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Abstract

Single pathogen‐targeted disease management measure has shown drawbacks

in field efficacy under the scenario of global change. An in‐depth under-

standing of plant pathogenesis will provide a promising solution but faces the

challenges of the emerging paradigm involving the plant microbiome. While

the beneficial impact of the plant microbiome is well characterized, their

potential role in facilitating pathological processes has so far remained largely

overlooked. To address these unsolved controversies and emerging challenges,

we hereby highlight the pathobiome, the disease‐assisting portion hidden in

the plant microbiome, in the plant pathogenesis paradigm. We review the

detrimental actions mediated by the pathobiome at multiple scales and further

discuss how natural and human triggers result in the prevalence of the plant

pathobiome, which would probably provide a clue to the mitigation of plant

disease epidemics. Collectively, the article would advance the current insight

into plant pathogenesis and also pave a new way to cope with the upward

trends of plant disease by designing the pathobiome‐targeted measure.
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Highlights

• The resident microbiota is a hidden game changer in plant health and

disease.

• The invasive pathogen can hijack certain members of the resident

microbiota to form partnerships within the reassembled community, which

is currently conceptualized as the pathobiome.
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Health”, Grant/Award Number:
2020ZL008 • The pathobiome facilitates the pathological process of host plants, from the

onset of the disease to its progression, by coordinating complex interactions

at multiple scales.

• The pathobiome‐targeted approach may pave a new way to address the

increasing trends of plant diseases in the face of global change.

INTRODUCTION

The plant microbiome conventionally refers to the
resident microbiota as well as the whole spectrum of
molecules they produce in the host plants [1, 2]. The
native plant microbiota mediates an interaction network
at multiple scales, ranging from intramicrobiome inter-
actions to multitrophic interactions with their host
plants, exogenous microbes, and insects [3, 4]. Such
complex interactions have so far gained both scientific
and public interests because they determine the status of
the host plants, with an implication for agricultural
production and global food supply [5, 6]. In the efforts
researchers previously made, the plant microbiome has
been highlighted mostly due to their contribution to the
improvement of the fitness and health of the host plants
[7–10]. The disease‐preventing members of the resident
microbiota recently coined as soterobionts are known to
function as a defensive layer against pathogen invasion
[11–14], which is consistent with the hologenome‐
derived holobiont theory [15].

However, some native members in the resident
microbiota can also be potential pathogens and an
accumulation or change in the relative abundance of
these members in their hosts can lead to disease onset
or greater severity [16, 17], and some of these members
even can be manipulated by the invasive pathogen to
form the partnership along with the pathogenesis
process (Figure 1) [18, 19]. The association of the
host–resident microbiota with host pathogenesis has
already aroused a conceptual controversy in hologen-
ome [20], and the host pathogenesis‐associated micro-
bial consortia, presenting from disease onset and
progression, are contemporarily conceptualized as
pathobiome (Figure 1) [21, 22]. The emerging evidence
has already shown that the inoculation of the micro-
biota from the leaves of diseased plants into healthy
plants could result in leaf damage [23], suggesting the
pathobiome acts opposite to soterobionts, but the
causality between the pathobiome and host patho-
genesis remains largely elusive in plants. At present,
the pathobiome and the associated mechanistic insight
are scarcely explored in plants, in particular, the

unfolding actions of the pathobiome in the onset and
development of diseases require in‐depth investigation.

Here, we present the controversy in the plant
microbiome as well as the emerging challenges in the
studies of plant microbiome‐associated pathogenesis. In
the pathobiome‐included plant pathogenesis paradigm
(Figure 1), we discuss the detrimental actions mediated
by the plant pathobiome at multiple scales, which
underlies from the onset to the progression of plant
disease. We aim to highlight that the potential negative
impacts of the resident microbiota on plant health should
not be overlooked, and further holistic insight into the
microbiota‐associated interaction needs to be expanded
by the characterization of the pathobiome as well. We
further discuss how natural and human triggers of the
plant pathobiome prevalence act under the scenario of
global change, which is possibly a key to the prevention
of the plant pathobiome assembly. Collectively, this
article would advance the current understanding of plant
pathogenesis and offer new opportunities to cope with
the upward trends of plant disease epidemics by
developing pathobiome‐targeted measures.

MICROBIAL INTRA ‐ AND
INTER ‐SPECIES SIGNALING
SYSTEMATICALLY AFFECTS
PLANT PATHOGENESIS

The rapid advancement of multiomics has significantly
deepened our understanding of the structural and
functional diversity of the plant microbiota, and a
growing awareness of pathogenesis has evolved from
the “one pathogen‐one disease” paradigm to the patho-
biome concept [19]. Many diseases previously attributed
to one pathogenic agent are likely to be the result of
interactions among/between multiple microbial taxa and
their host plants. While the understanding of the roles of
the plant soterobionts reveals the defense against
pathogens, the mechanistic insight into the plant
pathobiome‐associated interactions is important for
revealing the process that governs the outcome of
pathogen infection in the host plants.
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Establishment of the mutualistic relationships among
the invasive pathogen and the native potentially patho-
genic microbial members has been hypothesized to
negatively affect the homeostasis of vegetative and
reproductive organs, drive the infection outcome, and
result in disease progression [19, 24]. Such microbial
mutualistic relationship is generally concealed within the
complex intramicrobiome interaction throughout the
below‐to‐above compartments from intraspecies to inter-
species and interkingdom [25–27], despite how the plant
pathobiome members cooperatively interact to establish
such relationships are still not well understood.

Chemical communication serves as a ubiquitous way
to drive the interactions within one microbial species. As
a language that individual bacterium use to communi-
cate with each other belonging to the same species, a
diverse array of small molecules shape the intraspecies
behavior and functions for their survival and adaption in
the hosts [28]. Quorum‐sensing (QS) was the first
identified bacterial intraspecies signaling system, which
enables bacterial cells to chemically sense the density of
the surrounding population and regulate various physio-
logical activities such as motility, biofilms, secondary
metabolism, and virulence in a cell density‐dependent
manner [29–31]. Interestingly, such intraspecies commu-
nication is also observed in fungal communities [32].
Similar to bacteria, fungi also mimic quorum regulation

to coordinate behaviors from the individual level to the
population level involved in pathogenicities, such as
germination, colony morphogenesis, sporulation, and
biofilm formation [33, 34].

Indeed, intraspecies communication in situ is largely
impacted under a more sophisticated network (Figure 2),
in which the diverse bacterial taxa resident in the same
eco‐niche of the host plants mediate interspecies inter-
actions [35]. Quorum quenching (QQ) has been previ-
ously characterized as ubiquitous interspecies interaction
employed by symbiotic bacteria to interfere with the QS
of phytopathogenic bacteria [36, 37]. For instance, a wide
array of commensals such as Microbacterium testaceum
from potato leaves have been found to interfere with the
N‐acyl‐homoserine lactone (AHL)‐based QS of phyto-
pathogens Pectobacterium carotovorum via QQ [38]. The
further cloning of the aiiM gene from M. testaceum
indicates that AiiM works as an AHL lactonase to
catalyze AHL ring opening, and the expression of AiiM
in the P. carotovorum reduces pectinase activity and
attenuates soft rot symptoms on potato [39]. As a
controversy, the establishment of the mutualistic rela-
tionship has been reported to be a prevalent principle
within the natural microbial communities, in which
bacteria typically form close mutualistic loops resulting
in indirect benefits to all species involved [40, 41]. For
instance, gut microbiota‐derived sources of carbon and

Pathogen

Re-assembled microbial community

Resident microbiota Pathobiome

Host plant pathogenesis

Health Sub-health Disease

Pathogen

FIGURE 1 The schematic representation of the pathobiome paradigm in the plant pathological process. Alongside the pathological process
of host plants, certain members of the resident microbiota can be manipulated by the invasive pathogen, forming a partnership within the
reassembled community. This ultimately results in the development of a unique microbial community that corresponds to the disease status of
the host plants. The microbial consortia associated with host pathogenesis, present from disease onset to progression, are collectively and
contemporarily conceptualized as the pathobiome.
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nitrogen could be exploited by invasive bacterial patho-
gens as nutrients and regulatory signals to promote their
own growth and virulence in mammals [42]. It has
recently shown that the rhizosphere‐inhabiting beneficial
bacterium Pseudomonas fluorescens can be converted
into a pathogen while it was transferred with the
disaggregated effector arsenal from the phytopathogenic
bacterium Pseudomonas syringae PtoDC3000, which
highlights the ecological scale implication of the intra-
species communication on the plant pathogenesis [43].
However, it still remains largely unanswered how the
invasive pathogen establishes mutualistic communica-
tion with certain resident microbial members to promote
disease progression. For understanding the group
behavior involved in pathobiome‐coordinated infection
in host plants, further efforts are expected to explore
unidentified signaling molecules and the hidden regula-
tory systems governing pathogenicity beyond QS.

MICROBIAL INTERKINGDOM
INTERACTION IN PLANT DISEASE
PROGRESSION

In plants, intramicrobiome interaction is not limited to
the intra‐ and inter‐species level but is also featured by
interkingdom interactions [44]. Within these heteroge-
neous microbial communities, bacteria, and fungi influ-
ence each other directly and indirectly via a way known
as bacterial–fungal interactions (BFIs) [45, 46], majorly

including physical interactions and chemical interactions
(Figure 2).

Investigation of the specific cooperation mechanism
of the assembled pathobiome in rice has further shown
that Burkholderia glumae (Bg), one of the causal agents
of bacterial panicle blight, could physically attach to
Fusarium graminearum (Fg) to promote its survival and
dispersal and consequently, the disease progression. Bg
can facilitate Fg occupation in rice heads by increasing
deoxynivalenol production and disease severity [47].
While this study has demonstrated that bacterium
utilizes fungus as an effective vector to facilitate its
infection and expansion in the host plant, less is known
about how fungi physically benefit from bacterium
during the mixed infection. Nevertheless, the clinical
evidence suggests that the pathogenic mycobiome can
benefit from bacteriome through the formation of the
multikingdom biofilm matrix, which functions as a
physical barrier to protect against the host and anti-
microbial insults and advance the infection [45, 48].

Serving as a major track to mediate swift chemical
interactions, the production of small molecules, such as
volatile organic compounds (VOCs), is highly conserved
in microbes and influences the physiology and even
virulence traits of the interacting members [49]. It has
been shown that the volatiles emitted by Fusarium
culmorum would significantly change the motility of two
bacteria Collimonas pratensis Ter291 and Serratia ply-
muthica PRI‐2C, which suggests that the volatiles might
act as signaling molecules for attracting bacteria and

FIGURE 2 Intramicrobiome interaction models involved in plant pathogenesis. Establishment of the mutualistic relationships between
the invasive pathogen and the native potentially pathogenic microbial members in the host plants has been hypothesized to impair the
homeostasis of plant vegetative and reproductive organs, drive the outcome of pathogen infection, and result in disease onset and
progression. Such microbial mutualistic relationship is hidden in the complex intramicrobiome interaction throughout the below‐to‐above
compartments from intraspecies to interspecies and interkingdom and driven by physical and chemical interactions mediated with an array
of molecules, such as small molecules, effectors, and unidentified signals.
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further are likely to achieve co‐infection of fungi and
bacteria [50]. In addition to VOC‐mediated interactions,
more complicated patterns have been demonstrated
between the BFI members during the disease progression
in various host plants. A pioneering study conducted in
the plant rhizosphere demonstrated that the soil‐borne
fungal pathogen Verticillium dahliae releases a virulence
effector VdAve1 to improve its colonization in tomato
and cotton by inhibiting most plant‐associated beneficial
bacteria, but some potentially pathogenic members such
as Pseudomonas corrugate, Ralstonia sp., and Serratia sp.
exhibit adaptability, suggesting the formation of the
pathobiome along with the successful infection of V.
dahlia, despite the unresolved mechanism underlying
this typical interkingdom communication [51]. Similarly,
bacteria have evolved an array of nanomachine channels
known as bacterial secretion systems to deliver effectors
for interkingdom interaction [52–54], but their role in
manipulating fungal pathogenicity on host plants
remains unexplored. The characterization of intra-
cellularly released chemical molecules, ranging from
small molecules to macromolecules such as effectors,
would be instrumental in revealing the landscape of BFI‐
mediated plant disease progression.

These findings have illuminated the importance of
interkingdom cooperation in plant pathobiome actions
(Figure 2), but the current understanding is still limited.
It is largely unknown whether and how the microbial‐
derived signaling molecules, such as chemical small
molecules as well as larger effectors, drive and maintain
the cooperation within the pathobiome for disease onset
and progression. In addition to the recently prominent
investigation of the pathobiome in various plant models
at the composition level [55–57], a comprehensive
understanding of the complex cooperation between the
primary disease‐causal agents and other potentially
pathogenic members is essential for advancing the
development of the pathobiome component‐targeted
antidisease strategies.

MULTISCALE INTERACTIONS
UNDERLYING THE PATHOBIOME ‐
RESPONSIBLE PATHOGENESIS

In addition to intramicrobiome interaction, the
pathobiome‐mediated interaction is omnipresent at
multiple scales [58, 59], including the plant–microbe
system, microbe–insect system, and the multitrophic
network involving both plants and insects (Figure 3).
While host plants establish close relationships with the
soterobionts to defend against pathogens, these potential
pathobiome members in turn collaborate to counteract

the plant genetics‐governed alliance. In the quadruple
mutant mfec (min7/fls2/efr/cerk1) of Arabidopsis, the leaf
endophytic microbiota of a Firmicutes‐rich community
shifted into a Proteobacteria‐rich community along with
leaf necrosis and/or chlorosis phenotypes under high
humidity condition. Interestingly, the bacterial commu-
nity transplantation experiments demonstrated that wild‐
type Col‐0 plants remained healthy when inoculated with
leaf endosphere‐derived SynComCol‐0, whereas dysbiotic
symptoms appeared in the presence of mfec leaf‐derived
SynCommfec. The underlying mechanism by which
mfec plants produced a dysbiotic bacterial community
was distinctly associated with the deficiencies in pattern‐
triggered immunity and the MIN7 vesicle‐trafficking
pathway [23]. These findings provide compelling
evidence for the causality between the pathobiome and
the disease onset, but how the pathobiome members
integrate their actions toward the host plants is still
unknown.

Plant receptors, known as pattern recognition recep-
tors (PRRs), play a crucial role in recognizing microbial
molecules (microbe‐ or pathogen‐associated molecular
patterns, MAMPs, or PAMPs), such as lipopolysacchar-
ides, flagellin, elongation factor‐Tu, lipoproteins, pepti-
doglycans, chitin, lipopolysaccharide, triacyl lipopep-
tides, lipoteichoic acid, and diacyl lipopeptides, to
trigger the innate immune response [60, 61]. PAMP‐
triggered immunity (PTI) and effector‐triggered immu-
nity (ETI), as the two layers of plant innate immunity,
potentiate each other to strengthen plant defenses [62].
The mutualistic relationship of the pathobiome members
is not only featured by the intramicrobiome cooperation
but also benefits from the integration of their distinctive
pathogen effectors‐assisted impacts, which can rapidly
evolve to overcome ETI by evading recognition of R
proteins, leading to effector‐triggered susceptibility (ETS)
[63]. Effectors produced by different members of the
plant pathobiome may target various plant factors
encoded by susceptibility genes (S genes) to magnify
the ETS of the host plants (Figure 3), such as the
manipulation of entry, the acquisition of nutrients,
the suppression of defenses, and the translocation of
bacterial proteins [2]. Moreover, conventional defense
strategies based on plant innate immunity remain
ineffective when confronted with highly virulent small
molecule‐based virulence systems employed by bacterial
phytopathogens [5]. The pathobiome members may arm
with diverse small‐molecule‐type virulence factors to
subvert plant's innate immunity‐based defense strategies
(Figure 3). These findings could explain the limitations of
the conventionally one pathogen‐targeted approach, and
more profoundly suggest that the integrated manage-
ment of pathobiome members associated with the disease
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would lead to a breakthrough in the insufficient efficacy
in the field.

The binary interaction model of insects and the
associated microbiota reveals that the microbes inhabiting
in herbivores can favor or improve the behavior and fitness
of the hosts by manipulating hormone levels and subvert-
ing the plant defense, despite the insufficient under-
standing at the multitrophic level [64, 65]. It is known that
a wide range of insect herbivores show a preference for
attacking plants' buds, leaves, and especially flowers, and
the peak incidence occurs at the flowering period in some
cases, leading to a significant reduction in fruiting and final
yield. Insect herbivores' survival and fitness are essentially
dependent on the host plant selection in nature, in which
host‐derived volatiles are the major components for the
attraction of insect herbivores [66]. Interestingly, a
tritrophic interaction study demonstrated that the plant
pathogen Candidatus Liberibacter asiaticus could enhance
the release of volatiles in citrus, which contributed to the
host attraction of the bacterium's insect vector Diaphorina
citri [67]. This study revealed the exquisite modulation of

herbivore–plant interactions by the plant pathogen,
suggesting that the specific members of the plant
pathobiome possibly employ a similar strategy to promote
their spread and disease epidemics via manipulating the
host attraction to insect herbivore vectors (Figure 3),
despite the unidentified regulatory pathway by which the
pathobiome stimulates emission of the insect‐attractive
host volatiles.

Besides, emerging evidence has shown that the native
microbiota could compromise defense against insect herbi-
vores by influencing the cross‐talk between the phytohor-
mones jasmonic acid (JA) and salicylic acid (SA) [68]. The
signaling between JA and SA is known to be antagonistic
and the signaling trade‐offs in plant defense have important
ecological consequences in nature that may be a general
mechanism by which the pathobiome member indirectly
influences the ecology and evolution of insect herbivores
and vice versa. For instance, certain pathobiome member
may suppress JA signaling and the related defense against
insect herbivores by inducing SA signaling (Figure 3).
Hence, the characterization of the plant pathobiome

FIGURE 3 The pathobiome‐coordinated multiscale actions. The pathobiome‐mediated interaction is omnipresent at multiple scales
including the plant–microbe system, microbe–insect system, and the multitrophic network involving both plants and insects, which governs the
deleterious actions on the host plants. In the binary interaction model of plants and microbes, the pathobiome members are capable of releasing
the active macro‐molecules such as effectors to induce host susceptibility by manipulating the traits controlled by the S genes. Various small‐
molecule‐type virulence factors are also deployed to disable the plant's innate immunity‐based defense and further drive the infection to move
toward disease progression. Moreover, the plant pathobiome members also participate in promoting disease epidemics by manipulating the
multitrophic interactions. For instance, the pathobiome member stimulates the emission of insect‐attractive host volatiles to manipulate the host
attraction to herbivore vectors for the spread of the whole pathogenic microbial community or influences the cross‐talk between the JA and SA
to compromise defense against herbivores. ETI, effector‐triggered immunity; ETS, effector‐triggered susceptibility; JA, jasmonic acid; PTI,
PAMP‐triggered immunity; R genes, resistance genes; S genes, susceptible genes; SA, salicylic acid.
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members that direct the deleterious actions at multiscale
will provide an alternative way of pesticides to disorder the
herbivore behavior. The future insight into the multitrophic
interactions in the plant–insect–microbe system serves as
an important basis for the novel strategies to break
both pathobiome‐responsible pathogenesis and insect pest
damage.

TRIGGERS BEHIND THE PLANT
PATHOBIOME PREVALENCE

A critical question remains unanswered as to what and
how a certain circumstance triggers the plant patho-
biome prevalence. Global change has been predicted to
continue with more drastic trends since the last century,
and its impact on the plant microbiome has recently
received attention due to the cascading effects on plant
productivity, biodiversity, and ecosystem functioning

[69, 70]. Given that the plant disease epidemics arise
under the scenario of global change [71], it is time to pay
attention to the implication of global change on the
prevalence of the plant pathobiome.

Climate change is a natural hallmark of global change
and the Earth is experiencing dramatic climate changes
such as global warming and increased frequency of
extreme weather events (Figure 4). An increasing trend
of plant disease outbreaks has been observed with global
warming. Mechanistic investigation has shown that
warm temperature negatively affects the innate immu-
nity of plants by compromising JA‐regulated basal
resistance, thereby promoting Magnaporthe oryzae infec-
tion in rice [72]. Going beyond the binary interaction
model of the host plants and one pathogen, the long‐term
effects of moderate surface warming (+2°C) on the
composition and diversity of the leaf microbiota of
Galium album were investigated. The results show a
reduction of the relative abundances of beneficial

FIGURE 4 Potential triggers responsible for the plant pathobiome prevalence. Given that plant disease epidemics arise under the
scenario of global change, a series of natural and human triggers responsible for the prevalence of the plant pathobiome are highlighted. An
increasing trend of plant disease outbreaks has been observed with climate change, such as global warming, and increased frequency of
extreme weather events (e.g., drought stress, flooding, and storms). Global climate change has been hypothesized to trigger the plant
pathobiome prevalence by promoting the assembly of the pathobiome member. As drivers of global change in the current human‐dominated
epoch, anthropogenic activity (e.g., agriculture, industrialization, energy production, and transportation) and anthropogenic activity‐
associated environmental pollutants further strengthen plant microbiome prevalence through a “vacuum effect,” which enable the
nonnative potentially pathogenic microbes from the surrounding environment settling in below‐to‐above compartments of host plants.
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bacterial taxa such as Sphingomonas and Rhizobium,
along with the enrichment of a group of potentially
pathogenic taxa (e.g., Enterobacter, Erwinia, and Acine-
tobacter) [73]. Additionally, a significant loss of diversity
and the disruption of the structure of the resident
microbiota under drought stress have been demon-
strated, whereas the taxonomic information and poten-
tial impact from the drought stress‐enriched microbial
member are insufficiently discussed [74]. More efforts
need to be further made to clarify the mechanisms
underlying the climate change‐triggered plant patho-
biome prevalence.

It is also remarkable that anthropogenic activity (e.g.,
agriculture, industrialization, energy production, and trans-
portation) is a driver of global change in the current human‐
dominated epoch, which has a huge impact on terrestrial
ecosystems [75–78]. It is still not well understood how
anthropogenic activity directly triggers the plant pathobiome
prevalence, but the serious occurrence of anthropogenic
activity‐associated environmental pollutants in various plant‐
grown habitats has emerged as a key clue in a series of case
studies recently completed (Figure 4). At the air interface
of the phyllosphere, air‐borne particulate matter, ozone,
carbon dioxide, sulfur dioxide, and nitrogen oxides destroy
the composition and decrease the phyllosphere microbial
community diversity (Figure 4), as well as further enhance
the plant–pathogen infection and trigger cascading effects on
plant diseases [79–82]. Because the phyllosphere is typically
characterized as a nutrient‐scarce environment, the diversity
of the phyllosphere microbiota is more sensitive to changes
in mineral availability [83]. It has been shown that high
levels of available phosphorus can deplete plant‐beneficial
microbes but increase pathobiome abundance [56]. In the
water and soil, the prevalence of antibiotics and micro-
plastics has been found to increase the abundance of
potential pathogens (Figure 4), which are spatially co‐located
with an increased abundance of antibiotic resistance genes in
the rhizosphere [84]. Remarkably, the increased inputs of
agrochemicals and fertilizers cause uncertain impacts on the
structure and function of the resident microbiota in both
rhizosphere and phyllosphere and reversely allow the
nonnative potentially pathogenic microbes from the sur-
rounding environment to colonize the below‐to‐above niches
of host plants through a “vacuum effect” [85]. On the
contrary, sustainable agricultural management, such as
organic farming, not only promotes the enrichment of plant
growth‐promoting bacteria in plants but also reduce the risk
of pathobiome prevalence by decreasing the abundance of
potential pathogens [86]. In summary, answering how
these natural and human triggers influence the prevalence
of plant pathobiome is a fundamental step to prevent the
assembly of the plant pathobiome before they initiate
pathogenic actions.

CONCLUSION AND FUTURE
PERSPECTIVES

Current disease prevention is anchored in existing
frameworks, such as Koch's Postulates, and is thus
predominantly dependent on chemical fungicide
application that is designed to prevent single pathogens
in agricultural production [87]. However, single
pathogen‐targeted prevention has gradually fallen short
of control efficacy in the field. Emerging evidence shows
the involvement of the pathobiome in plant patho-
genesis, suggesting that the onset and progression of
plant disease are not simply dominated by a single
pathogen but rather the pathobiome‐coordinated inter-
actions at multiscale. Although we still stand at the dawn
of the pathobiome‐included plant pathogenesis para-
digm, a promising solution to the current bottleneck in
disease prevention is guaranteed, especially when further
efforts are made to not only reveal the specific member in
the pathobiome at the taxonomic level but also molecular
understanding of the mechanisms underpinning the
assembly and multiple actions of the pathobiome to
direct the infection toward disease.
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