groups and had the highest node and edge
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FIGURE 6 Multi-kingdom biotic interactions at the community level revealed by structural equation modeling (SEM). (A) The expected
model is constructed based on two hypotheses: one is that plant community affects soil biota (incl. fungi) by modifying soil properties; the
other is that fungi community affects plants and soil biota (excluding fungi), and vice versa. (B) The best model was selected based on
Akaike Information Criterion (AIC), and only significant paths were retained. Line width of each path fitted the size of the standardized
path coefficient (SPC) that is shown near each path. The paths of expected #1 are colored dark green, and the paths of expected #2 are
colored dark red. In the model, Bray-Curtis dissimilarities were used to represent communities of soil biota, and Jaccard dissimilarities were
used to represent plant community. AGFI, adjusted goodness of fit index; AIC, Akaike information criterion; RMSEA, root mean square
error of approximation. N =30
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numbers (Figure 1). Nevertheless, there were quite
distinct topologies of single-kingdom networks between
bacteria and fungi: the negative edge proportion of the
bacterial network was fourfold higher than that of fungi,
and the mean connectivity of the bacterial network was
about eightfold higher than that of fungi (Figure 1B,
Table 1). The results imply that bacteria have a high
capacity for self-organization but compete with each
other intensely, whereas fungus-to-fungus relationships
tend to be more positive and cooperative.

Consistent with our first hypothesis, the within-
kingdom edge numbers, mean connectivity, and negative
edge proportion increased dramatically in the multi-
kingdom network when compared to in the single-
kingdom networks (Table 2, Figures 1B and 2B). In
particular, fungal mean connectivity increased three-fold,
and its negative edge proportion increased by about
fourfold in the within-kingdom subset (Table 2). The
increase in mean connectivity represents network
complexity enhancement [15] when other trophic groups
are added. The pattern is consistent with the widely held
paradigm that diversity is positively correlated with
network complexity [41, 42]. The increase in negative
edge proportion indicates the intensification of inter-
specific competition when compared with those in the
single-kingdom networks [10].

N is one of the limiting nutrients considered to
strongly affect soil microbial growth and diversity at the
treeline [43, 44]. Notably, in both the multi- and single-
kingdom networks, the negative edge proportion was
significantly higher than expected for the links between
saprotrophic and EcM fungi than in the remaining links
within the fungal kingdom (Supporting Information:
Figure S7). This may be related to the “Gadgil effect,”
according to which EcM fungi directly obtain N from
organic compounds, leading to N limitation for the free-
living saprobes [45]. Two prokaryote keystone species,
the ammonia oxidizer Nitrososphaeria (Module hub) and
N-fixing Geobacter (Network hub) (Figure S2) were
highly correlated with forest N cycling [14, 46]. The
findings gave us a glimpse of the tight relationship
between microbial network topology and soil biogeo-
chemical cycling. Soil microorganisms, either living or
dead, which play pivotal roles in biogeochemical
processes, are also likely to be the keystone species in
multi-kingdom communities [47, 48]. Previously, we
observed that soil microbial functional diversity (particu-
larly for C and N cycling-related genes) increased
dramatically at the treeline of an ecotone in Changbai
Mountain [49].

Consistent with our second hypothesis, the fungal
kingdom strongly influenced network connectivity and
stability in the multi-kingdom community. At the node

iMeta-wi LEY—L2°rs

level, the normalized degree and betweenness of fungi
were significantly larger than those of bacteria (Figure 3).
A higher node degree implies more links from one
fungus to other amplicon sequence variants (ASVs),
while higher betweenness values indicate that fungi are
more likely to be key “brokers” [15]. Previously, fungi
have been found to have higher betweenness and node
degree than bacteria in bacterial-fungal networks in
human lung and skin systems [19]. In the entire
multi-kingdom network in the present study, fungal
within-kingdom links were only 771, whereas fungal
cross-kingdom links reached 5487 (sevenfold higher than
within-kingdom links). Therefore, the importance of
fungi was mainly attributable to cross-kingdom links
rather than within-kingdom links. In addition, in the
present study, the 5487 links between fungi and other
kingdoms accounted for 50.9% of the total cross-kingdom
links (Figure 5). Compared to the randomized links of
fungi, fungi were more prone to linking with plants
(+6.4%), archaea (+3.5%), and nematodes (+2.0%). Here,
the highest proportion of positive edges (77.5%) was in
the fungal links with plants, whereas the highest
proportion of negative edges (40.8%) was in the fungal
links with archaea (Figure 5). Previously, strong positive
relationships in diversity and community composition
have been reported between fungi and plants [38], and
fungal community dissimilarity significantly increased
with an increase in plant phylogenetic distance [50]. The
results of the present study further corroborated the
strong positive associations between fungal and plant
species at the network level. The observed associations
between fungi and archaea may result from their
different niche preferences for oxic and anoxic
environments.

Another notable effect of the fungal kingdom on the
multi-kingdom network was the “stabilizer” effect. When
fungal interactions were integrated into the single-
kingdom networks of plants, nematodes, bacteria, or
archaea, the networks became more connected and less
modular (Figure 4A, Table S2). The addition of fungi
enhanced the network stability of plants, nematodes, and
archaea substantially (Figure 4B). Notably, the single-
kingdom fungi network was very stable; the absolute value
of natural connectivity slope in the fungal network was
only 0.005, compared to 0.018, 0.024, and 0.021 for the
plant, bacterial, and archaeal single-kingdom networks,
respectively (Figure S5A). Fungal network stability may
provide the “basic skeleton” that supports the stability of
the entire multi-kingdom network. Previously, higher
network stability for fungi compared to bacteria network
stability has also been reported in drought-stressed
grassland mesocosms [20]. When the fungal network
was removed from the entire multi-kingdom network, the
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natural connectivity decreased overall (Supporting Infor-
mation: Figure S5B); furthermore, the mean connectivity
and edge number were largely reduced, and the entire
network became less integrated (Table S2).

Within the fungal community, EcM fungal network
was more connected than non-EcM fungal network
(Figure S6). This may be related to the predominance of
physical EcM networks (in the more traditional sense) in
timberline ecosystems [26]. The higher connectedness
within the EcM fungal community network may facili-
tate the colonization and spread of B. ermanii population
at the timberline. In addition, the differences between
EcM and non-EcM fungal effects on the multi-kingdom
network (including topological properties and stability)
were not obvious (Table S6, Figure S6). The addition of
EcM and non-EcM fungi individually enhanced the
network stability and connectivity of plants, nematodes,
and archaea (Figure S4); however, the enhancement was
weaker than the effect of the entire fungal community.
Consequently, the fungal community should be consid-
ered as a whole in either association network studies or
when formulating conservation strategies, which may be
different from the widespread approach in classical
fungal community ecology studies [38, 50].

In addition to the multi-kingdom network results,
MRM and SEM together showed that the plant commu-
nity strongly affected the fungal community, whereas the
fungal community significantly affected the archaeal
and nematode community, and vice versa (Figure 6B,
Table S8). Fungi had no direct effect on plants, which is
similar to our previous finding in alpine grasslands [38].
In addition, there were no direct effects between fungi
and bacteria, which is inconsistent with the finding of a
global soil microbiome survey [51]. Nevertheless, soil
fungi indirectly affected soil bacteria via their effect on
nematodes and archaea (Figure 6B), and exhibited the
largest proportion of cross-kingdom links with bacteria
(Figure 5). Overall, the results reflect that the fungal
community is at the center of multi-kingdom community
interactions and is the ‘bridge’ linking aboveground and
belowground communities in our study area. For
example, the plant community mediates EcM fungal
community and biomass by rhizodeposits, and the
variation of the fungal community will further affect
the nematode community by decreasing the abundance
of fungivorous nematodes [52].

Last but not least, it should be noted that our inferred
multi-kingdom network stems from statistical associa-
tions rather than directly verified biotic interactions,
although the multi-kingdom network analyses are
advancing our understanding of the actual roles of
species belonging to different kingdoms in a multi-
kingdom community. It remains an open question as to

how well multi-kingdom networks represent real biotic
interactions [53, 54]. Using machine learning algorithms
and trait-based prediction is one of important research
interests in the future [55]. In addition, experimental
validation is also an effective way to improve the
reliability of network analyses, despite the limited
interactive species and small habitat range [19, 40].

CONCLUSION

At the network and community levels, we demonstrated
that (1) soil fungi, including EcM, AMF, saprotrophic,
and other trophic fungi together play the role of “broker”
in the multi-kingdom network. When fungi are inte-
grated into the networks of plants, archaea, nematodes,
and bacteria, they increase their connectivity and
stability while decreasing their modularity. In particular,
fungi are inclined to build cross-kingdom edges and
module-to-module connections. (2) Soil fungal commu-
nities play the role of a “bridge” in the multi-kingdom
community. Fungal communities are located at the
center of the multi-kingdom community, and they link
plants and soil biota (Figure 6). The findings in the
present study highlight the roles of fungal communities
and their interactions (particularly EcM fungi [56]) with
other biota. The findings, which enhance our under-
standing of the potential roles and interactions of
different soil biota and plants, could facilitate the
formulation of appropriate conservation strategies in
high elevation timberline ecosystems, and in other
similar ecosystems globally.

METHODS

Study area, sample collection, and plant
surveys

The study area is located on the northern slope of
Changbai Mountain, Northeast China. In the area, B.
ermanii grows over the elevational range of about
1700-2100 m a.s.l., forming a broad timberline ecotone
from closed forests to alpine tundra in the mountain top
[57, 58]. Along the ecotone, the soils neighboring 30
mature B. ermanii individuals were sampled along the
elevation from 1688 to 2113 m (Figure S9A). With the
trunk as the center and the diameter at breast height
(DBH) as the distance from the stem, four soil cores
(diameter = 3.5 cm, depth =10cm) were collected after
the removal of litter and mixed as a composite soil
sample (Figure S9B). In addition, plant community
composition and plant cover, including trees, shrubs,
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and herbs, were recorded in the plots near each of the B.
ermanii individuals (Figure S9B). In the present study,
plant communities in the periphery of B. ermanii
individuals changed significantly along the elevation
(R*=0.321; Figure S10), and plant richness showed a
U-shaped curve, with the lowest richness in the mid-
elevation (Figure S11).

The following parameters associated with the focal B.
ermanii individuals were recorded: population density
(number of B. ermanii individuals in the tree survey
plots), litter depth, tree height, canopy diameter, DBH,
and distance to the forest edge. Root C, root N, root
phosphorus (P), root potassium (K), root calcium (Ca),
root magnesium (Mg), root manganese (Mn), root
aluminum (Al), root iron (Fe), root C/N ratio, root N/P
ratio, as well as the lignin, cellulose, hemicellulose,
sugar, protein, free amino acid and free fatty acid
contents in roots were determined from the root samples.
Soil moisture, pH, conductivity, nitrate N, ammonium N,
dissolved organic carbon (DOC), dissolved organic
nitrogen (DON), total C, total N, total P, C/N ratio, N/P
ratio, total K, total Ca, total Mg, total Mn, total Al, total
Fe, available P, available K, available Ca, available Mg,
available Mn, available Al, available Fe, as well as the
proportions of clay, silt and sand were measured from
the soil samples. The protocols have been described in
our previous study [34] and the data are summarized in
Figures S12 and S13.

Molecular analyses

The modified Baermann funnel method [59] was used to
enrich and extract nematode communities. Based on the
motility of nematodes, 50-g screened (2mm) soil was
immersed in 50-ml sterilized water and incubated for
48h at approximately 25°C. The soil leaching liquid
(including living nematodes) was collected in a 50 ml
centrifugal tube. For every sample, two tubes of
nematode liquids were collected. After centrifugation at
9000g for 20 min, two nematode pellets were combined
into one composite sample and frozen for DNA extrac-
tion. Screened soil (0.5g) was used to extract fungal,
bacterial, and archaeal DNA. The FastDNA Spin kit for
Soil (MP Biomedicals) was used to extract all soil
biota DNA.

The 18S small subunit (SSU) ribosomal gene was
amplified using the primers NF-1 (GGTGGTGCAT
GGCCGTTCTTAGTT) and 18Sr2b (TACAAAGGGCAG
GGACGTAAT) for the nematode community [60]. The
internal transcribed spacer 1 (ITS1) ribosomal gene was
amplified using the primers ITS1-F (CTTGGTCATTTA
GAGGAAGTAA) and ITS2 (GCTGCGTTCTTCATC
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GATGC) for the total fungal community [34]. To obtain
much more information on the phylum Glomeromycota
(fungi), we also performed a two-step PCR (first round:
AML1 (ATCAACTTTCGATGGTAGGATAGA) and AML2
(GAACCCAAACACTTTGGTTTCC); second round:
AMV4.5NF (AAGCTCGTAGTTGAATTTCG) and AMDGR
(CCCAACTATCCCTATTAATCAT)) to amplify the 18S
rRNA gene [61]. The 16 S rRNA gene was amplified using
the primers 515F (5-GTGCCAGCMGCCGCGG-3’) and
907R (5-CCGTCAATTCMTTTRAGTTT-3") for bacteria
[62]. The primers 524F10extF (TGYCAGCCGCCGCGG
TAA) and Arch958RmodR (YCCGGCGTTGAVTCCAATT)
were used to amplify archaea [63]. All the PCR products
were normalized to equimolar amounts and sequenced on
an Illumina MiSeq PE300 platform (Majorbio Company).

Raw sequences were processed using the ASV
method in the Quantitative Insight into Microbial
Ecology 2 (QIIME2) pipeline [64]. The raw sequences
with average quality scores of <20 or read lengths of
<80bp were filtered using Trimmomatic [65] and
merged using FLASH software [66]. The sequences were
denoised using the DADA2 algorithm, and the ASVs
were generated [67]. The SILVA SSU 138 release served
as the reference database for nematode, bacterial, and
archaeal taxonomy (https://www.arb-silva.de/) [68].
Before taxonomic assignments, the SILVA SSU 138
release was trained using the q2-feature-classifier (Pre-
fitted sklearn-based taxonomy classifier [69]) with
distinct primers for nematodes, bacteria, and archaea.
The ASVs for AMF were assigned using BLAST against
MaarjAM online (http://maarjam.botany.ut.ee/). The
Unite v8.0 (http://unite.ut.ee) release for QIIME served
as the reference database for fungal taxonomy [70].
Before assignment, the Unite release was also trained
using the q2-feature-classifier with the ITS1-F/ITS2
primers.

After removing the nontarget ASVs, 77,955 nematode
reads, 1,184,347 fungal reads, 562,808 AMF reads,
1,486,828 bacterial reads, and 895,426 archaeal reads
were retained, which corresponded to 246, 2,081, 182,
10,165, and 333 ASVs, respectively. After subsampling to
the minimum reads per sample and merging the fungal
and AMF ASV tables, four ASV tables for nematodes,
fungi, bacteria, and archaea were retained (Table S9).
Fungal functional guilds were assigned using FUN-
Guild [71].

Statistical analyses
All statistical analyses were conducted in R v4.1.0 [72]

and AMOS 21.0 (AMOS IBM). First, linear, quadratic,
and cubic regression models were used to determine the
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variations in neighboring vegetation (e.g., richness and
cover), B. ermanii associated factors, and soil properties
along the elevation gradient. The model with the lowest
Akaike's information criterion (AIC) value was selected
(Tables S10-S12). Significant variation in neighboring
plant community was tested using Permutational Multi-
variate Analysis of Variance in the vegan package [73].
After removing the highly collinear variables (r > 0.7), 40
variables were retained, which included seven neighbor-
ing floristic variables, 15 B. ermanii-associated factors,
and 18 soil properties (Figure S8). Subsequent analyses
were based on the 40 variables above.

The multi-kingdom networks of plants, nematodes,
fungi, bacteria, and archaea were constructed using the
extended SPIEC-EASI method [19]. In addition, the
single-kingdom networks of plants, nematode, fungi,
bacteria, and archaea were constructed, separately, using
the SPIEC-EASI method [74]. SPIEC-EASI is robust
against community compositionality bias [12, 74]. ASVs
occurring in <5 samples were removed from network
analyses (Table S9). Plant species table (absence/
presence) including 102 species was also used for
network analyses. Network properties, including node
number, edge number, mean connectivity, modularity,
average path length, and proportions of negative and
positive edges were selected for use in comparison of
networks. Node number, edge number, mean connectiv-
ity, modularity, and average path length were calculated
using the igraph package [75]. The proportions of
negative and positive edges were calculated using Gephi
v0.9.2 [76]. All network diagrams were visualized using
Gephi v0.9.2. In the entire multi-kingdom network, node
properties, including degree and betweenness, were also
calculated using the igraph package [75]. To compare
degree and betweenness among kingdoms, the node
degree and betweenness were transformed according to
the method of de Vries et al. [20], and their differences
were tested using the kruskalmc function in the pgirmess
package [77]. In addition, the nodes from plants,
nematodes, fungi, bacteria, and archaea were assigned
to the peripheral, connector, module hub, or network
hub, according to their patterns of within- and between-
module connections [13]. In addition, network stability
was estimated by removing 50% of nodes in a stepwise
fashion to assess how rapidly the natural connectivity
degraded in different single-kingdom networks as well as
in the multi-kingdom networks in the absence or
presence of fungi, nematodes, bacteria, and archaea
[78]. The lower the absolute value of the slope, the more
stable the network [79]. To compare the roles of EcM and
non-EcM fungi in association networks, the aforemen-
tioned network analyses were also performed for EcM
and non-EcM fungi, separately.

We analyzed the levels of preference of fungal links
for plants and other soil biota in the entire multi-
kingdom network. Based on the node numbers of plants
and other soil biota, the expected proportions of fungal
links were first calculated. Subsequently, the deviates
between the observed proportions of fungal links and the
expected proportions were calculated to represent the
preference for fungal links. In addition, 999 random
networks with the same numbers of nodes and edges
(incl. positive: negative edge proportions) were generated
for the fungal single-kingdom network and fungal within-
kingdom network based on the Erdos-Reyni model [80].
Afterward, the negative edge proportions were calculated in
the links of saprotrophic and EcM fungi as well as in the
remaining links within fungi. To enable comparisons across
networks and trophic groups, the negative edge proportions
were Z-score normalized, which accounted for the variation
in species richness and number of observed links [81]. The
Z-scores of negative edge proportion were defined as
Z= (Vobserved _Arandomized)/ SDra.ndomizeda where Vobserved is
the observed value, and A andomized ANd SDrandomized are the
average and standard deviation of the 999 randomized
matrices.

To test the biotic interactions among plants, nema-
todes, fungi, bacteria, and archaea at the community
level, two MRM models (i.e., MRM #1 and MRM #2)
were constructed [82, 83]. In MRM #1, the 40 noncol-
linear variables, geographic distance, and neighboring
plant community were treated as the predictors for the
compositions of microbial and nematode communities.
In MRM #2, the community compositions of soil
nematodes, fungi, bacteria, and archaea were also added
as predictors of community compositions in each
kingdom, separately. By comparing the explanatory rates
of the two MRM models, we determined whether biotic
interactions among soil biota affected their respective
community compositions. Finally, we constructed the
expected SEM model based on two hypotheses: (1) plant
community affects soil biota (incl. fungi) by modifying
soil properties; (2) fungi community affects plants and
soil biota (excluding fungi), and vice versa. Then we
obtained the optimal model based on AIC and other
statistical parameters in AMOS, which showed the
community-to-community relationships on the whole.
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