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Abstract

Metabolic division of labor (MDOL) represents a widespread natural phenomenon, whereby a complex metabolic pathway is shared
between different strains within a community in a mutually beneficial manner. However, little is known about how the composition of
such a microbial community is regulated. We hypothesized that when degradation of an organic compound is carried out via MDOL,
the concentration and toxicity of the substrate modulate the benefit allocation between the two microbial populations, thus affecting
the structure of this community. We tested this hypothesis by combining modeling with experiments using a synthetic consortium.
Our modeling analysis suggests that the proportion of the population executing the first metabolic step can be simply estimated by
Monod‐like formulas governed by substrate concentration and toxicity. Our model and the proposed formula were able to
quantitatively predict the structure of our synthetic consortium. Further analysis demonstrates that our rule is also applicable in
estimating community structures in spatially structured environments. Together, our work clearly demonstrates that the structure of
MDOL communities can be quantitatively predicted using available information on environmental factors, thus providing novel
insights into how to manage artificial microbial systems for the wide application of the bioindustry.
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Impact statement
Microorganisms drive global biogeochemical cycles by performing diverse metabolic pathways. Although such tasks
can be accomplished in one single microbial population, many important pathways are executed by distinct
populations responsible for different pathway steps, namely metabolic division of labor (MDOL). However, the
complexity of the natural communities poses great difficulty in understanding such metabolic behaviors. Here, we
studied the principles underlying the assembly of communities engaging with MDOL using a simple two‐population
consortium. Our study demonstrates that the substrate concentration and toxicity modulate the community structure.
Our findings provide critical insights into the understanding of how microbial communities assemble to drive
biogeochemical cycles and guide the rational engineering of microbial communities to meet the needs of the
bioindustry.

INTRODUCTION
In natural environments, microorganisms rarely live autono-
mously; instead, they interact with other individuals to form
complex communities, in which they secrete a variety of
toxins to compete with each other, or share metabolites to
mutually benefit their survival. Among diverse modes of
microbial interaction, metabolic division of labor (MDOL) is

one of the most widespread phenomena, where distinct
populations perform different but complementary steps of
the same metabolic pathway1–4. MDOL controls numerous
ecologically and environmentally important biochemical
processes. One important aspect of microbial metabolism
implemented by MDOL is the degradation of a variety of
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complex organic compounds. Bacterial degradation of these
complex substrates is usually mediated by long metabolic
pathways via a number of intermediates. Earlier studies
based on multiomics suggested that a number of these
degradation pathways are segregated across different
members within a natural community in an MDOL manner.
Typical examples include cooperative lignocellulose break-
down in goat gut microbiomes5, plant polysaccharide
digestion through MDOL in honey bee gut microbiota6, as
well as the degradation of polycyclic aromatic hydrocarbons
(PAHs) via sequential cross‐feeding between marine micro-
organisms7,8. Owing to these important ecological functions
contributed by MDOL, it is critical to understand how the
communities engaged in MDOL are regulated in detail.

However, omics‐based studies have so far failed to provide
a direct solution due to the complex set of factors involved in a
natural community. Recent progress in synthetic ecology
offers a “bottom‐up” approach to investigate the ecological
dynamics of MDOL in simple microbial systems4,9,10. Although
many studies have constructed synthetic consortia to engage
in MDOL for the removal of organic pollutants11–16, they usually
focused on whether MDOL enhances the biodegradation
efficiency compared to relevant monocultures comprised
of single species. Another challenge in understanding the
dynamics of these systems is that suitable quantitative models
explaining these systems remain absent. Therefore, a
quantitative framework to forecast how important ecological
factors regulate the structure of a community engaged in
MDOL is urgently required17.

The substrate whose concentration spatially and temporally
fluctuates in the marine18, soil19, and wastewater20

environments acts as one of the most important conditions that
govern the performance of the microbial communities21–23.
First, the concentration of substrates regulates the growth of
microbial populations according to the Monod equation24.
Second, many substrates, such as PAHs25,26, pesticides11–14,
and antibiotics16, are toxic to bacterial cells, inhibiting their
growth. Increasing the substrate concentration enhances re-
source availability of a population, which not only benefits its
growth but also potentially increases the toxic effects of sub-
strate that harms its growth (e.g., growth kinetics may follow the
equations integrated with toxicity terms27). Thus, the concen-
tration and toxicity of substrate profoundly affect the fitness of
its microbial degraders26,28,29. However, how substrate con-
centration and toxicity affect the relative fitness of different
strains involved in a community and thus govern the structure
of the community, still remains ill‐defined. As the structure of a
community is fundamental to determining its functioning30,31,
solving this question is fundamental for managing such mi-
crobial systems for the removal of serious pollutants.

Distinct from the pure culture, the effects of substrate on
different populations involved in an MDOL community may
vary quite a lot. First, asymmetric benefit allocation exists be-
tween different populations in the MDOL community. In MDOL
communities that degrade organic compounds, only the pop-
ulation performing the last steps can produce the growth re-
sources (such as small organic acids) that support the bacterial

growth (several examples are given in Figure S1). Therefore,
the population performing the last steps can preferentially
acquire and privatize these nutrients (which we henceforth call
product privatization), thus acquiring the most benefit, while
the other members have to collect nutrients leaked from this
population (Figure 1A). This uneven allocation of limited re-
sources generally benefits the population that executes the last
steps (we henceforth name this population the “Embezzler”,
analogous to a human worker responsible for the final step of
an assembly line, who pockets the final product and fails to
share profits with other workers). This phenomenon has been
observed in many recent studies11,14,32. Increasing substrate
concentration would enhance the flux of metabolites33,34. As
the Embezzler only has a limited capacity for consuming the
final product, increased metabolic flux causes more product
released from the Embezzler cells, in turn facilitating the growth
of the other population (Figure 1A; the right panel). Second,
substrate toxicity exerts different effects on the individual
members of the MDOL community. The population performing
the first step transforms the toxic substrate to
intermediates (named here “Detoxifier” henceforth), thus
reducing its intracellular concentration of the toxic substrate
(Figure 1B). Transformation of the toxic substrate considerably
reduces the effects of the toxic substrate on the Detoxifier
rather than on the Embezzler. As a result, the Detoxifier
population is favored whenever the substrate is toxic to both
Detoxifier and Embezzler.

It is critical to better understand the effects of substrate
concentration and toxicity on the structure of an MDOL com-
munity. To test our two hypotheses and to assess how substrate
concentration and toxicity shape the structure of microbial
community engaged in MDOL, we combined mathematical
modeling and experimentation using a synthetic microbial
community. We also tested whether the effects of substrate
concentration and toxicity change when such a community
grows in spatially well‐mixed and structured environments.

RESULTS
Substrate availability and toxicity shape the
structure of the MDOL communities in a
well‐mixed system

An ordinary differential equation (ODE) model for mod-
eling the dynamics of a community engaged in MDOL. To
assess the effects of substrate concentration and its toxicity on
the structure of the MDOL communities, we simulated the dy-
namics of a community engaged in MDOL in a well‐mixed
system using a mathematical model. The dimensionless form of
this model is composed of 11 ODEs (Equations 4–13 in Mate-
rials and Methods section; Table S1 and S2). As summarized in
Figure 2A, we considered the degradation of an organic sub-
strate (S) into an intermediate metabolite ( I ), before being de-
graded to the final product (P). We assumed that two strains
carry out this pathway via MDOL, with the first strain only ex-
ecuting the first step, and the second only executing the
second. Initially, only S was supplied and the initial concen-
tration was parameterized by s0 (nondimensional). Importantly,
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based on our hypothesis of “Embezzler behavior,” we assumed
that P, which is synthesized by the second strain, is the solely
available resource for the growth of both strains. As a result, the
second strain obtained the advantage of preferentially acquiring
the resource, while the first strain only obtained the growth‐
limiting resource that was leaked from the second strain.
Therefore, the second strain in our model system behaved like
an “Embezzler”. Moreover, to assess the effects of substrate
toxicity, we imposed a term in the equation describing pop-
ulation growth27 (Table S3) to the growth function, and the de-
gree of toxicity was mediated by parameter θ. Thus, for the
scenarios where the substrate was assumed to be toxic, the
strain executing the first step behaved like a “Detoxifier”.
Details about the model are described in Supporting
Information: S1.1–S1.4.

Analysis of the ODE model indicates that initial sub-
strate concentration affects the structure of an MDOL
community. To test our first hypothesis, which states that
substrate concentration affects the structure of the com-
munity, we analyzed our ODE model, omitting substrate
toxicity (Figure 2A). As the dimensionless model contains 11
independent parameters (Table S4) potentially affecting the
structure of an MDOL community, we performed the first
round of numerical simulations using 885,735 parameter sets
considering realistic value ranges for all parameters (Sup-
porting Information: S1.3; Table S4). Our analysis showed
that the Embezzler population dominated the steady‐state
community in these simulations, that is, steady‐state
frequencies of Detoxifier are lower than 0.5 (Figures 2B and
S2; no toxic scenarios), which was in agreement with our
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Figure 1. Hypothesis for how substrate concentration and toxicity govern the structure of the community engaged in metabolic division of
labor (MDOL). In a community degrading an organic compound through MDOL, the final product was assumed to be the sole carbon source
and was synthesized by the strain performing the second step. Therefore, this strain will obtain more nutrients, while the other strain has to
collect products released from this population. Thus, the last population was named “Embezzler” (denoted as the red cells). (A) Increasing the
concentration of the substrate improves the flux of the pathway. Since the product consumption ability of Embezzler cells is limited, increasing
the concentration will lead to higher final product leakiness, favoring the growth of the first population. (B) Introducing substrate biotoxicity also
favors the first population because it converts this toxic substrate (denoted as skull and bones), resulting in lower intracellular substrate
concentration compared to that of the Embezzler cells. Thus, the first population was named “Detoxifier.”
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basic assumption of product privatization. Next, we per-
formed multivariate regression analyses, which confirmed
that six key parameters played vital roles in shaping the
structure of the MDOL community (Table S4 and Figure S3A;
p < 0.01 and the fitting coefficient values over 0.01). Notably,
s0 was the second most important according to the absolute
value of the fitting coefficient. s0 positively correlated with the
steady‐state proportion of the Detoxifier population, sug-
gesting that a higher initial substrate concentration favors the
Detoxifier. These observations are consistent with our first
hypothesis.

Following the second round of simulations (Supporting
Information: S1.3), we found that when all other five key
parameters were kept constant, the steady‐state pro-
portion of the Detoxifier population (DF ) increased with an
increase in the initial substrate concentration
(Figure 2B,C). This steady‐state proportion can be
estimated using a Monod‐like formula with s0 as the
function argument (Figure 2C),

DF
Fd s

ks s
max 0

0
=

+

∙
(1)

Here, Fdmax represents the maximum proportion of
the Detoxifier populations when the substrate is nontoxic;
ks represents the half‐saturation constant. Our analysis
indicated that the simulation results of all tested parameter
sets can be accurately fit to Equation (1) (Figure 2D; values
of adjusted R2 mostly over 0.95), although the best‐
fit values of Fdmax and ks were affected by the values of the
other five key parameters (Supporting Information: S1.3;
Table S5; Figures S4 and S5). Together, these results
suggest that, in the absence of substrate toxicity, the
proportion of the Detoxifier population increases non-
linearly with the increase of the initial substrate concen-
tration and maintains a maximum value.

To investigate how substrate concentration governs the
structure of a community, we next analyzed the intracellular
and extracellular concentrations of the final product of the two

(A) (B)

(C) (D)

Figure 2. Simulation of the ordinary differential equation (ODE) model excluding substrate toxicity. (A) Schematic diagram showing the basic
assumptions of our ODE model omitting substrate toxicity. (B, C) A representative case shows how substrate concentration affects the
structure of a metabolic division of labor (MDOL) community. (B) The steady‐state structure of the simulated MDOL community with
the conditions of different initial substrate concentrations. As denoted in (A), the yellow bars indicate the relative abundance of Detoxifier, while
the red bars indicate the relative abundance of Embezzler. (C) The relationship between substrate concentration and the steady‐state fraction
of Detoxifier. The green dotted line denotes the simulated steady‐statefraction of the Detoxifier, while the red dashed line shows the plot of the
best fitting function using Equation (1). Parameter values used in these simulations are as follows: y = 10−4, Cp = 10, bg = 1, α1 = 10,000,
α2 = 1000, β2 = 1, sγ = 1, iγ = 1, pγ = 1, ρ = 10−2. The best‐fitting value of ks, in this case, is 35.3, and that of Fdmax is 0.417. (D) Distributions of
adjusted R2 of the fitting functions in the second‐round simulations that include substrate toxicity, using 7776 parameter value combinations of
the five key parameters ( 1α , sγ , iγ , pγ , and Cp).
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populations. We found that the fraction of final product
released by the Embezzler population increased with the
increase of initial substrate concentration (Figure S6A–I, red
dots). As a consequence, the Detoxifier obtained more
product from the environment, resulting in a higher intra-
cellular product concentration, gradually approaching that of
the Embezzler. Moreover, based on the first hypothesis, the
intracellular product concentration of the Detoxifier should
never exceed that of the Embezzler, even if we raised the
substrate concentration to high levels. This prediction was
confirmed by our analyses (Figure S6A–I, blue dots). As a
consequence, Embezzler cells maintained their advantage by
privatizing the final product. This result suggests that in the
absence of substrate toxicity, the benefit from product priva-
tization obtained by the Embezzler population cannot be
completely eliminated by simply increasing the substrate
concentration. This observation matched with our result that
the maximum proportion of the Detoxifier population (Fdmax)
never exceeded 0.5 (Figure S5). In summary, these results
suggest that substrate concentration affects the structure of
the community engaged in MDOL by affecting the amount of
the final product released by the Embezzler (Figure 1A).

Analysis of the ODE model indicates that substrate
toxicity affects the structure of an MDOL community. To
test our second hypothesis, we next employed an ODE
model that included the parameter of substrate toxicity
(Figure 3A). We applied a similar simulation and analysis
method to that used in the previous section (Supporting
Information: S1.3), we found that the degree of toxicity (θ) of
the substrate also played a significant role in structuring the
MDOL community. θ exhibited a significantly positive rela-
tionship with the final proportion of the Detoxifier population
(Figures 3B, S2 and Table S4), in agreement with our second
hypothesis. We then enhanced Equation (1) to collectively
consider the effects of substrate concentration and its tox-
icity (Figure 3C), as follows:
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In Equation (2), we use the term 1 Ts s
kt s
max 0

0
+

θ

θ+

∙ to describe the
effect of substrate toxicity on the proportion of the Detoxifier
populations. Tsmax represents the maximum fold increase of
Detoxifier proportion due to substrate toxicity; ks represents the
half‐saturation constant of substratetoxicity. This term is
positively affected by the degree of toxicity (θ) and the substrate
concentration (s0) because increasing either the degree off
toxicity or substrate concentration inhibited population growth
(see Equations (12 and 13) in Materials and Methods section
and Table S3). Our analyses further indicated that the Detoxifier
population values derived from numerical simulations accu-
rately match to the values predicted by Equation (2) (Figure 3D;
values of adjusted R2 mostly over 0.90; see Table S5 and
Figures S7–S10 for parameter sensitive analyses). These results
suggest that when substrate toxicity is taken into account,
the proportion of the Detoxifier population increases with both

the initial concentration and the degree of toxicity of the
substrate.

To address why substrate toxicity affects the structure of
our model community, we next analyzed the intracellular
and extracellular concentrations of both S and P of the two
populations. As shown in Figure S11, the fraction of final
product released by the Embezzler population largely
agrees with the results derived from nontoxic scenarios,
suggesting that the presence of substrate toxicity fails to
increase the leakiness of the final product from the Em-
bezzler. Our analysis of the S concentration showed that the
Detoxifier population generally maintained a lower intra-
cellular concentration level of S than that of the Embezzler
(Figure S12), due to its conversion of S, thus possessing a
growth advantage over the Embezzler population. Based on
this mechanism, a higher rate of the first reaction, or lower S
transport rate, appears to favor the Detoxifier population
because these two conditions assist Detoxifier in main-
taining a lower intracellular S concentration. Consistent
with this corollary, we found that Tsmax was significantly
positively correlated with a1 and significantly negatively
correlated with sγ (Table S5 and Figure S10). Together,
these results indicated that the difference in intracellular
concentration of substrate is the main reason why substrate
toxicity favors the Detoxifier population (Figure 1B).

When we assessed the community structure under
different conditions, we found that the Detoxifier pop-
ulation dominated the community when the substrate
concentration and substrate toxicity were sufficiently high
(relative proportion of the Detoxifier exceeded 50% of the
community; Figures 3C and S2), suggesting that the
benefit from product privatization of the Embezzler can be
neutralized by higher substrate concentrations and tox-
icity. This phenomenon is quantitatively characterized by
Equation (2): the maximum Detoxifier proportion (Fdmax)
never exceeded 0.5 in the absence of substrate toxicity
(Figure S8), but substrate toxicity can allow Detoxifier in
breaking through this constraint, as quantified by the
term 1 Ts s

kt s
max 0

0
+

θ

θ+

∙ .
In summary, our simulations clearly showed that when a

compound degradation pathway is executed through MDOL
in a community, both increasing substrate concentration and
toxicity of the substrate favor the Detoxifier population, re-
sulting in different community structures.

Experimental evaluation of our model prediction using
a liquid culture of a synthetic microbial consortium en-
gaged in MDOL. To experimentally test the prediction from
our ODE model, we engineered a synthetic consortium
composed of two Pseudomonas stutzeri strains, which
cooperatively degrade an organic compound, salicylate,
via MDOL (Figure 4A). In this synthetic consortium, strain P.
stutzeri AN0010 only retained its ability to convert the
toxic substrate, salicylate, to the intermediate catechol35,
behaving like the “Detoxifier”. The second strain, P. stutzeri
AN0001, was only able to metabolize catechol but pos-
sessed the preferential access to the final product, that is,
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pyruvate and acetyl‐CoA (Figure 4A), the direct carbon
source of both strains, thus behaving like the “Embezzler”.
For simplicity, we henceforth refer to our community as
“SMC‐mdol”.

We first derived a function to predict the structure of
our synthetic consortium based on our model using ex-
perimentally measured or previously reported parameters
(Figure 4B and Table S6; Supporting Information: S1.3).
We quantified the toxicity of salicylate and the measured
dimensionless value of the degree of toxicity (θ) of sali-
cylate was 0.0032 (Figure S13). On the basis of this
measurement, we mathematically predicted the effects of
substrate concentration on the structure of SMC‐mdol,
as indicated by the red line in Figure 4B,C. In the
liquid minimal medium supplemented with different con-
centrations of salicylate, SMC‐mdol exhibited similar

dynamics to that of our corresponding ODE simulations
(Figure S14). The steady‐state proportion of Detoxifier
population increased from 25.6 ± 2.5% to 61.1 ± 2.6% as
a function of initial salicylate concentration (Figure 4C).
Moreover, our prediction function accurately estimated
the steady‐state structure of SMC‐mdol, with a predictive
power (adjusted R2) of 0.983. Importantly, when the
substrate concentration reached high levels, the Detoxi-
fier population dominated the community (i.e., its relative
fraction over 50%), suggesting that substrate toxicity
considerably affected the structure of our consortium.
Together, these experiments confirmed our simple rule
proposed from mathematical modeling and suggested
that the structure of a microbial community engaged in
MDOL is governed by the concentration and toxicity of
the substrate.

(A) (B)

(C) (D)

Figure 3. Simulation using the ordinary differential equation (ODE) model suggests that both substrate concentration and its toxicity affect the
structure of a community engaged in metabolic division of labor (MDOL). (A) Schematic diagram showing the basic assumptions of our ODE
model that includes substrate toxicity. (B) Multiple linear regression analysis of the simulation results of the ODE model showed how the
parameters included in the model affect the structure of the MDOL community. Left: results from the first‐round simulations that considered all
the 12 parameters are shown. Blue font denotes the identified key parameters. Right: results from the second‐round simulations that only
considered the seven‐key parameters. The axis of the radar plot denotes the values of fitting coefficients of the parameters from multiple linear
regression analyses. Red dots denote that the corresponding parameter is positively correlated with the steady‐state fraction of the Detoxifier,
while the green dots represent the negative correlation. The origin axis (0) is highlighted by gray bold lines to emphasize the fact that the closer
a value is to zero, the smaller the effect on the community structure by the corresponding parameter. The data are also listed in Tables S4 and
S5. In this analysis, the toxic effects of substrate on population growth were assumed to follow a reciprocal relationship. Results considering
other relationships are shown in Figure S3. (C) A representative case shows how both substrate concentration and its toxicity collectively affect
the steady‐state proportion of Detoxifier cells. The green dots denote the simulated steady‐state fraction of the Detoxifier, and the surface
shows the plot of the best fitting function using Equation (2). Parameter values used in these simulations: y = 10−4, Cp = 10, bg = 1, α1 = 10,000,
α2 = 1000, β2 = 1, sγ = 1, iγ = 1, pγ = 1, ρ = 10−2. The best‐fitting value of ks, Fdmax, kt, and TSmax, in this case, are 48.9, 0.423, 0.848, and 3.39,
respectively. (D) Distributions of adjusted R2 of the fitting functions in the second‐round simulations that include substrate toxicity, using 7776
parameter value combinations of the five key parameters ( 1α , sγ , iγ , pγ , and Cp).
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Substrate availability and toxicity shape the
structure of the MDOL communities in spatially
structured environments
In the above modeling and experiments, we investigated
how substrate concentration and toxicity affect the
structure of an MDOL community, principally by assuming

that the substances and cells were well‐mixed in the
system. However, microorganisms frequently grow in
spatially structured environments36–38. Previous studies
reported that different physical characteristics between
the well‐mixed and spatially structured systems sig-
nificantly affected the structure of a community. These

(A)

(B) (C)

Figure 4. Structure of SMC‐mdol in a spatially unstructured system governed by different substrate concentrations and toxicity. (A) Schematic
showing the metabolic division of labor between strain Pseudomonas stutzeri AN0010 and strain P. stutzeri AN0001 during salicylate degradation.
Strain AN0010 degrades salicylate into the intermediate catechol, which feeds strain AN0001 as the substrate for further degradation. However,
strain AN0010 cannot use a direct carbon source from salicylate degradation to support its growth. When AN0010 was paired with strain AN0001,
AN0001 degrades catechol to pyruvate and acetyl‐CoA, enlabling the growth of AN0010. The skull and bones sign indicates that salicylate is toxic.
(B) Predicting the structure of the synthetic consortium using our ordinary differential equation model, as well as the derived predictive function
using Equation (2). The relationship between the steady‐state fraction of the Detoxifier population and substrate concentration (s0), as well as the
degree of substrate toxicity (θ), was built from our mathematical model using parameters consistent with our experimental system. Each green dot
shows the steady‐state fraction of the Detoxifier obtained by one simulation associated with the specific parameter set. The surface diagram
shows the distribution of the steady‐state fraction of the Detoxifier predicted by our proposed simple formula. The red line on the surface denotes
the scenario θ = 0.0032, which is the toxic strength of salicylate obtained from experimental measurements. (C) The experimental measured
steady‐state fractions of Detoxifier in cultures with different salicylate concentrations are consistent with those from mathematical predictions.
Experiments were performed in six replicates. The translucent band indicates the error bar of the data. Note that in the plots, substrate
concentrations are shown in dimensional form (S0, C‐mM), but in the predictive functions, the fitting analysis was performed using its
dimensionless form (s0).
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characteristics mainly include the differences in mass
diffusion, as well as the spatial structure of the com-
munity36,39–41. Therefore, we set out to test whether our
rule that the structure of a microbial community engaged
in MDOL is governed by the concentration and toxicity of
the substrate derived from a system that is well‐mixed can
be expanded to estimate the structure of an MDOL
community in spatially structured environments.

Individual‐based (IB) modeling of the dynamics of an
MDOL community. To simulate the dynamics of the MDOL
community in a spatially structured environment, we built an
IB model. The basic configuration of our IB model was
identical to the framework of our ODE model. In addition, we
assumed that the diffusion of S, I, and P was limited in the IB
model, and mediated by their diffusion coefficients (Ds, Di,

and Dp). Details of the IB model are described in Supporting
Information: S2.1–S2.4.

To test our hypotheses, we ran the IB model using the
parameters consistent with our experimental system (Table
S7) but varied the degree of toxicity (θ) and initial concen-
tration of the substrate (s0). We found that during colony
growth, cell lineages of Detoxifier and Embezzler segregated
at the frontiers, forming adjacent red and green cell sectors
(Figure 5A,C; Supporting Information: Videos 1–4). Analysis
of the spatial distribution of S, I, and P suggested that the
development of this colony characteristic was mainly attrib-
uted to the “active layer effect” reported previously42. As S is
generally supplied from the outside of the colony, a thin ac-
tive cell layer was formed depending on the penetration of S,
I, and P (Supporting Information: Videos 1–4). Consequently,

(A)

(B)

(C)

(D)

Figure 5. Substrate concentration and toxicity governing the structure of a microbial community engaged in MDOL in a spatially structured
environment. (A) Representative colony patterns from Individual‐based (IB) modeling initialized with different substrate concentrations and
toxicity. Detoxifier cells are shown in red, while Embezzler cells are shown in green. (B) Analysis of community composition in the expanding
region of the colonies from IB simulations across eight different initial substrate concentrations and five different toxicity strengths. The plot
shows how both substrate concentration and its toxicity collectively affect the steady‐state proportion of the Detoxifier. The green dots denote
the simulated steady‐state fraction of the Detoxifier. The surface shows the plot of the best‐fitting function using Equation (2). The red line on
the surface denotes the scenario θ = 0.0032, which is the degree of toxicity of salicylate obtained from experimental measurements. (C)
Representative colony patterns from the pattern formation assays of SMC‐mdolΔpilAB, as well as the IB simulations using the parameters
matched with our synthetic system (Table S7), across eight different initial substrate concentrations. (D) The experimentally measured steady‐
state fractions of Detoxifier in the expanding region of these colonies are consistent with those from mathematical predictions. Note that in the
plots, substrate concentrations are shown in dimensional form (S0, C‐mM), but in the predictive functions, the fitting analyses were performed
using its dimensionless form (s0).
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community structures in the inoculated and expanding
regions may differ. Accordingly, we separately analyzed the
structures in the inoculated region and expanding region of
the colonies (Figure S15). We found that with the growth of
the colony, community structures in the inoculated region
changed little, while the community structures in the ex-
panding region shifted over time, gradually approaching a
steady‐state (Figure S16). Therefore, we next investigated
how substrate concentration and toxicity affect the steady‐
state structures of the MDOL community in the expanding
regions. The community structure in the expanding region
was significantly affected by substrate concentration and
toxicity, and was well estimated by the rule (Equation 2) we
proposed for a well‐mixed system (Figures 5B and S17). This
result indicated that the structure of the MDOL community in
spatially structured environments can also be estimated
by the proposed simple formula governed by substrate
concentration and toxicity.

We also found that increasing substrate concen-
trations assisted the Detoxifier in obtaining more
product from the environment, thus retaining higher
intracellular product concentrations (Figure S18).
Furthermore, Detoxifier cells possessed a lower intra-
cellular concentration level of S than that of the Embezzler
cells in our IB simulations (Figure S19). The higher rate of
the first reaction, or lower S transport rate, also
significantly increased the maximum benefit (Tsmax) that
Detoxifier cells can be obtained from substrate toxicity
(Figure S20; correlation analysis p < 0.0001), which
agreed with our results from ODE modeling. Therefore,
the same mechanisms as found in the well‐mixed system
are also applicable to explain why substrate concen-
tration and toxicity affect the structure of the MDOL
community in spatially structured environments.

Experimental evaluation of our rule by culturing our
synthetic microbial consortium in a spatially structured
environment. We next experimentally tested our hypoth-
eses in spatially structured environments. Several studies
have reported that type IV pilus may affect microbial
colony patterns43–45. To directly focus on the effects of
substrate concentration and toxicity and avoid the effects
of pili, we deleted the pilA and pilB genes of both strains
involved in our synthetic consortium. This design follows
other studies that performed patterning experiments using
nonmotile strains46–49. The derived consortium was named
SMC‐mdolΔpilAB. This strain modification did not change
the effects of substrate concentration and toxicity on the
structures of the consortium in a well‐mixed system
(Figure 4C; paired, two‐tailed, Student's t‐test: p = 0.3136),
as well as the salicylate toxicity to the strains (Figure S13).

To test our hypotheses, we cultured SMC‐mdolΔpilAB on
an agarose surface to which salicylate was added at different
concentrations. The experimentally observed colony patterns
were very similar to those observed in the simulations
(Figure 5C). We next separately assessed the structures of
the consortium in both the inoculated region and expanding

region of the colonies. We found that the proportion of
Detoxifier population slightly shifted from 40.9 ± 3.5% to
60.0 ± 6.0% in the inoculated region (Figure S21), but it
varied greatly from 17.4 ± 1.5% to 69.0 ± 7.0% in the ex-
panding region (Figure 5D). The structure of the community in
the inoculated region failed to be accurately captured by our
mathematical model. We speculated that this inconsistency
was due to the differences in the spatial dimension used in
the model and tested in our experiments. During our IB
simulations, cells only grew at the two‐dimensional level, so
the cells located inside the inoculated region rarely grew, as a
result of which the community structure within the region
remained largely unchanged (keep at 1:1 ratio; Figure S16). In
the experiments, the inoculated zone of the developed
colony contains not only the inoculated cells but also the
newly formed cells that grew in three‐dimensions. This
difference limits the prediction power of our model for the
inoculated region. Nevertheless, the experimental results of
expanding region accurately fit our derived prediction func-
tion (Figure 5D), with a predicting power (adjusted R2)
of 0.982. This result suggests that the structure of the com-
munity containing only newly formed cells (the expanding
region) can be accurately estimated by our proposed
formula. Together, our simulations and experiments dem-
onstrated that our rules on how substrate concentration and
toxicity shape the structure of an MDOL community were
applicable when this community grew in a spatially struc-
tured environment.

The effects of substance diffusivity on the struc-
ture of the MDOL community. Although the structure of
the MDOL community in spatially structured and well‐
mixed environments can both be estimated by Equation
(2), the estimated parameter values in the prediction
functions derived from the ODE and IB models are slightly
different (Figures 4 and 5), even if we applied identical
parameters and equations in these two models (Sup-
porting Information: S2.3). Through mathematical mod-
eling, we found that limited mass diffusion is one of the
major reasons that lead to this difference (see Supporting
Information: S2.2 for detail). Our analyses suggest that a
higher level of P diffusion favors Detoxifier (Figures S22
and S23), whereas increasing the diffusion level of I hin-
dered Detoxifier (Figures S24 and S25).

In addition, we found that the diffusion level of the
substrate has two opposing effects on the structure of the
MDOL community. On the one hand, a higher diffusion
level of S benefits the Detoxifier (Figure 6A, first row), by
thickening the cell's “active layer”49 (Figure 6B), thus in-
creasing the production and secretion of the final product
by Embezzler cells. On the other hand, a higher diffusion
level of S also decreases the fitness of the Detoxifier cells
by modifying the concentration gradient of S around the
two types of cells thus changing the relative toxic level of
S (Figure 6A, second row; Figure S26). Combining these
two effects, we introduced a new formula to estimate the
structure of the MDOL community.
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positive effect of increasing substrate diffusion level via
thickening cell “active layer,” related to the initial substrate
concentration49 (s0; Figure 6B); D
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s
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θ
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represents an esti-

mate of the negative effect of increasing substrate diffusion
level, influenced by the degree of toxicity of the substrate
(Figure 6A; the second row). Equation (3) accurately esti-
mated the structure of the MDOL community in our IB sim-
ulations (Figure 6C; R2= 0.994). Overall, we concluded that

substrate diffusivity is also fundamental to shaping the
structure of the MDOL community in addition to the con-
centration and toxicity of the substrate.

DISCUSSION
Here, we show how substrate concentration and toxicity
shape the structure of the microbial communities en-
gaged in MDOL during the degradation of organic com-
pounds. The population performing the first step is
favored by both higher substrate concentration and its
toxicity. This rule is applicable when the community

(A)

(B) (C)

Figure 6. The effects of the diffusion level of substrate, intermediate, and product on the structure of the MDOL community. (A) The
relationship between initial substrate concentration (s0) with the steady‐state proportion of Detoxifier cells in the expanding region of the
colonies, across different substance diffusion levels (denoted by different curve colors) and different degrees of substrate toxicity (θ, denoted
by five subgraphs). First row: diffusion levels of S, I, and P (i.e., Di, Di, and Dp) were set to be identical and simultaneously modulated in the
simulations. Second row: diffusion levels of I and P (Di and Dp) were set as default values shown in Table S7, while diffusion levels of S were
modulated. Other parameters in these simulations were initialized with the default values shown in Table S7. The simulation data were then fit to
Equation (2) to obtain the curves shown in the same plot. The adjust R2 values for these fitting analyses range from 0.994 to 0.997. (B) Diffusion
levels of substrate affected the thickness of the cell “active layer.” Representative colony images (first row), the corresponding distributions of
the final product (second row), as well as the distributions of cell growth rates (third row) in the two‐dimensional plane at steady‐state, obtained
from individual‐based simulations initialized with different diffusion levels of substrate. Shown are the results in which s0 was set to 10 C‐mM
and θ was 0 (not including substrate toxicity). In the colony images, Detoxifier cells are shown in red, while Embezzler cells are shown in green.
The thickness of the cell “active layer” is reflected by the thickness of the cell layer that possesses a positive growth rate (third row). (C) The
linear correlation between the steady‐state frequencies of Detoxifier predicted by Equation (4) and the frequencies obtained by our Individual‐
based simulations. The dashed line shows the linear curve in which the predicted results are completely identical to simulated results. The best‐
fitting values of ks, Fdmax, kt, TSmax, kd1, and kd2, in this case, are 30.8, 0.446, 1.46, 1.05, 14,000, and 44.8, respectively.
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grows both in a well‐mixed and spatially structured
environment.

Recently, numerous studies have explored the strategy of
dividing metabolic roles across different populations in a
consortium toward the removal of organic pollutants9,12,50,53.
Our proposed rule may be expanded to forecast the structure
of these consortia. For instance, one recent study reported
that a bacterial consortium composed of Leucobacter sp. GP
and Achromobacter denitrificans PR1 efficiently degrades
an antibiotic, sulfamethoxazole in which the strain GP is
responsible for the initial metabolism of the sulfamethoxazole
(Detoxifier), and strain PR1 carries out the subsequent
conversion (Embezzler)16. This study measured the struc-
ture of the community across a gradient of initial substrate
concentrations and found that the proportion of the GP was
positively correlated with the initial sulfamethoxazole con-
centration. This observation largely agrees with the idea
derived from our model and experiments. The prediction of
the structure of the community may greatly help to manage
these communities for better performance17,30,31.

Our study also indicated that limited mass diffusion in
spatially structured environments is another key factor in
determining the structure of a community. This finding is
reminiscent of recent studies proposing that limited mass
diffusion plays a significant role in the structure of the com-
munities engaged in other diffusion‐based interaction modes,
including syntrophic exchange39,41,54, cross‐protection55,
and “rock‐paper‐scissors” interaction55,56. One important
hypothesis from these studies is that limited mass diffusion is
one possible way to privatize public benefit39,41,57. We found
this hypothesis is also applicable in explaining the structuring
of the community engaged in MDOL. On the one hand,
limited mass diffusion helps the Embezzler population to
privatize the final product for its own growth. On the other
hand, it helps the Detoxifier population to privatize its benefit
from detoxification. Therefore, limited mass diffusion may be
a universally used avenue for microorganisms to maintain
the private benefit of their activities in spatially structured
environments.

In our IB modeling, we also found specific spatial patterns
developed by the MDOL community. In agreement with
previous studies40,58,59, when two populations engaged in
MDOL, cells from the two populations are spatially more
proximal to each other than in the scenario when the two
populations did not exhibit defined interactions (Figure S27).
In addition, we also found that the level of spatial proximity
was governed by substrate concentration and toxicity
(Figure S27). Interestingly, when the degree of substrate
toxicity was high, the Detoxifier cells occupied the periphery
of the growing colony, and formed a clear “ring” around the
colony (Figures 5 and S28; Supporting Information: Video 3).
The formation of this ring might be because the substrate
was present at higher concentrations at the colony edge, and
hence more toxic, thus largely favoring Detoxifier cells at the
edge. These results suggest that substrate concentration
and toxicity also govern the spatial distributions of different
cells in the colony developed by the MDOL community,

which may, in turn, affect the structure of such a community.
Although we failed to observe this featured cell distribution in
our experiments, one recent study found that an MDOL
community that degrades toluene developed a similar “ring”‐
shaped pattern as observed in our IB model58. Therefore,
such cell distribution may represent a critical feature of the
spatial patterns developed by an MDOL community that
degrades toxic substrates.

While our study provides critical new insights into how the
community engaged in MDOL assembles, a number of limi-
tations need to be taken into consideration. First, our model
analysis showed that substrate toxicity is vital in determining
the structure of communities engaged in MDOL. However,
due to the difficulties in manipulating the toxicity of the
substrate (salicylate) in vitro, we were unable to ex-
perimentally compare the impact of the different degrees of
toxicity on the structure of our community. Nevertheless, our
model correctly predicts that simply increasing the initial
substrate concentration is unlikely to shape a community
dominated by the Detoxifier population, while the presence
of substrate toxicity allows the “Detoxifier” population in the
community to become dominant. Therefore, the observation
that the Detoxifier population was able to dominate the
synthetic consortium when supplied with a high concen-
tration of salicylate, and the measured biotoxicity of salicy-
late strongly suggested that substrate toxicity should affect
the structure of our synthetic microbial consortium. In
agreement with this idea, our prediction functions involved in
the degree of salicylate toxicity fit the experimental results
very well. To further examine this idea, it is necessary to
design a better system in which the toxicity of the substrate
can be modulated.

Second, our ODE model suggests that apart from sub-
strate concentration and toxicity, five other key parameters
exist that exhibit considerable effects on the structure of an
MDOL community. Here, we primarily focused on the effects
of substrate, without analyzing in detail how all the seven key
factors collectively determine the structure of the MDOL
communities. Nonetheless, our analysis presented here
suggests that biotic factors, such as the rate of the first
reaction ( 1α ), mass transport rate ( sγ , iγ , pγ ), as well as the
consumption rate of P (Cp), affected the structure of the
community, namely by determining the value of parameters
in Equation (2) (i.e., Fdmax, ks, Tsmax, and kt). For example, the
value of Cp, iγ , and pγ regulates the community structure by
affecting Fdmax because Fdmax strongly negatively correlates
with Cp and positively correlates with iγ and pγ (Figure S8).
The underlying mechanism may be that increasing the
P consumption capacity (Cp) causes the Embezzler to re-
lease lower amounts of P to the environment, thus impairing
the Detoxifier. Similarly, increasing the transport of the in-
termediate ( iγ ) and product ( pγ ) boosts the production and the
leakiness of the end product, thus benefiting the Detoxifier.
However, due to the difficulties in analytically solving non-
linear ODEs, in addition to the low efficiency of IB simu-
lations60, a detailed quantitative understanding of how all
these factors affect the structure of the MDOL community
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remains limited. Further studies may use more simplified
models that combine these elements to provide a more
general description of the principles governing the struc-
turing of an MDOL community.

In addition, the MDOL system investigated in this study is
built on the basic assumption that both degradation re-
actions were performed intracellularly. This assumption is
true for many degradation pathways of organic compounds
(such as bacterial degradation of PAHs25 and plastics61).
Biochemical reactions that occur intracellularly help both the
Detoxifier and Embezzler privatize their specific benefits,
especially in well‐mixed environments. However, a number of
degradation reactions are mediated by exoenzyme62, which
means that these reactions occur in the extracellular space. If
the first reaction in the MDOL is performed extracellularly,
detoxification may become a cheatable public good63,64.
For example, the degradation of beta‐lactam occurs
extracellularly, and thus may benefit the microbes that are
not resistent to the related antibiotics65,66. As a result, the
degradation of the toxic substrate would immediately benefit
both populations and does not give a specific benefit to the
Detoxifier. Similarly, if the second reaction is performed ex-
tracellularly, the end product becomes a public good equally
available to both strains. Therefore, we acknowledge that our
framework may not be applicable to the scenario when any of
the degradation reactions involved in the MDOL occur ex-
tracellularly. Nevertheless, limited mass diffusion can also act
as an avenue for microorganisms to maintain their private
benefit as we discussed before. From this perspective,
benefits are allocated asymmetrically when the communities
grow in spatially structured environments, even if the deg-
radation reactions were catalyzed extracellularly65,67. Thus,
our results may also have implications for these scenarios.

Managing microbial communities engaged in MDOL
recently emerges as an efficient and stable approach to
removing the important pollutants that harm the natural en-
vironment, limit the agricultural output, and seriously threaten
human health9,68–70. Our results demonstrate that the
structure of a given community engaged in MDOL can be
managed and quantitatively predicted from the abiotic
factors present, for example, the concentration and toxicity
of its substrate. These findings suggest that it is feasible to
regulate microbial communities through the manipulation of
specific environmental factors to address the grand chal-
lenges in environmental pollution and human health.

MATERIALS AND METHODS
Formulation and analyses of the ODE model
To simulate the dynamics of an MDOL community in a well‐
mixed system, a mathematical model was formulated using
ODEs. Here, the dimensionless forms of the models were
presented. The detailed derivations of the models and
choices of parameter values are described in Supporting
Information: S1.

As described in Results section, a two‐step pathway was
assumed to be implemented by MDOL between two

populations (Figures 2A and 3A). For simplicity, the basic
model was built based on five simple assumptions: (1) The
systems are well mixed in each compartment (inside a cell or
in the extracellular space); (2) transport of substrate (S),
intermediate (I), and the final product (P) is mediated by
passive diffusion; (3) P was assumed to be the sole and
limited resource for the growth of the two populations and its
consumption was calculated following Monod equations; (4)
basic biological properties (the coefficients in Monod equa-
tions) regarding the growth of the two populations are iden-
tical since we only focused on the effects of abiotic factors;
(5) when applicable, substrate toxicity was introduced by
adding three different toxic terms to the growth equation
(Table S3), dependent on intracellular S concentration of the
corresponding population. The detailed justifications of our
assumptions are listed in Supporting Information: S1.3. The
dynamics of intracellular and extracellular I and P are
given by
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The growth of the two populations was modeled using a
generalized logistic function with first‐order cell death:
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The definitions and dimensionless methods of all variables
are listed in Table S1. The definitions and dimensionless
methods, as well as the value ranges of all the parameters
involved in these equations, are listed in Table S2.

Details of the simulation and analysis protocols of our
ODE model and the downstream analyses are described in
Supporting Information: S1.4. Briefly, to solve the community
dynamics of the MDOL community with given parameter
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sets, numerical simulations of our ODE model were per-
formed using the NDsolve function of Wolfram Mathematica.
The numerical solutions of all the variables, including the
dynamics of mass (S, I, P) concentration and biomass, were
recorded for further analyses. To perform simulations with
numerous parameter sets, as well as the downstream anal-
ysis, custom Mathematica scripts were written mainly based
on the Do loop function.

IB modeling
Our IB model was constructed based on the gro platform
(https://github.com/liaupm/GRO‐LIA), a simulator designed by
Gutiérrez and colleagues aiming to describe multicellular
bacterial behavior71. The model aims to simulate the growth of
a microbial colony composed of two populations who execute
substrate degradation via MDOL on a surface. The model was
formulated mainly using the same equations as our dimen-
sional ODE model (Supporting Information: S1.1, Equa-
tions S1–S13) to characterize the intra‐ and extracellular
dynamics of mass (S, I, P) concentration, as well as to cal-
culate the rate of cell growth. Four main differences exist
between our IB model and the ODE model: (1) the IB model
was formulated on a spatially structured surface, and the
diffusion of S, I, and P was limited; (2) mass dynamics was
modeled at the single‐cell level; (3) the growth of both pop-
ulations was modeled at the single‐cell level, and passive cell
shoving during the cell growth was included; and (4) cells were
inoculated in the center of the surface, and the entire com-
munity underwent “colony range expansion,” a process
whereby the community immigrates outwards as a whole,
driven by the force generated from cell growth and division
(Figure S15). The mathematical framework formulating these
four points is described in Supporting Information: S2.1. To
implement our design of the IB model, custom codes were
written in the gro language. Variables and Parameters in the IB
model are summarized in Table S7. Details of the IB simulation
workflow are described in Supporting Information: S2.

Genetic manipulation of the P. stutzeri strains
All P. stutzeri strains were engineered from a naphthalene‐
degrading bacterial strain P. stutzeri AN1072. Genes that en-
code the key enzymes responsible for corresponding meta-
bolic steps in the salicylate degradation pathway were
knocked out to generate the P. stutzeri strains. The details of
the genetic manipulation are described in Supporting In-
formation: S3.

Liquid cultivation of our synthetic microbial
communities
Liquid cultivation of our synthetic microbial communities was
performed in 96‐well plates that contains 120 μl fresh min-
imum medium. Proportions of the two populations in the
community were estimated by measuring the fluorescent
intensity of the two strains involved using a microplate reader
(Molecular Devices). Detailed protocols are described in
Supporting Information: S4.

Colony pattern formation assays
Colony pattern formation assays were performed on the
agarose surface in a Petri dish (60 mm in diameter). Im-
ages of the colony patterns were taken under a 5× ob-
jective using a Leica DM6000B fluorescence microscope
(Leica Corporation) equipped with a LED fluorescence il-
luminator (Leica Corporation). The relative fraction of
each population in the colonies was measured by image
analysis, as well as the similar fluorescence‐measurement
method as performed in liquid cultivation experiments.
Detailed protocols are described in Supporting In-
formation: S5.

Statistical analysis
Unless indicated otherwise, the number of replicates was three
for each simulation, and six for each experiment. For com-
parative statistics, an unpaired, two‐tailed, Student's t‐test was
performed in Wolfram Mathematica (version 12.4). To fit the
data to the proposed function, the nonlinearmodelfit function
of the Wolfram Mathematica (version 12.4) was applied.
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