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Abstract

It is difficult for beginners to learn and use amplicon analysis software

because there are so many software tools to choose from, and all of them

need multiple steps of operation. Herein, we provide a cross‐platform, open‐
source, and community‐supported analysis pipeline EasyAmplicon. Easy-

Amplicon has most of the modules needed for an amplicon analysis,

including data quality control, merging of paired‐end reads, dereplication,

clustering or denoising, chimera detection, generation of feature tables,

taxonomic diversity analysis, compositional analysis, biomarker discovery,

and publication‐quality visualization. EasyAmplicon includes more than 30

cross‐platform modules and R packages commonly used in the field. All

steps of the pipeline are integrated into RStudio, which reduces learning

costs, keeps the flexibility of the analysis process, and facilitates personalized

analysis. The pipeline is maintained and updated by the authors and editors

of WeChat official account “Meta‐genome.” Our team will regularly release

the latest tutorials both in Chinese and English, read the feedback from

users, and provide help to them in the WeChat account and GitHub. The

pipeline can be deployed on various platforms, and the installation time is

less than half an hour. On an ordinary laptop, the whole analysis process for

dozens of samples can be completed within 3 h. The pipeline is available at

GitHub (https://github.com/YongxinLiu/EasyAmplicon) and Gitee (https://

gitee.com/YongxinLiu/EasyAmplicon).
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Highlights

• EasyAmplicon is a user‐friendly, cross‐platform, and community‐supported
pipeline for amplicon data analysis.

• It has most of the modules for data processing and visualization in

microbiome research.

• The pipeline is maintained and updated regularly, and we encourage users

to contribute appropriate code.

INTRODUCTION

The rapid development of high‐throughput sequencing
technologies in the past 20 years has promoted an
increasingly deeper exploration of the crucial roles of
microbiome in humans [1–5], animals [6–8], plants
[9–11], and the environment [12–14]. Most of them were
driven by amplicon sequencing (such as 16S rDNA
sequencing of bacteria or archaea, eukaryotic 18S rDNA
or internal transcribed spacer, and nitrogen‐fixing
prokaryote's nifH gene) and had profiled the taxonomic

composition of the microbiome in various environ-
ments [15–17].

Wet laboratory operations of amplicon sequencing
are now standardized, and most operations are imple-
mented by specialized biotechnology companies or
sequencing centers. However, bioinformatics analyses
of amplicon data are still challenging, and the existence
of overwhelming software, methods, and algorithms
brings difficult choices for beginners. The popular
amplicon analysis pipelines include mothur [18],
USEARCH [19], and QIIME [20], all of which have been
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cited over 10,000 times. However, they still have obvious
shortcomings, such as a lack of downstream statistical
analyses and visualization solutions, higher time costs,
and being limited to specified operating systems. Some
online analysis webservers are easy to use, such as Qiita
[21], MGnify [22], and gcMeta [23], but they also have
several limitations, such as slow upload speed, long
waiting/running time, and few adjustable parameters,
which make it impossible to conduct customized
analyses [24, 25].

The lack of an easy‐to‐use and flexible amplicon
analysis pipeline seriously restricts researchers to under-
stand the data analysis process and hinders the develop-
ment of this field. Therefore, we developed an easy‐to‐
use, open‐source, and cross‐platform amplicon analysis
pipeline—EasyAmplicon. It can be used in both
command‐line mode and interactive mode in RStudio.
Currently, it provides more than 20 visualization styles
and generates publication‐quality figures easily. The
open‐source code could facilitate reproducible analysis

FIGURE 1 Pipeline of EasyAmplicon for analyzing paired‐end amplicon sequences. (A) Dimensionality reduction: processing raw
sequencing reads into feature tables. (B) Analysis: providing phylogenetic analysis, taxonomic classification, functional prediction, and
alpha‐ and beta‐diversity calculations. (C) Statistics and visualization: generating publication‐quality figures and performing statistical tests
for biological interpretations. ASVs, amplicon sequence variants; OTU, operational taxonomic units.
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and allow personalized modification. In addition, it also
generates standard input for the most popular software,
such as STAMP [26], LEfSe [27], PICRUSt 1 & 2 [28, 29],
BugBase [30], FAPROTAX [31], ImageGP[32], and iTOL
[33]. EasyAmplicon provides a free, reproducible, and
personalized solution for amplicon analysis, which could
be an amazing software tool for microbiome research.

RESULTS

Overview of EasyAmplicon pipeline

EasyAmplicon is an integrated pipeline for amplicon
data analysis and visualization on a laptop or server, and
it provides various tables and figures to explore under-
lying biological interpretations. This pipeline is easy to
install on Windows, MacOS, and Linux systems. The
installation method is described in detail in the Methods
section or available at https://github.com/YongxinLiu/
EasyAmplicon. For the test data, comprising 18 samples
and 50,000 PE250 reads per sample, the complete
analysis could be finished within about 3 h with a peak
memory footprint of less than 4 gigabytes (CPU: 2 cores,
2.1 GHz).

The EasyAmplicon is an end‐to‐end pipeline. It starts
with raw reads and ends with data tables and
publication‐quality figures (Figure 1). It mainly com-
prises three steps: dimensionality reduction, analysis,
and visualization & statistics (Figure 1). All the related
software is easy to install (Table 1), and we provide a
batch download package to accelerate pipeline
deployment.

Running the pipeline in command line or
R markdown mode

First, we open the pipeline file “pipeline.sh” using
RStudio. After setting the working directory, the analysis
process could be run step‐by‐step with only a mouse
clicking the “Run” button. For users to conduct their
own analysis, only the raw sequencing data and sample
metadata are needed, and the following analysis would
be processed by EasyAmplicon. If RStudio is not
applicable, we can copy and paste the scripts into the
pipeline.sh and run them in any Shell environment (such
as a terminal in Linux/Mac either locally or remotely, or
Git bash in Windows). All the related software and
packages are listed in Table 1. All the figures are saved in
PDF format by default, and some examples are shown in
Figures 2 and 3.

To make statistics and visualization of microbiome
data more personalized, users can open the “Tutor-
ial.Rmd” document in RStudio and then modify the
details of the figures, such as item order, color scheme,
legend layout, and so on. It can even generate a publish‐
ready combo figure (Figures 2 and 3) and a reproducible
HTML format report (Tutorial.html).

Third‐party software supporting

EasyAmplicon does not cover all the functions required
for microbiome analysis. There are currently some
mainstream and very distinctive microbiome analysis
tools, such as STAMP [26], LEfSe [27], PICRUSt 1 & 2
[28, 29], BugBase [30], FAPROTAX [31], and iTOL [33].

TABLE 1 Software and packages included in EasyAmplicon

Software Function in the pipeline Website

Git for Windows Provides Linux Shell like environment in Windows http://gitforwindows.org/

R Statistical processing and data visualization https://www.r-project.org

RStudio Integrated development environment for R and Shell https://posit.co/

VSEARCH A fast, free, and cross‐platform pipeline for amplicon sequencing
analysis [34]

https://github.com/torognes/vsearch

USEARCH Processes sequences and calculates alpha‐ and beta‐diversities [19] http://www.drive5.com/usearch/

SeqKit Toolkit for FASTA or FASTQ file manipulation [35] https://github.com/shenwei356/seqkit

ggplot2 R package for data visualization https://github.com/tidyverse/ggplot2

ggClusterNet R package for microbiome network visualization [36] https://github.com/taowenmicro/
ggClusterNet/

vegan R package for alpha and beta diversity analysis https://cran.r-project.org/package=vegan

ggraph Creates layout for tree map and circle packing chart https://github.com/thomasp85/ggraph

circlize Circular visualization [37] https://github.com/jokergoo/circlize
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FIGURE 2 (See caption on next page)
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However, some input files are difficult to prepare for
users without bioinformatics backgrounds. In EasyAm-
plicon, a lot of scripts are used to prepare input for all the
above software tools. The example visualizations, STAMP
(Figure 4A), LEfSe (Figure 4B), BugBase (Figure 4C), and
iTOL (Figure 4D) are shown. As for the most popular
QIIME 2 pipeline, the intermediate files generated by
EasyAmplicon can be imported into QIIME 2, and the
output files from QIIME 2 can also be imported into
EasyAmplicon for downstream analyses.

Anticipated results

EasyAmplicon provides multiple visualization styles for
amplicon data analysis. For alpha diversity (within‐
sample diversity), the boxplot is the best way to visualize
the data and compare each group (Figure 2A), and the
different letters represent significant differences
(p< 0.05, ANOVA, Tukey HSD test). Rarefaction analysis
reveals that the features reach the saturation stage with
increasing sequencing depth, and lines and error bars
represent the mean and standard error, respectively
(Figure 2B). If you want to examine the unique or
common features among samples or groups, the Venn
diagram is a good way to show this pattern (Figure 3A).
As for beta diversity, a heatmap based on Bray−Curtis
dissimilarity would be a good visualization method. The
colored grouping labels show how the samples cluster
(Figure 2C).

DISCUSSION

At present, for amplicon analysis, the most popular pipelines
are QIIME [20] and QIIME 2 [15], which have been cited
54,900 times (Google Scholar, January 4, 2023). However, the
two pipelines have some disadvantages that limit their use in
microbiome analysis, such as a too‐large installation
package, no support for the Windows system, and a lack
of publication‐quality visualization. EasyAmplicon is trying
to solve the above problems.

Currently, this is just the first version of Easy-
Amplicon. Runtime and memory usage depend on the
data set size. The current version has been used by more
than thousands of users and formally cited 36 times by
the end of 2022 (searching “EasyAmplicon” in Google
Scholar). The authors and core team of the WeChat
account “Meta‐genome” will update the pipeline in time.
The scripts for correlation, network analysis [38, 39],
random forest [40, 41], machine learning [42], deep
learning [43], transfer learning [44], and source track
[45–47] analyses are ongoing and will be included in the
pipeline soon. A webserver version like MicrobiomeA-
nalyst [48, 49] will be set up in the future. More general
command‐line scripts and visualization styles are still in
development, and they will be available in a new version
of the pipeline. Anyone who is interested in this project is
welcome to contribute scripts pertaining to analysis
methods, visualization styles, and other issues mentioned
in the GitHub repository.

CONCLUSION

In summary, the EasyAmplicon pipeline provides an
efficient, cross‐platform framework for amplicon analy-
sis. Additionally, more than 20 predefined analysis and
visualization solutions are provided for the multi-
dimensional exploration of your data and for generating
publication‐quality figures. Additionally, EasyAmplicon
provides some utilities to be integrated with other widely
used software for various needs.

METHODS

Quick start of EasyAmplicon

EasyAmplicon is coded mainly in Shell bash and R language
and could be run in command‐line (terminal) mode or
RStudio interactive mode. It is recommended to be deployed
on a Windows system (with the installation of Git for
Windows) and run in RStudio, especially for researchers

FIGURE 2 Examples of publication‐quality visualizations. (A) Boxplot showing alpha diversity in richness metrics among groups. Different
letters indicate statistical significance among groups (p<0.05, ANOVA, Tukey HSD). The horizontal bars within boxes represent medians. The tops
and bottoms of the boxes represent the 75th and 25th percentiles, respectively. The upper and lower whiskers extend to data no more than 1.5× the
interquartile range from the upper and lower edge of the box, respectively. (B) Rarefaction curve of richness shows that features reach saturation
stage with increasing sequencing depth. Each vertical bar represents standard error. (C) Heatmap based on Bray−Curtis dissimilarity. (D) Principal
coordinate analysis (PCoA) of Bray−Curtis dissimilarity. (E) Stacked bar plot of taxonomic composition in grouped samples at phylum level. (F) Tree
map of taxonomic composition. (G) Volcano plot showing significantly differential abundance taxa between KO andWT groups. (H) Manhattan plot
showing different features and related taxa between KO and WT groups. The numbers of replicated samples in this figure are as follows: in KO (n=
6), OE (n=6), and WT (n=6). KO, knock‐out; OE, overexpression; WT, wild‐type.
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FIGURE 3 Supplementary examples of publication‐quality visualizations to Figure 2. (A) Venn diagram showing common and unique
ASVs (relative abundance >0.1%) among three groups. (B) Constrained principal coordinate analysis (CPCoA) of three groups. (C) Stacked
plot of average relative abundance at phylum level of three groups. (D) Circle plot of average relative abundance at phylum level of three
groups. (E) Heatmap showing significantly different ASVs between KO and WT groups (Wilcoxon test, p< 0.05). ASVs, amplicon sequence
variants; KO, knock‐out; WT, wild‐type.
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FIGURE 4 Visualizations generated by third‐party software using the intermediate files of EasyAmplicon. (A) Extended error bar plot
at genus level in WT and KO groups by STAMP. (B) Cladogram showing biomarkers in each group by LEfSe. (C) Percentage of BugBase
annotated anaerobic bacteria at the phylum level. (D) Phylogenetic tree of 86 ASVs (relative abundance > 0.2%). The tree background is
colored by Phylum. The outer strip represents different classes. The heatmap represents the average relative abundance of all samples. The
bar plot represents the relative abundance of the WT group. ASVs, amplicon sequence variants; KO, knock‐out; WT, wild‐type.
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without programming knowledge and skills. In addition, it
also supports MacOS and Linux. To install it, please follow
the instructions available at https://github.com/YongxinLiu/
EasyAmplicon. Some dependent software and packages are
listed in Table 1, and they are integrated for easy installation.
The analysis process mainly includes three steps, as shown
in Figure 1. To prove its practicability, we provide a demo
data set that contains 18 samples belonging to three groups,
and each sample is rarefied to 50,000 reads. This example
data set is a subset of our previously published data
(CRA001464) [50] (rarefied example data are deposited in
GSA https://ngdc.cncb.ac.cn/gsa/, with accession ID:
CRA002352).

Dimensionality reduction (from sequences
to tables)

The accepted input includes paired‐end or single‐end/
merged sequences (fastq format), clean amplicons (fasta
format), and even the intermediate files generated by other
pipelines, as shown in Figure 1. Most amplicons are
sequenced on the Illumina HiSeq. 2500 or NovaSeq. 6000
platform in paired‐end 250 bp mode. Typically, the pipeline
starts with paired‐end reads in fastq format and merges them
to get single‐end sequences. Primers and barcodes are cut,
and then low‐quality reads are filtered out to get clean
amplicons. These steps are performed mainly using vsearch
[34] or USEARCH [19] (Figure 1A). The clean amplicons of
16S rDNA can be directly mapped to the reference database
GreenGenes [51], and the closed‐reference operational

taxonomic units (OTUs) table can be generated, which can
be used as the input of PICRUSt to predict the potential
functions [28, 52], and can be used as the input of BugBase
for phenotypic prediction [30]. Alternatively, clean ampli-
cons are usually clustered into OTUs (97% similarity) or
denoised into amplicon sequence variants (ASVs) in de novo
mode. Finally, the clean amplicons will be mapped to the de
novo identified OTUs/ASVs to generate a feature table.
Representative sequences can be used to construct a
phylogenetic tree and perform taxonomic annotation
(Figure 1A).

Analysis (from big tables to small tables)

Feature tables are milestone outputs of the dimensionality
reduction step. We can use the feature tables and
phylogenetic tree to calculate all kinds of alpha‐ and beta‐
diversity metrics. The feature tables with taxonomy annota-
tions can be used to collapse into a specific taxonomic level
and discover biomarkers at all taxonomic levels (Figure 1B).
In addition, EasyAmplicon provides many glue scripts to
generate input files for other widely used tools, such as
QIIME 2 [15], STAMP [26], and LEfSe [27].

Statistics and visualization (from tables to
figures)

EasyAmplicon can generate visualizations for alpha
diversity, beta diversity, taxonomic composition, and

TABLE 2 Summary of main visualization functions in EasyAmplicon

Plot Script Description References

Boxplot alpha_boxplot.R The plot shows data distribution in each group. Dots represent each
sample, and labeled letters indicate statistical significance among
groups

[10]

Rarefaction curve alpha_rare_curve.R Richness of rarefied samples or groups from 1% to 100% [10]

Venn diagram sp_vennDiagram.sh Visualizes common and unique elements among 2−5 groups [53, 54]

Ordination
scatter plot

beta_pcoa.R
beta_cpcoa.R

Shows the results of dimensionality reduction [55]

Heatmap sp_pheatmap.sh
compare_heatmap.sh

Shows distance or similarity matrix and deferential abundance features [50, 56]

Stack plot tax_stackplot.R Shows taxonomic and functional composition in each sample or group [57]

Cricular plot tax_circlize.R Shows taxonomic composition [58]

Circle packing chart tax_maptree.R Shows the relations and relative abundance of taxonomic hierarchy [59]

Volcano plot compare_volcano.R The dots in the plot show abundance and fold changes between two
groups

[50]

Manhattan plot compare_manhattan.sh Shows taxonomy, abundance, and pattern between two groups [60]
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biomarkers along with related statistical tables
(Figure 1C and 2; Table 2), and these publication‐
quality graphs include a box‐plot, scatter plot, stacked
bar plot, and heatmap. In addition, the output of
EasyAmplicon can be imported into STAMP [26], or
LEfSe [27] for biomarker identification, and visualized in
an extended error bar plot or Cladogram, respectively.
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