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Abstract

It has been proven that three‐dimensional protein structures could be modeled

by supplementing homologous sequences with metagenome sequences. Even

though a large volume of metagenome data is utilized for such purposes, a

significant proportion of proteins remain unsolved. In this review, we focus on

identifying ecological and evolutionary patterns in metagenome data, decod-

ing the complicated relationships of these patterns with protein structures, and

investigating how these patterns can be effectively used to improve protein

structure prediction. First, we proposed the metagenome utilization efficiency

and marginal effect model to quantify the divergent distribution of homo-

logous sequences for the protein family. Second, we proposed that the targeted

approach effectively identifies homologous sequences from specified biomes

compared with the untargeted approach's blind search. Finally, we determined

the lower bound for metagenome data required for predicting all the protein

structures in the Pfam database and showed that the present metagenome data

is insufficient for this purpose. In summary, we discovered ecological and

evolutionary patterns in the metagenome data that may be used to predict

protein structures effectively. The targeted approach is promising in terms of

effectively extracting homologous sequences and predicting protein structures

using these patterns.
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Highlights

• Metagenome benefits for homologous sequence supplement for protein

three‐dimensional (3D) structure prediction.

• Metagenome utilization efficiency shows a divergent distribution of proteins.

• Marginal effect model also quantifies this divergent distribution of proteins.
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• For mining homologous sequences, the targeted approach outperforms the

untargeted approach.

• Current metagenome data is not enough for modeling 3D structures for all

proteins.

INTRODUCTION

It has been proven feasible that protein three‐dimensional
(3D) structures could be modeled with the supplement of
metagenome sequences as homologous sequences. However,
although a large amount of metagenome data is used for
such purposes, a considerable number of proteins could still
not be modeled. Such phenomenon has attracted our at-
tention: is there any metagenome data‐dependent patterns
behind, what are the intricate but potentially important
properties about protein structures that lead to such patterns,
and how to best utilize such properties for better protein
structure prediction. More importantly, it was suspected that
the reason behind this is tightly related to the ecological and
evolutionary patterns of the metagenome sequence utiliza-
tion based on different niches (i.e., biomes).

Here we focused on the divergent distribution of
homologous sequences for protein families in the dif-
ferent metagenome and conducted a biome‐aware as-
sessment for different performances of metagenome‐
based protein 3D structure prediction methods. Firstly, to
detect the divergent distribution of homologous se-
quences in the metagenome from different biomes, me-
tagenome utilization efficiency is proposed, which is
defined as the proportion of aligned homologous se-
quences in all metagenome sequences. The analysis of
utilization efficiency on the ecological and evolutionary
perspective shows a biome‐dependent homologous se-
quences distribution for a protein family. Secondly, as a
model to illustrate the different potential of metagenome
data from different biomes in supplementing the homo-
logous sequences for protein structure modeling, the
marginal effect model could also quantify this divergent
distribution. Thirdly, constructed based on this pattern,
the targeted approach could find enough homologous
sequences from targeted biomes rather than the blind
search used in the untargeted approach. The benchmark
result shows that the targeted approach needs much
fewer metagenome sequences and results in a more
precise model compared to the untargeted approach.
Finally, the lower bounds for metagenome data needed
for protein structure prediction have been estimated and
the results show that current metagenome data (roughly
1.48E12 metagenome sequences) is still far from enough
for reliable protein structure prediction (roughly 7.12E12

metagenome sequences). And the targeted approach
would partially overcome this challenge by lowering this
bound to around 4.32E12 metagenome sequences due to
higher utilization efficiency.

Collectively, our assessment of the utilization effi-
ciency and the marginal effect has revealed strong eco-
logical and evolutionary patterns behind the
metagenome data for effective protein structure predic-
tion. Utilizing these patterns, the targeted approach is
promising in reliably excavating homologous sequences
and predicting protein structures.

PROTEIN 3D STRUCTURE
PREDICTION

It has always been fascinating how proteins, in their native
structures, could function in a species [1–3], leading to the
central topic of how protein structure is associated with
protein functions. Modeling the 3D structure of proteins is
a computer method for better understanding this important
subject [4,5]. A major challenge, however, is that the
number of ways a protein could theoretically fold before
settling into its final 3D structure is astronomical [6–9].
However, proteins fold spontaneously in nature, some
within milliseconds—a dichotomy sometimes referred to as
Levinthal's paradox [10,11]. These findings may allow for
more accurate drug development efforts, complementing
existing experimental approaches to uncover potential
therapies more quickly [12,13]. Furthermore, some pub-
lished tools offer the ability to investigate the hundreds of
millions of proteins for which we presently lack models—a
big territory of undiscovered biology [14–16]. There may be
proteins with novel and intriguing functions among the
unsolved proteins, much as a telescope allows us to view
deeper into the undiscovered cosmos [17–19].

Determination of protein 3D structure is usually
conducted by wet‐lab experiments [20–22]. X‐ray crys-
tallography, nuclear magnetic resonance spectroscopy,
and electron microscopy are some of the technologies
now utilized to identify the structure of a protein [23–25].
To develop the final atomic model, the scientist employs
several bits of information in each of these methods
[26,27]. However, because experimental approaches are
often slow and arduous, thus for many proteins,
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computational methods are usually employed to de-
termine, or more precisely predict, the protein 3D
structures, with varying resolutions [26,28,29].

TEMPLATE ‐FREE PROTEIN 3D
STRUCTURE PREDICTION

Protein 3D structures are usually predicted through two
approaches: template‐based and template‐free [5,30,31].
Template‐based protein structure prediction (also known
as homology or comparative modeling) employs knowl-
edge of solved structures to model the native or true fold
of a protein sequence [32–34]. Template‐based protein
structure prediction has long been thought to have tre-
mendous potential for producing atomically precise
models that are close to the native conformation [35,36].
However, because the template‐based method is strongly
reliant on an existing solved structure, it can only be used
for a restricted number of proteins [37,38].

Template‐free methods are currently big‐data‐driven
methods that are based on homologous protein se-
quences and multiple sequence alignment (MSA) to
predict protein structures without any known template
[39–41]. The template‐free method relies on a large
amount of high‐quality homologous sequences to make
accurate predictions [14,42,43]. Currently, several re-
presentative template‐free methods are widely used for
protein 3D structure prediction, including Rosetta [42],
Iterative Threading ASSEmbly Refinement (I‐TASSER)
[5], and AlphaFold [44]. Rosetta [42] is a long‐standing
software system for predicting protein structure well‐
known for its versatile functionalities and diverse appli-
cations [45–47]. I‐TASSER is also a long‐standing soft-
ware system for protein structure prediction [5].
Empowered by deep learning methods, I‐TASSER per-
forms well in the field of template‐free protein structure
prediction [48,49]. Most importantly, recent AlphaFold
predicted extremely high‐accuracy structures for 87 out
of 92 domains in the CASP14, outperforming other
methods [44,50,51]. All these template‐free tools'
achievements rely substantially on homologous se-
quences, implying that homologous sequences are cru-
cial for template‐free protein 3D structure prediction
[16,52,53].

In summary, template‐free methods are currently
commonplace in protein structure prediction, and several
template‐free methods are utilized to predict huge bat-
ches of proteins. On the one hand, deep learning tech-
niques have made it possible for template‐free methods
to predict protein structures at unprecedented speed and
accuracy. On the other hand, template‐free methods are
usually dependent on homologous sequences of the

proteins, which should be plentiful and diverse within
themselves. And these requirements for homologous se-
quences have resulted in the formation of a huddle for
template‐free protein 3D structure prediction.

CURRENT PROBLEMS FOR
TEMPLATE ‐FREE PROTEIN 3D
STRUCTURE PREDICTION

Everything has two or multiple sides, protein 3D
structure prediction is not an exception [54–56]. On one
side, current methods, particularly AlphaFold, have al-
ready enabled the accurate structure prediction across
more than 365,198 proteins for 21 species, resulting in
an average coverage of 80.45% for all the proteins in
reference proteome, including nearly all proteins (cov-
erage over 99%) in six species [57]. On the other side,
many proteins, including those in the Pfam database,
have unknown 3D structures, and this number is also
soaring rapidly [58–60]. In Pfam 26.0, only 2% of pro-
teins lack structural information, but in Pfam 34.0, more
than 50% of proteins do not have structural information
(Figure 1). This phenome would be due to the contra-
diction between the advanced sequencing technology to
find out more novel proteins and the limited develop-
ment of wet experiment technology or the limited
homologous sequences to identify their 3D structures
[38,61,62].

These facts have resulted in an ostensibly but sensible
trend: While the structures of more and more proteins are
being predicted with increasing precision, there are also
more and more proteins emerged that have no structure.
This is rational because more and more species have been
sequenced, leading to more and more proteins. As most of
these are novel proteins, their protein 3D structures are not
readily available. Faced with the increasing number of novel
proteins, there is an urgent need to effectively find all
available homologous sequences for template‐free protein 3D
structure prediction.

PREDICTION OF PROTEIN 3D
STRUCTURE USING
METAGENOME SEQUENCES

One possible solution for the prediction of no known
protein structure problem is by means of using meta-
genome sequence data to supplement the homologous
sequence [63–66]: As a big reservoir of functional genes,
metagenome could supply a considerable amount of
homologous sequences for proteins [67–69]. Combined
with more homologous information and an advanced
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template‐free prediction pipeline, many proteins with
unsolved structures would be modeled with reliable
structures. However, regardless of the protein structure
prediction technique used, “more sequences lead to
more protein structure predictions” is not true in most
circumstances [63,64]. Using over two billion proteins
from different metagenome samples (mostly from the
Gut microbiome), Baker et al. [63] could predict protein
structures for 614 proteins with unknown structures in
the Pfam database. While by only utilizing 97 million
proteins from Ocean metagenome data, Zhang et al. [64]
could predict protein structures for 27 proteins that
cannot be solved in Baker et al.'s work. Most recently,
by using 4.25 billion microbiome sequences from four
biomes (Gut, Lake, Soil, Fermentor), Yang et al. [70]
could predict protein structures for 1044 proteins in
the Pfam database. All these findings suggested that
metagenome sequences could supplement homologous
sequences for protein 3D structure prediction and that
this supplement has a significant biome‐related
divergence.

Thus, two questions are obvious: what means we can
utilize metagenome data for protein structure prediction?
And how much metagenome data is needed for protein
structure prediction? For both questions, the key objec-
tives lay ahead: effective homologous sequence supplement.
It would be vital to investigate what factors have affected
the process of prediction of protein structure from me-
tagenome data and find ways to best utilize these

metagenome data properties to discover protein 3D
structures for more proteins. To answer these critical
questions, we have examined the data‐dependent pat-
terns behind the metagenome data, from the ecological
and evolutionary perspectives aspects (Figure 2). Using
the successfully modeled proteins supplemented by me-
tagenome data with unsolved structures in the Pfam
database as a benchmark data set, we would investigate
their evolutionary patterns (number of homologous se-
quences; protein function) and the ecological patterns
(the enrichment patterns of source species and meta-
genome niche).

ESTIMATION OF THE
METAGENOME UTILIZATION
EFFICIENCY

With the explosive growth of microbiome data, searching
homologous sequences in metagenome for protein requires a
huge search space and a significant amount of time [71–73].
As a result, metagenome utilization efficiency is the key to
the successful prediction of protein structure from meta-
genome data. “Metagenome utilization efficiency” is defined
as the proportion of homologous sequences that could be
used for MSA supplement, among all sequences examined.
Apparently, a greater metagenome utilization value showed
that employing metagenome data for protein structure pre-
diction was more successful. It was also clear how to boost

FIGURE 1 The number of Pfam families under release version changes up till Pfam version 34.0. The curve illustrates the number of
Pfam families ranged by the release version. The pie charts attached to the corresponding release version reflect the proportion of Pfam
families with known and unknown structures
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metagenome utilization: either increase the number of
homologous sequences that might be utilized for MSA sup-
plementation or limit the protein sequence search space. In
this review, the effectiveness of using metagenomes from
diverse biomes to complement homologous sequences was
assessed (Figure 3).

First, the homologous sequences of all the Pfam families
are searched against metagenome from different biomes to
evaluate the utilization efficiency (Figure 3A), which has
been utilized to model the reliable structures for Pfam fa-
milies (Gut, Soil, Lake, Fermentor and combined four data
set [70], multiple biomes from IMG database [63] and Ocean
[64]). Then using per billion metagenome sequences, the
number of reliable proteins structures modeled and the
number of supplemented homologous sequences was cal-
culated (Figure 3B). For combined data set from four biomes
(Soil, Lake, Fermentor, and Gut), highly reliable folds were
modeled for 1044 Pfam families supplemented by 4.25 billion
metagenome sequences, accounting for 12.00% of 8700 Pfam
families with unsolved structures, higher than those in pre-
vious works [63,64] and one of the four biomes [70]. How-
ever, utilizing the combined data set has not been
demonstrated to be more efficient. Using the soil biome as
the representation of a single biome, 9.1e+5 homologous
sequences were detected, and the utilization efficiency would
be calculated as 6.5e+5 per billion metagenome sequences
(9.1e+5 homologous sequences/1.4 billion of sequencing

data used). However, for the combined data set, though
14.6e+5 homologous sequences were detected, the utiliza-
tion efficiency was only 3.4e+5 per billion metagenome se-
quence (14.6e+5 homologous sequences/4.3 billion of
sequencing data used), much lower than those based on
a single biome. The same result would be also deduced
when using the IMG database, which includes multiple
biomes, than single biomes (Figure 3B). This utilization
efficiency analysis shows that if we have targeted the
source biomes for the specific protein families, then
protein sequences from single biomes considered in this
study are significantly more efficiently used than using
the data from different biomes.

Taken together, the efficiency of metagenome utilization
is extremely biome‐dependent on a global view. Under par-
ticular environmental stresses in a given niche (i.e., biome),
some genes may evolve so that the host species could better
adapt to the environment, according to the ecological per-
spective on gene or protein evolution. Point mutations or
gene structural variations might develop during this process
and accumulate throughout generations of species
[70,74,75]. As a result, we could frequently find a collection
of homologous sequences for one protein under one biome.
These proteins would aid the host's survival. Hence, choos-
ing the proper biome for a single protein will greatly increase
metagenome utilization and give a hint to derive the protein
function for its host.

FIGURE 2 Examining the data‐dependent ecological and evolutionary patterns behind the metagenome data from multiple aspects.
To examine the correlation between metagenome and proteins in Pfam, evolutionary patterns, including the number of homologous
sequences and protein properties, would be investigated. Moreover, the ecological patterns, including the enrichment patterns of source
species and metagenome niche, would also be investigated
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MARGINAL EFFECT FOR PROTEIN
STRUCTURE PREDICTION

The term “marginal effect” generally refers to a data
set's ability to solve a certain problem [76–78]. In the
context of protein structure prediction, the “marginal
effect” ME (Bi, Pj) is defined as the potential of meta-
genome data from a given biome Bi in supplementing
homologous sequences for a certain protein Pj. The
higher marginal effect usually indicated higher utiliza-
tion efficiency if we use metagenome data from biome
Bi for supplementing homologous sequences for protein
Pj. Exemplified by PF12652, estimated by marginal ef-
fect model, up to 6218 homologous sequences could be
aligned by the Fermentor biome but only 24 homo-
logous sequences could be aligned from the Soil biome.

The actual alignment of homologous sequences from
the metagenome in the Fermentor and Soil biomes may
corroborate this marginal effect result (Figure 4A): For
PF12652, 4125 homologous sequences could be aligned
from the Fermentor biome, and 18 homologous se-
quences could be aligned from the Soil biome. Hence,
for PF12652, the metagenome from the Fermentor
biome could have a higher potential to supplement the
homologous sequences than the Soil biome.

We evaluated marginal effects on the four biomes
(Gut, Soil, Lake, Fermentor) [70] to supplement the
homologous sequences for all the 8700 unsolved Pfam
families, with results showing that big biomes such as
Soil, which contains many metagenome samples and
sequences, usually have high marginal effect values
for the majority of proteins, but this is not a “winner

(A)

(B)

FIGURE 3 Metagenome sequence utilization efficiency evaluation. (A) Supplemented by the metagenome data set from different biomes, the
homologous sequences were aligned to all the Pfam families, exemplified by metagenome from four biomes. Different color means their source
biome and the shade of the color represents the number of metagenome sequences aligned to the corresponding Pfam families (the darker, more
sequences aligned). (B) After homologous sequences aligned, the number of Pfam families predicted with reliable structures was calculated.
Averagely, after using metagenome sequences (billion sequences), the number of homologous sequences aligned, and reliable structure modeled
were calculated. Then, the metagenome sequence utilization efficiency was evaluated by calculating the proportion of the number of Pfam families in
the number of metagenome sequences and the proportion of the number of supplemented homologous sequences in all the metagenome sequences

6 of 16 | YANG AND NING



takes all” pattern. For many proteins, small biomes
like Fermentor could also have high marginal effect
values (Figure 4). From an evolutionary standpoint,
metagenome sequences in various biomes might have
distinct evolutionary information (i.e., homologous
sequence) for individual proteins.

OTHER FACTORS THAT MIGHT
IMPACT THE SUCCESS OF
PROTEIN STRUCTURE
PREDICTION USING
METAGENOME DATA

First, from the evolutionary perspective, the approach of
protein structure prediction using metagenome data
were characterized as a strategy that “exhausts all at-
tempts in discovering close sequences.” Hence, variables
affecting the quality of MSA would impact the success of
protein structure prediction using metagenome data. As
an important impact parameter, careful e‐value selection
while generating the MSA will reduce the noise

sequences included in the MSA before tapping the dis-
tant sequences. Yang et al. [70] showed that a well‐
chosen e‐value would impact the quality of MSA, then
impact the success of protein 3D structure modeling.
They also design a model, which could predict the
optimal sequence distance information parameter
(i.e., e‐value cutoff) used for constructing the MSA with
the highest quality when given a Pfam family as input.

Second, we should emphasize that, from the ecolo-
gical perspective, each biome is enriched for a specific set
of phyla, which has been proved in previous research
[79–81]. From the perspective of ecology, there are in-
tricate but potentially important properties about protein
structures that lead to their association with biomes, and
the internal evolutionary and ecological drivers have
shaped such properties: to adapt their biomes, functional
genes from microbial species have to evolve so that the
species could gain the advantage over other species in
that specific niche, thus certain functional genes (or
protein families) would highly likely to be enriched in a
specific niche, though not exclusive to be present in such
a niche.

(A)

(B)

(C)

(D)

(E)

(F)

(G)

FIGURE 4 Marginal effects evaluation. Based on the data in reference [70], the marginal effects of the four biomes (Gut, Lake, Soil,
Fermentor) on all the 8700 unknown Pfam families (version 32.0) were evaluated, described in reference [70]. The background is an
ontology structure that contains the protein families and their relationships, while different colors indicated the high marginal effect values
for that protein family by a certain biome. The marginal effect values are also annotated beside several proteins of interest. The data
show that the contributions of different biomes to a specific Pfam can be drastically different, as reflected by their marginal values
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UNTARGETED AND TARGETED
APPROACHES FOR PROTEIN
STRUCTURE PREDICTION

Nowadays, many protein 3D structure prediction pipelines
have been developed to utilize different metagenome se-
quences to supplement the homologous sequence (Table 1).
With a rapidly increasing number of metagenome se-
quences, the metagenome utilization efficiency and marginal
effect are critically important indicators of the effectiveness
of metagenome data supplement for the protein structure
prediction problem, methods that could improve the values
of these two indicators could gain advantage for solving the
problem.

The untargeted approach (Figure 5A), which is a
method that finds homologous sequences from any
source of the metagenome, does not have restrictions on
the protein sequence search space. The entire process of
an untargeted method lacks explanation and controll-
ability since the association between metagenome data
and the predicted proteins is not well known. Hence, the
model training and metagenome search were mostly
blind, and the source tracking of the most relevant biome
datasets for individual protein targets was inefficient.

TARGETED APPROACH COULD
UTILIZE METAGENOME DATA
PROPERTIES FOR BETTER
PROTEIN STRUCTURE
PREDICTION

While, compared to the untargeted approach, the tar-
geted approach (Figure 5B) is a type of method that
restricted the protein sequence search space. Instead of
a blind search, a targeted strategy based on knowledge

of the correlation between metagenome sequences
might locate enough homologous sequences supple-
mented by the metagenome from specified biomes,
which is favorable in terms of metagenome utilization
efficiency and marginal effect.

For this purpose, the goal is simple: select a biome or a
group of biomes for a given protein family, so that homo-
logous sequences from this biome are much more enriched
than those from other biomes. This MetaSource approach for
guiding the source biome of metagenome data for supple-
menting protein structure prediction was born from this goal
[70]: Based on the fact that different biomes enriched with
different proteins, MetaSource trained with the Pfam fa-
milies successfully modeled with a single biome. MetaSource
was able to identify which biome would provide the most
homologous sequences for protein, and the protein model
supplemented by the metagenome from the predicted biome
was validated with more accuracy than the protein model
supplied by the metagenome from all biomes combined.

As a targeted approach, MetaSource not only predicts
more precise protein structure but also outperforms un-
targeted approaches in terms of metagenome utilization
efficiency. Evaluated by the data from previous research
[70], MetaSource would be estimated with the metagen-
ome utilization efficiency as 7810 homologous sequences
per billion metagenome sequences, which is 50 times
higher than the utilization rate using the IMG database
(160 homologous sequences per billion metagenome se-
quences) [63] (Figure 3B). In other words, as a targeted
approach, MetaSource can be used to decrease the time
spent on the step of supplementing homologous se-
quences in protein structure prediction. This appears to be
a critical area for a focused strategy since it has a direct
impact on the efficiency of structure prediction.

For example, we have taken two Pfam examples from
PF07682 and PF05005 with the known structure to evaluate

TABLE 1 Approaches that could utilize metagenome data properties for better protein structure prediction

Approach Metagenome source Number of biomes Strategy Source

HMM+Rosettaa IMG database Multiple biomes Combined [63]

HMM+C‐QUARKb Ocean microbiome Single biomes Single [64]

Alphafoldc Metagenome Multiple biomes Combined [57]

DeepMSA+C‐I‐TASSERd Mgnify Multiple biomes Combined [70]

MetaSource +DeepMSA+C‐I‐TASSERe Mgnify Multiple biomes Targeted [70]

Note: Single strategy: using a single large biome as the protein source. Combined strategy: using a set of large biomes as protein sources. Targeted strategy:
customized methods that select different biomes for different proteins.
aUsing IMG database [70,82], models for 614 protein families were generated for unknown structures.
bUsing Tara Oceans data [80], proteins for 27 Pfam families were modeled with unsolved structures.
cA deep learning algorithm, leveraging multisequence alignments were used for modeling protein structures.
dBuilt on 4.25 billion microbiome sequences, 1044 Pfam families foldable by C‐I‐TASSER [70].
eAs targeted approach, MetaSource model was used to identify a set of biomes to supplement homologous sequence for specific Pfam families [70].
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(A) (B)

(C)

FIGURE 5 The targeted approach is essentially an enrichment approach. (A) Untargeted approach for the protein 3D structure
prediction supplemented by metagenome. (B) Targeted approach for the protein 3D structure prediction supplemented by metagenome. (C)
Case studies of modeling Pfam PF07682 and PF05005 with MSA from different biomes as the untargeted approach. For each biome, the
number of metagenome sequences and the proportion of aligned homologous sequences in all the metagenome sequences was calculated.
The correctness of 3D structure models was determined by comparing them to the known structure, which was quantified using the
TM‐score method. The MetaSource is a targeted approach that was developed in a prior study [70]. The model labeled with gray background
color is the source biome predicted by MetaSource. In blue type, the model with the highest TM‐score is displayed. 3D, three‐dimensional;
MSA, multiple sequence alignment
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the targeted approach and untargeted approach (Figure 5C)
[70]. We also discovered that, even though theMSA from the
combined biome contains more sequences than a single
biome, the structural models from the combined biome are
inferior to the MSA from a single biome (Soil or Lake), most
likely owing to noise from irrelevant metagenome sequences
(Figure 5C). As the targeted approach, MetaSource could
forecast the right biome to model the protein 3D structure
with the highest TM‐score, using much fewer metagenome
sequences than the untargeted approach. The cause for this
may be derived from the taxonomic profile found in the
Pfam database: PF07682 and PF05005 are mainly composed
of proteins from phylum Proteobacteria and Cyanobacteria,
which dominate in Soil and Lake biomes, respectively
[83,84]. This result supports the advantage of the targeted
approach: high coverage, high efficiency, and interpretability.

In summary, from the ecological and evolutionary per-
spectives, the metagenome utilization efficiency and mar-
ginal effect are crucial metrics for the effective prediction of
protein structure from metagenome data, respectively. Me-
tagenome utilization efficiency is highly data‐ and method‐
dependent: on the data side, it is heavily dependent on the
biomes from which the sequences are obtained; on the
method side, an untargeted approach and targeted approach
would lead to drastically different metagenome utilization
efficiency. Furthermore, in many cases, the targeted ap-
proach would result in a more precise protein structure be-
cause of the less noise involved, as demonstrated by the
comparison of the results based on two Pfam families.

EXAMINATION OF THE BOUNDS
FOR METAGENOME DATA
NEEDED FOR PROTEIN
STRUCTURE PREDICTION

Because template‐free methods rely on a high number
of homologous sequences, it would be beneficial to an-
ticipate the bound to represent all the proteins' reliable
structures. Although the exact lower bound of meta-
genome sequences required for protein structure pre-
diction is difficult to quantify, these bounds could be
expected based on the same two key factors: metagen-
ome utilization efficiency and marginal effect. Before
estimating the bounds, we made a few simple assump-
tions: (1) from the current Pfam database [60], the
number of proteins N(Pj), the homologous sequences for
a protein family Homo(Pj), and the average homologous
sequences for a protein AveHomo(Pj) could be derived;
(2) for current metagenome data (i.e., from IMG data-
base [85], Mgnify database [86] and NCBI SRA database
[87]), the number of biomes N(Bi) might be determined;
(3) based on previous work [63,64,70], metagenome

utilization efficiency UE(Bi, Pj) for using metagenome
data from a specific biome Bi for a specific protein Pj,
and the average metagenome utilization efficiency Ave
(UE) could be calculated. (4) Based on previous work
[63,64,70], marginal effect ME (Bi, Pj) for metagenome
data from a specific biome Bi in supplementing homo-
logous sequences for a specific protein Pj could be
calculated.

Based on these assumptions, when an untargeted
approach is used, a very rough estimation has shown that
it would need an enormous amount of metagenome data
without restriction on protein sequence search space.
The total number of metagenome sequences that would
be needed is:

UE UE B P N PAve( ) = ( ( , ))/ ( ),

N p

1

( )

i j j

j

(1)

Seq N P P UESum( ) = ( ) × AveHomo( ) × /Ave( ).j j (2)

And based on current data statistics, AveHomo
(Pj)∼ 3713, N(Pj) is 19,179 based on Pfam 34.0 (http://
pfam.xfam.org/). And Ave(UE)∼ 100 per billion meta-
genome sequences. Thus, Sum(Seq)∼ 7.12E12 is based
on the most conservative estimation.

When the targeted approach is used, the bound of the
number of homologous sequences could be largely reduced.
For all proteins, the number of metagenome sequences is:

seq P UE B PSum( ) = (Homo( )/ ( , )).
N P

1

( )

j i j

j

(3)

For this number, we can estimate the lower bound as
4.32E12. According to the data from previous research
based on four representative biomes (Gut, Soil, Lake,
Fermentor) [70], the average metagenome utilization ef-
ficiency (per billion metagenome sequence used for spe-
cific protein family) are Gut: 10, Soil: 248, Lake: 142,
Fermentor: 320, respectively. And the average utilization
efficiency is 180 per billion metagenome sequences, which
is equivalent with (10(Gut) + 248(Soil) + 142(Lake) +
320(Fermentor))/4(number of biomes) (Equation 1).

Taken together, we have created correlations be-
tween the rising number of proteins and the increas-
ing number of metagenome sequences by combining
our findings (Figure 6). With the increasing number
of sequences in the Pfam database (Figure 6A), the
gap between the number of protein sequences and
the needed metagenome sequences is widening
(Figure 6B). Given that the current Pfam database has
19,179 proteins, 7.12E12 metagenome sequences are
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estimated to predict all the protein structures but the
current metagenome database only about 1.48E12
metagenome sequences (from three metagenome da-
tabases: IMG database [85], Mgnify database [86] and
SRA database [87]). According to the data from pre-
vious research based on four representative biomes
(Gut, Soil, Lake, Fermentor) [70], the targeted ap-
proach (lower bound was estimated as 4.32E12 by
Equation 3) has a lower bound than the untargeted
approach, owing to the targeted approach's greater
average utilization efficiency (185 per billion meta-
genome sequences) than the untargeted approach
(100 per billion metagenome sequences). It should be
noted that this lower bound of the targeted approach
is estimated based on using four representative
biomes (Gut, Soil, Lake, Fermentor), yet it should
already be clear that the lower bound of the targeted
approach is small than that of the untargeted ap-
proach. Collectively, the targeted approach could
substantially reduce the number of metagenome se-
quences required for this prediction purpose.

DISCUSSIONS AND CONCLUSION

Protein 3D structures prediction supplemented by me-
tagenome sequence is a very promising strategy for de-
coding the structure and function of the proteins, yet
previous research has shown that such an approach is
quite unstable. This study has revealed the data‐ and
method‐dependent patterns behind this approach: The
metagenome sequences from different biomes could
contribute drastically different for a specific protein fa-
mily, while the targeted approach could perform much

better than the untargeted approach for protein family
homologous sequence supplement.

From the ecological perspective, the problem of ef-
fective discovery of protein family homologous sequences
is essentially a problem about ecological and evolu-
tionary patterns of the proteins: to adapt their biomes,
functional genes from microbial species have to evolve so
that the species could gain the advantage over other
species in that specific niche, thus certain functional
genes (or protein families) are highly likely to be en-
riched in a specific niche, though not exclusive to be
present in such a niche.

On the side of ecological modeling, the difficulty of
finding homologous sequences in protein families is
fundamentally an enrichment problem: from which
biome or phyla we can most effectively excavate homo-
logous sequences. And our assessment findings have al-
ready demonstrated that a targeted approach such as
MetaSource could establish the link between microbes'
habitats with homologous sequences, allowing us to de-
duce the sequential and structural aspects of functional
genes from microorganisms' habitat information. This
would prompt that the solved proteins would play im-
portant role in the predicted biomes and increase the
interpretability of the whole targeted process.

On the side of evolutionary patterns, the targeted ap-
proach would anticipate the source biome for a protein to
find enough evolutionary information (i.e., homologous
sequences) to model its reliable structure. Different from
the untargeted approach, which only provides the existing
evolutionary information in the metagenome, the targeted
approach would provide the guidance to find the evolu-
tionary information that already exists in nature but has not
been sequenced: If available metagenome cannot provide

(A) (B)

FIGURE 6 The relationships between the increasing number of proteins, and the increasing amount of metagenome sequences.
(A) The number of sequences in Pfam under different versions. (B) The correlation between the number of metagenome sequences and the
number of sequences in Pfam. Each node represents a Pfam release version
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enough evolutionary information for proteins, the evolu-
tionary information would be supplemented by sequencing
the new metagenome samples from the predicted biome.

Furthermore, we estimated the lower bounds to predict
the demands of metagenome sequences for predicting 3D
structures for all the proteins in the Pfam database, and we
discovered that current metagenome data could not meet
the needs of metagenome sequences. On one hand, col-
lecting more metagenome sequences could lead to more 3D
structure prediction, while on the other hand, there is al-
ways a need to balance the prediction power and efficiency
based on these huge number of metagenome sequences.
For this proposal, the targeted approach would be the ideal
alternative since it would boost metagenome utilization
efficiency by reducing the search space and providing suf-
ficient homologous information based on the knowledge of
the ecological and evolutionary information in various
biomes. In this regard, the focused strategy might sig-
nificantly close the gap for this prediction purpose by en-
hancing the metagenome usage efficiency and guiding the
subsequent homologous sequence supplement.

Collectively, the metagenome data utilization effi-
ciency is profoundly improved by the targeted approach
(exemplified by the MetaSource approach), demonstrat-
ing the targeted approach's enormous promise for protein
structure prediction from metagenome sequences. When
combined with another finding in this study that it is not
necessarily true that more homologous sequence leads to
better structure prediction, we deemed that the targeted
approach is a win–win solution for protein structure
prediction from metagenome sequences: it not only re-
quires a drastically reduced number of sequences but
also could improve prediction results for many protein
families. On the other hand, the targeted approach has
given us a wealth of knowledge regarding the ecological
and evolutionary patterns of the proteins of interest.

ACKNOWLEDGMENTS
This study was partially supported by the National Sci-
ence Foundation of China Grant (Grant Nos. 32071465,
31871334, and 31671374) and the Ministry of Science and
Technology's national key research and development
program grant (Grant No. 2018YFC0910502).

CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS
Kang Ning conceived of and proposed the idea and de-
signed the study. Pengshuo Yang and Kang Ning per-
formed the review. All contributed to editing and
proofreading the manuscript. All authors read and ap-
proved the final manuscript.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are
openly available at https://doi.org/10.1126/science.
aah4043 [63], https://doi.org/10.1186/s13059-019-1823-z,
[64], and https://doi.org/10.1073/pnas.2110828118, [70].
Supporting Information (tables, scripts, graphical ab-
stract, slides, videos, Chinese translated version, and
update materials) are available online DOI or GitHub
https://github.com/iMetaScience/iMeta2022Ning.

ORCID
Pengshuo Yang http://orcid.org/0000-0002-2757-3584
Kang Ning http://orcid.org/0000-0003-3325-5387

REFERENCES
1. Britton, Candace S., Trevor R. Sorrells, and

Alexander D. Johnson. 2020. “Protein‐Coding Changes
Preceded Cis‐Regulatory Gains in a Newly Evolved
Transcription Circuit.” Science 367: 96–100. https://doi.org/
10.1126/science.aax5217

2. Levin, Doron, Neta Raab, Yishay Pinto, Daphna Rothschild,
Gal Zanir, Anastasia Godneva, Nadav Mellul, et al. 2021.
“Diversity and Functional Landscapes in the Microbiota of
Animals in the Wild.” Science 372(6539): eabb5352. https://
doi.org/10.1126/science.abb5352

3. North, Justin A., Adrienne B. Narrowe, Weili Xiong,
Kathryn M. Byerly, Guanqi Zhao, Sarah J. Young,
Srividya Murali, et al. 2020. “A Nitrogenase‐like Enzyme
System Catalyzes Methionine, Ethylene, and Methane
Biogenesis.” Science 369: 1094–98. https://doi.org/10.1126/
science.abb6310

4. Zhang, Chengxin, Wei Zheng, Peter L. Freddolino, and
Yang Zhang. 2018. “MetaGO: Predicting Gene Ontology of
Non‐Homologous Proteins Through Low‐Resolution Protein
Structure Prediction and Protein‐Protein Network Mapping.”
Journal of Molecular Biology 430: 2256–65. https://doi.org/10.
1016/j.jmb.2018.03.004

5. Zheng, Wei, Chengxin Zhang, Yang Li, Robin Pearce,
Eric W. Bell, and Yang Zhang. 2021. “Folding Non‐Homologous
Proteins by Coupling Deep‐Learning Contact Maps with
I‐TASSER Assembly Simulations.” Cell Reports Methods 1(3):
100014. https://doi.org/10.1016/j.crmeth.2021.100014

6. Baker, David. 2019. “What has De Novo Protein Design
Taught us About Protein Folding and Biophysics?”
Protein Science 28: 678–83. https://doi.org/10.1002/
pro.3588

7. Huang, Po‐Ssu, Scott E. Boyken, and David Baker. 2016. “The
Coming of Age of De Novo Protein Design.” Nature 537:
320–7. https://doi.org/10.1038/nature19946

8. Laine, Elodie, Stephan Eismann, Arne Elofsson, and
Sergei Grudinin. 2021. “Protein Sequence‐to‐Structure
Learning: Is this the End(‐to‐End Revolution)?” Proteins
89(12): 1770–86. https://doi.org/10.1002/prot.26235

9. Pearce, Robin, and Yang Zhang. 2021. “Deep Learning
Techniques have Significantly Impacted Protein Structure
Prediction and Protein Design.” Current Opinion in
Structural Biology 68: 194–207. https://doi.org/10.1016/j.
sbi.2021.01.007

12 of 16 | YANG AND NING

https://doi.org/10.1126/science.aah4043
https://doi.org/10.1126/science.aah4043
https://doi.org/10.1186/s13059-019-1823-z
https://doi.org/10.1073/pnas.2110828118
https://github.com/iMetaScience/iMeta2022Ning
http://orcid.org/0000-0002-2757-3584
http://orcid.org/0000-0003-3325-5387
https://doi.org/10.1126/science.aax5217
https://doi.org/10.1126/science.aax5217
https://doi.org/10.1126/science.abb5352
https://doi.org/10.1126/science.abb5352
https://doi.org/10.1126/science.abb6310
https://doi.org/10.1126/science.abb6310
https://doi.org/10.1016/j.jmb.2018.03.004
https://doi.org/10.1016/j.jmb.2018.03.004
https://doi.org/10.1016/j.crmeth.2021.100014
https://doi.org/10.1002/pro.3588
https://doi.org/10.1002/pro.3588
https://doi.org/10.1038/nature19946
https://doi.org/10.1002/prot.26235
https://doi.org/10.1016/j.sbi.2021.01.007
https://doi.org/10.1016/j.sbi.2021.01.007


10. Ivankov, Dmitry N., and Alexei V. Finkelstein. 2020. “Solution
of Levinthal's Paradox and a Physical Theory of Protein
Folding Times.” Biomolecules 10(2): 250. https://doi.org/10.
3390/biom10020250

11. Zeng, Juan, and Zunnan Huang. 2019. “From Levinthal's
Paradox to the Effects of Cell Environmental Perturbation on
Protein Folding.” Current Medicinal Chemistry 26: 7537–54.
https://doi.org/10.2174/0929867325666181017160857

12. Dou, Jiayi, Anastassia A. Vorobieva, William Sheffler,
Lindsey A. Doyle, Hahnbeom Park, Matthew J. Bick,
Binchen Mao, et al. 2018. “De Novo Design of a Fluorescence‐
Activating Beta‐Barrel.” Nature 561: 485–91. https://doi.org/
10.1038/s41586-018-0509-0

13. Lu, Peilong, Duyoung Min, Frank DiMaio, Kathy Y. Wei,
Michael D. Vahey, Scott E. Boyken, Zibo Chen, et al. 2018.
“Accurate Computational Design of Multipass Transmembrane
Proteins.” Science 359: 1042–6. https://doi.org/10.1126/science.
aaq1739

14. Dhingra, Surbhi, Ramanathan Sowdhamini, Frédéric Cadet, and
Bernard Offmann. 2020. “A Glance into the Evolution of
Template‐Free Protein Structure Prediction Methodologies.”
Biochimie 175: 85–92. https://doi.org/10.1016/j.biochi.2020.04.026

15. Hameduh, Tareq, Yazan Haddad, Vojtech Adam, and
Zbynek Heger. 2020. “Homology Modeling in the Time of
Collective and Artificial Intelligence.” Computational and
Structural Biotechnology Journal 18: 3494–506. https://doi.org/
10.1016/j.csbj.2020.11.007

16. Vreven, Thom, Howook Hwang, Brian G. Pierce, and
Zhiping Weng. 2014. “Evaluating Template‐Based and
Template‐Free Protein‐Protein Complex Structure Prediction.”
Briefings in Bioinformatics 15: 169–76. https://doi.org/10.1093/
bib/bbt047

17. Cao, Yiwei, Sang‐Jun Park, and Wonpil Im. 2021. “A Systematic
Analysis of Protein‐Carbohydrate Interactions in the Protein
Data Bank.” Glycobiology 31: 126–36. https://doi.org/10.1093/
glycob/cwaa062

18. Li, Fei, Pascal F. Egea, Alex J. Vecchio, Ignacio Asial,
Meghna Gupta, Joana Paulino, Ruchika Bajaj, et al. 2021.
“Highlighting Membrane Protein Structure and Function: A
Celebration of the Protein Data Bank.” The Journal of
Biological Chemistry 296: 100557. https://doi.org/10.1016/j.
jbc.2021.100557

19. Saibil, Helen R. 2021. “The PDB and Protein Homeostasis:
From Chaperones to Degradation and Disaggregase
MachinesThe Journal of Biological Chemistry 296: 100744.
https://doi.org/10.1016/j.jbc.2021.100744

20. Calabrese, Antonio N., and Sheena E. Radford. 2018. “Mass
Spectrometry‐Enabled Structural Biology of Membrane
Proteins.” Methods 147: 187–205. https://doi.org/10.1016/j.
ymeth.2018.02.020

21. Kauffmann, Clemens, Krzysztof Kazimierczuk,
Thomas C. Schwarz, Robert Konrat, and Anna Zawadzka‐
Kazimierczuk. 2020. “A Novel High‐Dimensional NMR
Experiment for Resolving Protein Backbone Dihedral
Angle Ambiguities.” Journal of Biomolecular NMR 74:
257–65. https://doi.org/10.1007/s10858-020-00308-y

22. Wuthrich, Kurt. 2021. “Brownian Motion, Spin Diffusion and
Protein Structure Determination in Solution.” Journal of
Magnetic Resonance 331: 107031. https://doi.org/10.1016/j.
jmr.2021.107031

23. Nerli, Santrupti, Viviane S. De Paula, Andrew C. McShan, and
Nikolaos G. Sgourakis. 2021. “Backbone‐Independent NMR
Resonance Assignments of Methyl Probes in Large Proteins.”
Nature Communications 12: 691. https://doi.org/10.1038/
s41467-021-20984-0

24. Papageorgiou, Anastassios C., Nirmal Poudel, and
Jesse Mattsson. 2021. “Protein Structure Analysis and
Validation with X‐Ray Crystallography.” Methods in
Molecular Biology 2178: 377–404. https://doi.org/10.1007/978-
1-0716-0775-6_25

25. Yip, Ka Man, Niels Fischer, Elham Paknia, Ashwin Chari, and
Holger Stark. 2020. “Atomic‐Resolution Protein Structure
Determination by Cryo‐EM.” Nature 587: 157–61. https://doi.
org/10.1038/s41586-020-2833-4

26. Adiyaman, Recep, and Liam James McGuffin. 2019. “Methods
for the Refinement of Protein Structure 3D Models.”
International Journal of Molecular Sciences 20(9): 2301.
https://doi.org/10.3390/ijms20092301

27. Stiffler, Michael A., Frank J. Poelwijk, Kelly P. Brock,
Richard R. Stein, Adam Riesselman, Joan Teyra,
Sachdev, S. Sidhu, et al. 2020. “Protein Structure from
Experimental Evolution.” Cell Systems 10: 15–24. https://doi.
org/10.1016/j.cels.2019.11.008

28. Dorn, Márcio, Mariel Barbachane Silva, Luciana S. Buriol, and
Luis C. Lamb. 2014. “Three‐Dimensional Protein Structure
Prediction: Methods and Computational Strategies.”
Computational Biology and Chemistry 53PB: 251–76. https://doi.
org/10.1016/j.compbiolchem.2014.10.001

29. Kanitkar, Tejashree Rajaram, Neeladri Sen, Sanjana Nair,
Neelesh Soni, Kaustubh Amritkar, Yogendra Ramtirtha, and
M. S. Madhusudhan. 2021. “Methods for Molecular Modelling of
Protein Complexes.” Methods in Molecular Biology 2305: 53–80.
https://doi.org/10.1007/978-1-0716-1406-8_3

30. Soni, Neelesh, and M. S. Madhusudhan. 2017. “Computational
Modeling of Protein Assemblies.” Current Opinion in
Structural Biology 44: 179–89. https://doi.org/10.1016/j.sbi.
2017.04.006

31. Wu, Fandi, and Jinbo Xu. 2021. “Deep Template‐Based
Protein Structure Prediction.” PLoS Computational Biology
17: e1008954. https://doi.org/10.1371/journal.pcbi.1008954

32. Jaroszewski, Lukasz. 2009. “Protein Structure Prediction
Based on Sequence Similarity.” Methods in Molecular Biology
569: 129–56. https://doi.org/10.1007/978-1-59745-524-4_7

33. Petrey, Donald, T. Scott Chen, Lei Deng, Jose Ignacio Garzon,
Howook Hwang, Gorka Lasso, Hunjoong Lee, Antonina Silkov,
and Barry Honig. 2015. “Template‐Based Prediction of Protein
Function.” Current Opinion in Structural Biology 32: 33–8.
https://doi.org/10.1016/j.sbi.2015.01.007

34. Qu, Xiaotao, Rosemarie Swanson, Ryan Day, and Jerry Tsai.
2009. “A Guide to Template Based Structure Prediction.” Current
Protein & Peptide Science 10: 270–85. https://doi.org/10.2174/
138920309788452182

35. Chatzou, Maria, Cedrik Magis, Jia‐Ming Chang, Carsten Kemena,
Giovanni Bussotti, Ionas Erb, and Cedric Notredame. 2016.
“Multiple Sequence Alignment Modeling: Methods and
Applications.” Briefings in Bioinformatics 17: 1009–23. https://
doi.org/10.1093/bib/bbv099

36. Fiser, Andras. 2010. “Template‐Based Protein Structure
Modeling.” Methods in Molecular Biology 673: 73–94. https://
doi.org/10.1007/978-1-60761-842-3_6

QUANTIFYING METAGENOME FOR PROTEIN STRUCTURE MODELING | 13 of 16

https://doi.org/10.3390/biom10020250
https://doi.org/10.3390/biom10020250
https://doi.org/10.2174/0929867325666181017160857
https://doi.org/10.1038/s41586-018-0509-0
https://doi.org/10.1038/s41586-018-0509-0
https://doi.org/10.1126/science.aaq1739
https://doi.org/10.1126/science.aaq1739
https://doi.org/10.1016/j.biochi.2020.04.026
https://doi.org/10.1016/j.csbj.2020.11.007
https://doi.org/10.1016/j.csbj.2020.11.007
https://doi.org/10.1093/bib/bbt047
https://doi.org/10.1093/bib/bbt047
https://doi.org/10.1093/glycob/cwaa062
https://doi.org/10.1093/glycob/cwaa062
https://doi.org/10.1016/j.jbc.2021.100557
https://doi.org/10.1016/j.jbc.2021.100557
https://doi.org/10.1016/j.jbc.2021.100744
https://doi.org/10.1016/j.ymeth.2018.02.020
https://doi.org/10.1016/j.ymeth.2018.02.020
https://doi.org/10.1007/s10858-020-00308-y
https://doi.org/10.1016/j.jmr.2021.107031
https://doi.org/10.1016/j.jmr.2021.107031
https://doi.org/10.1038/s41467-021-20984-0
https://doi.org/10.1038/s41467-021-20984-0
https://doi.org/10.1007/978-1-0716-0775-6_25
https://doi.org/10.1007/978-1-0716-0775-6_25
https://doi.org/10.1038/s41586-020-2833-4
https://doi.org/10.1038/s41586-020-2833-4
https://doi.org/10.3390/ijms20092301
https://doi.org/10.1016/j.cels.2019.11.008
https://doi.org/10.1016/j.cels.2019.11.008
https://doi.org/10.1016/j.compbiolchem.2014.10.001
https://doi.org/10.1016/j.compbiolchem.2014.10.001
https://doi.org/10.1007/978-1-0716-1406-8_3
https://doi.org/10.1016/j.sbi.2017.04.006
https://doi.org/10.1016/j.sbi.2017.04.006
https://doi.org/10.1371/journal.pcbi.1008954
https://doi.org/10.1007/978-1-59745-524-4_7
https://doi.org/10.1016/j.sbi.2015.01.007
https://doi.org/10.2174/138920309788452182
https://doi.org/10.2174/138920309788452182
https://doi.org/10.1093/bib/bbv099
https://doi.org/10.1093/bib/bbv099
https://doi.org/10.1007/978-1-60761-842-3_6
https://doi.org/10.1007/978-1-60761-842-3_6


37. Brylinski, Michal. 2013. “Unleashing the Power of Meta‐
Threading for Evolution/Structure‐Based Function Inference of
Proteins.” Frontiers in Genetics 4: 118. https://doi.org/10.3389/
fgene.2013.00118

38. Pearce, Robin, and Yang Zhang. 2021. “Toward the Solution of
the Protein Structure Prediction Problem.” The Journal of
Biological Chemistry 297: 100870. https://doi.org/10.1016/j.jbc.
2021.100870

39. Anishchenko, Ivan, Minkyung Baek, Hahnbeom Park,
Naozumi Hiranuma, David E. Kim, Justas Dauparas,
Sanaa Mansoor, Ian R. Humphreys, and David Baker. 2021.
“Protein Tertiary Structure Prediction and Refinement Using
Deep Learning and Rosetta in CASP14.” Proteins 89: 1722–33.
https://doi.org/10.1002/prot.26194

40. Rother, Kristian, Magdalena Rother, Micha Boniecki,
Tomasz Puton, and Janusz M. Bujnicki. 2011. “RNA and Protein
3D Structure Modeling: Similarities and Differences.” Journal of
Molecular Modeling 17: 2325–36. https://doi.org/10.1007/s00894-
010-0951-x

41. Xu, Min, Jitin Singla, Elitza I. Tocheva, Yi‐Wei Chang,
Raymond C. Stevens, and Grant J. Jensen. 2019. “De Novo
Structural Pattern Mining in Cellular Electron Cryotomograms.”
Structure 27(679–691): e614. https://doi.org/10.1016/j.str.2019.
01.005

42. Hiranuma, Naozumi, Hahnbeom Park, Minkyung Baek,
Ivan Anishchenko, Justas Dauparas, and Dauparas Baker.
2021. “Improved Protein Structure Refinement Guided by
Deep Learning Based Accuracy Estimation.” Nature
Communication 12: 1340. https://doi.org/10.1038/s41467-021-
21511-x

43. Vangaveti, Sweta, Thom Vreven, Yang Zhang, and
Zhiping Weng. 2020. “Integrating Ab Initio and Template‐
Based Algorithms for Protein‐Protein Complex Structure
Prediction.” Bioinformatics 36: 751–7. https://doi.org/10.
1093/bioinformatics/btz623

44. Jumper, John, Richard Evans, Alexander Pritzel, Tim Green,
Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool,
et al. 2021. “Highly Accurate Protein Structure Prediction with
AlphaFold.” Nature 596: 583–9. https://doi.org/10.1038/s41586-
021-03819-2

45. Alford, Rebecca F., and Jeffrey J. Gray. 2021. “Membrane
Protein Engineering with Rosetta.” Methods Molecular Biology
2315: 43–57. https://doi.org/10.1007/978-1-0716-1468-6_3

46. Schoeder, Clara T., Samuel Schmitz, Jared Adolf‐Bryfogle,
Alexander M. Sevy, Jessica A. Finn, Marion F. Sauer,
Nina G. Bozhanova, et al. 2021. “Modeling Immunity with
Rosetta: Methods for Antibody and Antigen Design.”
Biochemistry 60: 825–46. https://doi.org/10.1021/acs.biochem.
0c00912

47. Yachnin, Brahm J., Vikram Khipple Mulligan, Sagar D. Khare,
and Chris Bailey‐Kellogg. 2021. “MHCEpitopeEnergy, a Flexible
Rosetta‐Based Biotherapeutic Deimmunization Platform.”
Journal of Chemical Information and Modeling 61: 2368–82.
https://doi.org/10.1021/acs.jcim.1c00056

48. Kemege, Kyle E., John M. Hickey, Scott Lovell,
Kevin P. Battaile, Yang Zhang, and P. Scott Hefty. 2011. “Ab
Initio Structural Modeling of and Experimental Validation for
Chlamydia trachomatis Protein CT296 Reveal Structural
Similarity to Fe(II) 2‐Oxoglutarate‐dependent Enzymes.”

Journal of Bacteriology 193: 6517–28. https://doi.org/10.1128/
JB.05488-11

49. Wu, Sitao, Jeffrey Skolnick, and Yang Zhang. 2007. “Ab
Initio Modeling of Small Proteins by Iterative TASSER
Simulations.” BMC Biology 5: 17. https://doi.org/10.1186/
1741-7007-5-17

50. Jumper, John, Richard Evans, Alexander Pritzel, Tim Green,
Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool,
et al. 2021. “Applying and Improving AlphaFold at CASP14.”
Proteins 89: 1711–21. https://doi.org/10.1002/prot.26257

51. Kryshtafovych, Andriy, Torsten Schwede, Maya Topf,
Krzysztof Fidelis, and John Moult. 2021. “Critical
Assessment of Methods of Protein Structure Prediction
(CASP)‐Round XIV.” Proteins 89: 1607–17. https://doi.org/
10.1002/prot.26237

52. Yan, Yumeng, Zeyu Wen, Xinxiang Wang, and Sheng‐You
Huang. 2017. “Addressing Recent Docking Challenges: A
Hybrid Strategy to Integrate Template‐Based and Free Protein‐
Protein Docking.” Proteins 85: 497–512. https://doi.org/10.
1002/prot.25234

53. Yu, Dong‐Jun, Jun Hu, Jing Yang, Hong‐Bin Shen,
Jinhui Tang, and Jing‐Yu Yang. 2013. “Designing Template‐
Free Predictor for Targeting Protein‐Ligand Binding Sites with
Classifier Ensemble and Spatial Clustering.” IEEE/ACM
Transactions on Computational Biology and Bioinformatics 10:
994–1008. https://doi.org/10.1109/TCBB.2013.104

54. Delarue, Marc, and Patrice Koehl. 2018. “Combined Approaches
from Physics, Statistics, and Computer Science for Ab Initio
Protein Structure Prediction: Ex Unitate Vires (Unity is
Strength)?” F1000Research 7: F1000. https://doi.org/10.12688/
f1000research.14870.1

55. Konagurthu, Arun S., Ramanan Subramanian, Lloyd Allison,
David Abramson, Peter J. Stuckey, Maria Garcia de la Banda,
and Arthur M. Lesk. 2020. “Universal Architectural Concepts
Underlying Protein Folding Patterns.” Frontiers in Molecular
Biosciences 7: 612920. https://doi.org/10.3389/fmolb.2020.
612920

56. Wu, Tianqi, Jie Hou, Badri Adhikari, and Jianlin Cheng. 2020.
“Analysis of Several Key Factors Influencing Deep Learning‐
Based Inter‐Residue Contact Prediction.” Bioinformatics 36:
1091–8. https://doi.org/10.1093/bioinformatics/btz679

57. Tunyasuvunakool, Kathryn, Jonas Adler, Zachary Wu,
Tim Green, Michal Zielinski, Augustin Žídek, Alex Bridgland,
et al. 2021. “Highly Accurate Protein Structure Prediction for the
Human Proteome.” Nature 596: 590–6. https://doi.org/10.1038/
s41586-021-03828-1

58. El‐Gebali, Sara, Jaina Mistry, Alex Bateman, Sean R. Eddy,
Aurélien Luciani, Simon C. Potter, Matloob Qureshi, et al.
2019. “The Pfam Protein Families Database in 2019.” Nucleic
Acids Research 47: D427–32. https://doi.org/10.1093/nar/
gky995

59. Finn, Robert D., Penelope Coggill, Ruth Y. Eberhardt,
Sean R. Eddy, Jaina Mistry, Alex L. Mitchell, Simon C. Potter,
et al. 2016. “The Pfam Protein Families Database: Towards a
More Sustainable Future.” Nucleic Acids Research 44: D279–85.
https://doi.org/10.1093/nar/gkv1344

60. Mistry, Jaina, Sara Chuguransky, Lowri Williams,
Matloob Qureshi, Gustavo A. Salazar, Erik L. L. Sonnhammer,
Silvio C. E. Tosatto, et al. 2021. “Pfam: The Protein Families

14 of 16 | YANG AND NING

https://doi.org/10.3389/fgene.2013.00118
https://doi.org/10.3389/fgene.2013.00118
https://doi.org/10.1016/j.jbc.2021.100870
https://doi.org/10.1016/j.jbc.2021.100870
https://doi.org/10.1002/prot.26194
https://doi.org/10.1007/s00894-010-0951-x
https://doi.org/10.1007/s00894-010-0951-x
https://doi.org/10.1016/j.str.2019.01.005
https://doi.org/10.1016/j.str.2019.01.005
https://doi.org/10.1038/s41467-021-21511-x
https://doi.org/10.1038/s41467-021-21511-x
https://doi.org/10.1093/bioinformatics/btz623
https://doi.org/10.1093/bioinformatics/btz623
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1007/978-1-0716-1468-6_3
https://doi.org/10.1021/acs.biochem.0c00912
https://doi.org/10.1021/acs.biochem.0c00912
https://doi.org/10.1021/acs.jcim.1c00056
https://doi.org/10.1128/JB.05488-11
https://doi.org/10.1128/JB.05488-11
https://doi.org/10.1186/1741-7007-5-17
https://doi.org/10.1186/1741-7007-5-17
https://doi.org/10.1002/prot.26257
https://doi.org/10.1002/prot.26237
https://doi.org/10.1002/prot.26237
https://doi.org/10.1002/prot.25234
https://doi.org/10.1002/prot.25234
https://doi.org/10.1109/TCBB.2013.104
https://doi.org/10.12688/f1000research.14870.1
https://doi.org/10.12688/f1000research.14870.1
https://doi.org/10.3389/fmolb.2020.612920
https://doi.org/10.3389/fmolb.2020.612920
https://doi.org/10.1093/bioinformatics/btz679
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/nar/gkv1344


Database in 2021.” Nucleic Acids Research 49: D412–9. https://
doi.org/10.1093/nar/gkaa913

61. Biehn, Sarah E., and Steffen Lindert. 2021. “Protein Structure
Prediction with Mass Spectrometry Data.” Annual Review of
Physical Chemistry 73. https://doi.org/10.1146/annurev-
physchem-082720-123928

62. Dokholyan, Nikolay V. 2020. “Experimentally‐Driven Protein
Structure Modeling.” Journal of Proteomics 220: 103777.
https://doi.org/10.1016/j.jprot.2020.103777

63. Ovchinnikov, Sergey, Hahnbeom Park, Neha Varghese,
Po‐Ssu Huang, Georgios A. Pavlopoulos, David E. Kim,
Hetunandan Kamisetty, Nikos C. Kyrpides, and David Baker.
2017. “Protein Structure Determination Using Metagenome
Sequence Data.” Science 355: 294–8. https://doi.org/10.1126/
science.aah4043

64. Wang, Yan, Qiang Shi, Pengshuo Yang, Chengxin Zhang,
S. M. Mortuza, Zhidong Xue, Kang Ning, and Yang Zhang.
2019. “Fueling Ab Initio Folding with Marine Metagenomics
Enables Structure and Function Predictions of New Protein
Families.” Genome Biology 20: 229. https://doi.org/10.1186/
s13059-019-1823-z

65. Wu, Qi, Zhenling Peng, Ivan Anishchenko, Qian Cong,
David Baker, and Jianyi Yang. 2020. “Protein Contact Prediction
using Metagenome Sequence Data and Residual Neural
Networks.” Bioinformatics 36: 41–8. https://doi.org/10.1093/
bioinformatics/btz477

66. Yang, Jianyi, Ivan Anishchenko, Hahnbeom Park,
Zhenling Peng, Sergey Ovchinnikov, and David Baker. 2020.
“Improved Protein Structure Prediction using Predicted
Interresidue Orientations.” Proceedings of the National
Academy of Sciences of the United States of America 117:
1496–503. https://doi.org/10.1073/pnas.1914677117

67. Aevarsson, Arnthór, Anna‐Karina Kaczorowska, Björn Thor
Adalsteinsson, Josefin Ahlqvist, Salam Al‐Karadaghi,
Joseph Altenbuchner, Hasan Arsin, et al. 2021. “Going to
Extremes—a Metagenomic Journey into the Dark Matter of
Life.” FEMS Microbiology Letters 368(12): fnab067. https://doi.
org/10.1093/femsle/fnab067

68. Parks, Donovan H., Christian Rinke, Maria Chuvochina,
Pierre‐Alain Chaumeil, Ben J. Woodcroft, Paul N. Evans,
Philip Hugenholtz, and Gene W. Tyson. 2017. “Recovery of
Nearly 8,000 Metagenome‐Assembled Genomes Substantially
Expands the Tree of Life.” Nature Microbiology 2: 1533–42.
https://doi.org/10.1038/s41564-017-0012-7

69. Rinke, Christian, Patrick Schwientek, Alexander Sczyrba,
Natalia N. Ivanova, Iain J. Anderson, Jan‐Fang Cheng,
Aaron Darling, et al. 2013. “Insights into the Phylogeny and
Coding Potential of Microbial Dark Matter.” Nature 499:
431–7. https://doi.org/10.1038/nature12352

70. Yang, Pengshuo, Wei Zheng, Kang Ning, and Yang Zhang.
2021. “Decoding the Link of Microbiome Niches with
Homologous Sequences Enables Accurately Targeted Protein
Structure Prediction.” Proceedings of the National Academy of
Sciences of the United States of America 118: e2110828118.
https://doi.org/10.1073/pnas.2110828118

71. Devkota, Suzanne. 2020. “Big Data and Tiny Proteins: Shining
a Light on the Dark Corners of the Gut Microbiome.” Nature
Reviews Gastroenterology & Hepatology 17: 68–9. https://doi.
org/10.1038/s41575-019-0243-6

72. Falony, Gwen, Sara Vieira‐Silva, and Jeroen Raes. 2015.
“Microbiology Meets Big Data: The Case of Gut Microbiota‐
Derived Trimethylamine.” Annual Review of Microbiology
69: 305–21. https://doi.org/10.1146/annurev-micro-091014-10
4422

73. Heyer, Robert, Kay Schallert, Roman Zoun, Beatrice Becher,
Gunter Saake, and Dirk Benndorf. 2017. “Challenges and
Perspectives of Metaproteomic Data Analysis.” Journal of
Biotechnology 261: 24–36. https://doi.org/10.1016/j.jbiotec.2017.
06.1201

74. Svenningsen, Nanna B., Danilo Perez‐Pantoja, Pablo I. Nikel,
Mette H. Nicolaisen, Víctor de Lorenzo, and Ole Nybroe. 2015.
“Pseudomonas putida mt‐2 Tolerates Reactive Oxygen Species
Generated During Matric Stress by Inducing a Major
Oxidative Defense Response.” BMC Microbiology 15: 202.
https://doi.org/10.1186/s12866-015-0542-1

75. Wang, Jicheng, Xiao Dong, Yuyu Shao, Huiling Guo, Lin Pan,
Wenyan Hui, Lai‐Yu Kwok, Heping Zhang, and Wenyi Zhang.
2017. “Genome Adaptive Evolution of Lactobacillus casei
under Long‐Term Antibiotic Selection Pressures.” BMC
Genomics 18: 320. https://doi.org/10.1186/s12864-017-3710-x

76. Coulombe, Janie, Erica E. M. Moodie, and Robert W. Platt.
2021. “Estimating the Marginal Effect of a Continuous
Exposure on an Ordinal Outcome Using Data Subject to
Covariate‐driven Treatment and Visit Processes.” Statistics in
Medicine 40: 5746–64. https://doi.org/10.1002/sim.9151

77. Fakher, Hossein Ali, Mostafa Panahi, Karim Emami,
Kambiz Peykarjou, and Seyed Yaghoub Zeraatkish. 2021.
“Investigating Marginal Effect of Economic Growth on
Environmental Quality Based on Six Environmental Indicators:
Does Financial Development have a Determinative Role in
Strengthening or Weakening this Effect?” Environmental Science
and Pollution Research 28: 53679–99. https://doi.org/10.1007/
s11356-021-14470-9

78. Mills, Molly C., Morgan V. Evans, Seungjun Lee,
Thomas Knobloch, Christopher Weghorst, and Jiyoung Lee.
2021. “Acute Cyanotoxin Poisoning Reveals a Marginal Effect
on Mouse Gut Microbiome Composition but Indicates
Metabolic Shifts Related to Liver and Gut Inflammation.”
Ecotoxicology and Environmental Safety 215: 112126. https://
doi.org/10.1016/j.ecoenv.2021.112126

79. Lloyd‐Price, Jason, Cesar Arze, Ashwin N. Ananthakrishnan,
Melanie Schirmer, Julian Avila‐Pacheco, Tiffany W. Poon,
Elizabeth Andrews, et al. 2019. “Multi‐Omics of the Gut
Microbial Ecosystem in Inflammatory Bowel Diseases.” Nature
569: 655–62. https://doi.org/10.1038/s41586-019-1237-9

80. Sunagawa, Shinichi, Luis Pedro Coelho, Samuel Chaffron,
Jens Roat Kultima, Karine Labadie, Guillem Salazar,
Bardya Djahanschiri, et al. 2015. “Ocean Plankton. Structure
and Function of the Global Ocean Microbiome.” Science 348:
1261359. https://doi.org/10.1126/science.1261359

81. Thompson, Luke R., Jon G. Sanders, Daniel McDonald,
Amnon Amir, Joshua Ladau, Kenneth J. Locey, Robert J. Prill,
et al. 2017. “A Communal Catalogue Reveals Earth's
Multiscale Microbial Diversity.” Nature 551: 457–63. https://
doi.org/10.1038/nature24621

82. Chen, I‐Min A., Ken Chu, Krishna Palaniappan, Manoj Pillay,
Anna Ratner, Jinghua Huang, Marcel Huntemann, et al. 2019.
“IMG/M v.5.0: An Integrated Data Management and

QUANTIFYING METAGENOME FOR PROTEIN STRUCTURE MODELING | 15 of 16

https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1146/annurev-physchem-082720-123928
https://doi.org/10.1146/annurev-physchem-082720-123928
https://doi.org/10.1016/j.jprot.2020.103777
https://doi.org/10.1126/science.aah4043
https://doi.org/10.1126/science.aah4043
https://doi.org/10.1186/s13059-019-1823-z
https://doi.org/10.1186/s13059-019-1823-z
https://doi.org/10.1093/bioinformatics/btz477
https://doi.org/10.1093/bioinformatics/btz477
https://doi.org/10.1073/pnas.1914677117
https://doi.org/10.1093/femsle/fnab067
https://doi.org/10.1093/femsle/fnab067
https://doi.org/10.1038/s41564-017-0012-7
https://doi.org/10.1038/nature12352
https://doi.org/10.1073/pnas.2110828118
https://doi.org/10.1038/s41575-019-0243-6
https://doi.org/10.1038/s41575-019-0243-6
https://doi.org/10.1146/annurev-micro-091014-104422
https://doi.org/10.1146/annurev-micro-091014-104422
https://doi.org/10.1016/j.jbiotec.2017.06.1201
https://doi.org/10.1016/j.jbiotec.2017.06.1201
https://doi.org/10.1186/s12866-015-0542-1
https://doi.org/10.1186/s12864-017-3710-x
https://doi.org/10.1002/sim.9151
https://doi.org/10.1007/s11356-021-14470-9
https://doi.org/10.1007/s11356-021-14470-9
https://doi.org/10.1016/j.ecoenv.2021.112126
https://doi.org/10.1016/j.ecoenv.2021.112126
https://doi.org/10.1038/s41586-019-1237-9
https://doi.org/10.1126/science.1261359
https://doi.org/10.1038/nature24621
https://doi.org/10.1038/nature24621


Comparative Analysis System for Microbial Genomes and
Microbiomes.” Nucleic Acids Research 47: D666–77. https://
doi.org/10.1093/nar/gky901

83. Bahram, Mohammad, Falk Hildebrand, Sofia K. Forslund,
Jennifer L. Anderson, Nadejda A. Soudzilovskaia,
Peter M. Bodegom, Johan Bengtsson‐Palme, et al. 2018.
“Structure and Function of the Global Topsoil
Microbiome.” Nature 560: 233–7. https://doi.org/10.1038/
s41586-018-0386-6

84. Li, Hanyan, Mike Barber, Jingrang Lu, and Ramesh Goel.
2020. “Microbial Community Successions and their Dynamic
Functions During Harmful Cyanobacterial Blooms in a
Freshwater Lake.” Water Research 185: 116292. https://doi.
org/10.1016/j.watres.2020.116292

85. Chen, I‐Min A., Victor M. Markowitz, Ken Chu,
Krishna Palaniappan, Ernest Szeto, Manoj Pillay,
Anna Ratner, et al. 2017. “IMG/M: Integrated Genome and
Metagenome Comparative Data Analysis System.” Nucleic
Acids Research 45: D507–16. https://doi.org/10.1093/nar/
gkw929

86. Mitchell, Alex L., Alexandre Almeida, Martin Beracochea,
Miguel Boland, Josephine Burgin, Guy Cochrane,
Michael R. Crusoe, et al. 2020. “MGnify: The Microbiome
Analysis Resource in 2020.” Nucleic Acids Research 48:
D570–8. https://doi.org/10.1093/nar/gkz1035

87. Sayers, Eric W., Jeffrey Beck, Evan E. Bolton, Devon Bourexis,
James R. Brister, Kathi Canese, Donald C. Comeau, et al. 2021.
“Database Resources of the National Center for Biotechnology
Information.” Nucleic Acids Research 49: D10–7. https://doi.
org/10.1093/nar/gkaa892

How to cite this article: Yang, Pengshuo, and
Kang Ning. 2022. “How Much Metagenome Data is
Needed for Protein Structure Prediction: The
Advantages of Targeted Approach from the
Ecological and Evolutionary Perspectives.” iMeta 1,
e9. https://doi.org/10.1002/imt2.9

16 of 16 | YANG AND NING

https://doi.org/10.1093/nar/gky901
https://doi.org/10.1093/nar/gky901
https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1016/j.watres.2020.116292
https://doi.org/10.1016/j.watres.2020.116292
https://doi.org/10.1093/nar/gkw929
https://doi.org/10.1093/nar/gkw929
https://doi.org/10.1093/nar/gkz1035
https://doi.org/10.1093/nar/gkaa892
https://doi.org/10.1093/nar/gkaa892
https://doi.org/10.1002/imt2.9



