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Abstract

Corrosion of iron‐containing metals under sulfate‐reducing conditions is an economically important problem. Microbial
strains now known as Desulfovibrio vulgaris served as the model microbes in many of the foundational studies that
developed existing models for the corrosion of iron‐containing metals under sulfate‐reducing conditions. Proposed
mechanisms for corrosion by D. vulgaris include: (1) H2 consumption to accelerate the oxidation of Fe0 coupled to the
reduction of protons to H2; (2) production of sulfide that combines with ferrous iron to form iron sulfide coatings that
promote H2 production; (3) moribund cells release hydrogenases that catalyze Fe0 oxidation with the production of H2;
(4) direct electron transfer from Fe0 to cells; and (5) flavins serving as an electron shuttle for electron transfer between
Fe0 and cells. The demonstrated possibility of conducting transcriptomic and proteomic analysis of cells growing on
metal surfaces suggests that similar studies on D. vulgaris corrosion biofilms can aid in identifying proteins that play an
important role in corrosion. Tools for making targeted gene deletions in D. vulgaris are available for functional genetic
studies. These approaches, coupled with instrumentation for the detection of low concentrations of H2, and proven
techniques for evaluating putative electron shuttle function, are expected to make it possible to determine which of the
proposed mechanisms for D. vulgaris corrosion are most important.
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INTRODUCTION
Understanding themechanisms for the corrosion of metals is key
to developing strategies for preventing this economically sig-
nificant problem1,2. Following the first suggestion that microbes
might be important catalysts for the corrosion of metals3,4, a
thorough analysis of the available data led to the conclusion that
sulfate‐reducing microorganisms play a key role in iron corro-
sion5. However, in the 1930s, Spirillium desulfuricans was the
only microbe known to be capable of sulfate reduction5. The
genus and species names of this and similar strains of sulfate‐
reducing bacteria investigated in corrosion studies have
changed over time6,7, but most are now generally recognized as
strains of Desulfovibrio vulgaris (Table 1).

There is substantial evidence that Desulfovibrio species are
involved in the corrosion of iron‐containing metals in anaerobic
environments69,70. Desulfovibrio species were abundant within
the microbial community on metal surfaces exposed to oil field
production waters71,72, corroded oil pipelines73, corroding steel

pipe carrying oily seawater74, rust layers on steel plates im-
mersed in seawater75, and the inner rust layer on carbon
steel76. Desulfovibrio species were recovered in culture from
corrosion sites77–80, including a D. vulgaris strain isolated from
an oil field separator in the Gulf of Mexico that was damaged by
corrosion41. Microbial activity on the cathodes of bio-
electrochemical systems is thought to be related to microbial
corrosion81 and Desulfovibrio species are often enriched on
cathodes from diverse microbial communities82–84.

Several mechanisms for D. vulgaris corrosion of iron‐
containing metals have been proposed (Figure 1). These
mechanisms may not be mutually exclusive. As detailed in
this review, each of these models still requires rigorous
examination. However, with the increasing availability of
molecular tools to probe microbial activity and tools for
genetic manipulation of D. vulgaris85,86, it now may be the
time to either eliminate or confirm some of the existing
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Table 1. Iron corrosion studies with Desulfovibrio vulgaris.

Year Straina Iron source Lactate Mechanismb Reference

1934 Spirillum desulfuricans CI + Ha 5

1939 Vibrio desulfuricans MS + N 8

1947 Vibrio desulfuricans MS − N 9

1951 Vibrio desulfuricans Armco ingot iron +
−

Ha 10

1952 Vibrio desulfuricans Armco ingot iron +
−

S 11

1960 D. desulphuricans Hildenborough NCIB 8303 MS + Ha 12

1964 D. desulphuricans Benghazi NCIB 8401 MS +? Ha 13

America NCIB 8372
Teddington R NCIB 8312
Hildenborough NCIB 8303
Llanelly NCIB 8446

1968 D. desulfuricans Teddington R MS + S 14

1968 Hildenborough NICB 8303 MS + Ha 15

1971 D. desulfuricans Teddington R NCIB 8312 MS +
− (+F)

Hs 16

1974 Hildenborough NCIB 8303 MS + S 17

1982 Isolated from River Thames' sediment MS (EN2) + N 18

1986 Hildenborough NCIB 8303 MS − (+A) Ha 19

1986 Marburg DSM 2119 (Postgate and Campbell) Steel +
− (+A)

Ha 20

1986 Madison MS − (+F) Ha 21

1990 Hildenborough NCIB 8303 MS + Ha 22

1991 DSM 1744 (Postgate and Campbell) SS (AISI 3161) − N 23

1991 Not specified Iron (99%) SS (Fe–15Cr–10Ni) + Hs 24

1991 Not specified SS (410) + S 25

1991 Isolated from cutting oil emulsions CS (SAE 1020) + N 26

1992 Woolwich NCIMB 8457 MS (BS970) + N 27

1993 NCIB 8303 Iron + N 28

(Postgate and Campbell) CS (SAE 1090)
(Hildenborough) SS (18‐8)
(DSM 644)

1994 Not specified CS (X52) − N 29

1995 Isolated from cutting oil emulsions MS + N 30

1995 Not specified SS (304) + N 31

1995 ATCC 25979 SS (304) + N 32

1997 Not specified SS (AISI 304L) + N 33

1997 Not specified SS (316L) + N 34

1999 ATCC 29579 MS (SAE 1018) + N 35

(Postgate and Campbell) SS 304
(Hildenborough)
(NCIB 8303, DSM 644)

2002 LMG 7563 MS + N 36

2004 Not specified Iron − (+A) D 37

2004 ATCC 29579 MS (1010) + N 38

2007 DSM 664 MS (BST 503‐2) + N 39

2008 Hildenborough NCIMB 8303 CS (ASTM A366) +
− (+A)

Ha 40

2008 Isolated from an oil field separator MS (AISI 1018) − N 41

2008 DSMZ 644 Iron + N 42

CS (ST 37)
SS (304)

2010 DSMZ 644 Alloyed steel (1.4301, UNS 304) + N 43

2013 ATCC 7757 CS (C1018) + N 44

(Postgate and Campbell)
(C‐6, CT1, IFO 13699, NCIB 8372)

2014 ATCC 7757 CS (C1018) + N 45

2014 ATCC 7757 CS (X70) + N 46

2014 ATCC 7757 CS (API5L X‐70) + N 47

2014 ATCC 7757 CS (API5L‐X70) + N 48

2015 ATCC 7757 CS (C1018) + F 49

2015 ATCC 7757 SS (304) + F 50

2016 ATCC 7757 CS (C1018) + N 51

2016 ATCC 7757 CS (UNS G10100) + N 52
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mechanistic models for D. vulgaris corrosion or to develop
new models. The purpose of this review is to summarize the
previously proposed routes for Desulfovibrio species iron
corrosion and to suggest experimental approaches to fur-
ther advance the understanding of corrosion by this popular
model microbe.

IRON CORROSION VIA AN H2 INTERMEDIATE
The corrosion of iron‐containing metals results from the ox-
idation of metallic iron to ferrous iron:

→Fe Fe + 2e .0 2+ − (1)

Table 1. (Continued).

Year Straina Iron source Lactate Mechanismb Reference

2016 Hildenborough DSM 644 MS (BST 503‐2) + N 53

2017 Not specified CI + N 54

2017 ATCC 7757 MS + N 55

2017 ATCC 7757 CS (C1018) + N 56

2018 ATCC 7757 CS (C1018) + S 57

2019 Not specified CS (1018) + N 58

2019 ATCC 7757 CS (1018) + N 59

2019 ATCC 7757 PS (X80) + N 59

2020 Hildenborough CS (1030) + N 60

2020 ATCC 7757 SS (2205) + N 61

2020 Hildenborough CS + N 62

2020 ATCC 7757 CS (X65) + F 63

2021 ATCC 7757 GS + N 64

2021 ATCC 7757 SS (410, 420, 316, 2206) + N 65

2021 ATCC 7757 CS (C1018) + N 66

2021 ATCC 7757 SS (2205) + N 67

2021 ATCC 7757 SS (2205) + N 68

aStrains now considered to be Desulfovibrio vulgaris were previously designated as Spirillium desulfuricans, Vibrio desulfuricans, Desulfovibrio desulfuricans, and
Desulfovibrio desulphuricans6,7. Therefore, microbes that were later renamed D. vulgaris are listed by the name designated in the original text. Only strain
designations are listed for strains designated as D. vulgaris in the original text. Alternative designations for these strains are described in parentheses. bPrimary
corrosion mechanism discussed. Ha, abiotic H2 production from iron; Hs, H2 production from iron‐catalyzed by FeS mineral deposits; S, sulfide promoting iron
corrosion; D, direct electron transfer; F, electron transfer with a flavin shuttle; N, not applicable (the studies focused on biofilm formation, growth inhibition,
corrosion inhibition, etc.). +, lactate included; −, no lactate; − (+A), no lactate but acetate added; − (+F), cells grown on fumarate; CI, cast iron; CS, carbon steel; GS,
galvanized steel; MS, mild steel; PP, pipeline steel; SS, stainless steel.

Figure 1. Previously proposed mechanisms for Desulfovibrio vulgaris to promote the corrosion of iron‐containing metals. These include the
consumption of abiotically produced H2 (1); consumption of H2 generated via catalysis by FeS (2) or hydrogenase (3); direct electron transfer
from Fe0 to cells via outer‐surface electron transport components on the cell surface (4); and Fe0 oxidation via reduction of the oxidized form of
soluble flavin electron shuttle (Flavinox) with reduced flavin (Flavinred) serving as the electron donor for sulfate reduction (5). The studies
proposing these mechanisms are cited in the main text.

As recognized in the early analysis of corrosion by sulfate
reducers5, protons are a likely electron acceptor for the
electrons derived from Fe0. In early studies, the product of
proton reduction is often referred to as “metallic hy-
drogen,” but in the absence of data demonstrating that this
form of hydrogen exists on the surface of corroding iron or
can serve as an electron donor for microbial respiration, we
assume that proton reduction yields H2, a known electron
donor for diverse microbes:

→Fe + 2H Fe + H .0 + 2+
2

(2)

H2 is an electron donor for D. vulgaris:
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→4H + SO S + 4H O,2 4
2− 2−

2 (3)

and growth on H2 is possible if acetate is provided as a
carbon source87.

Substantial abiotic H2 production from Fe0 was dis-
counted in the early version of the model in which H2 serves
as an electron carrier between Fe0 and cells5. However, the
mechanism by which cells promoted the oxidation of Fe0

with the production of H2 was not specified. It is now known
that the extent of abiotic H2 production depends upon the
form of the iron‐containing metal. For example, pure Fe0

abiotically produces substantial H2 when submerged in an-
oxic water at circumneutral pH whereas 316 stainless steel
does not88,89.

This difference in H2 production between Fe0 and stain-
less steel could provide one method for evaluating whether
D. vulgaris relies on H2 production to consume electrons
from iron‐containing metals. The closely related sulfate re-
ducer D. ferrophilus reduced sulfate when pure Fe0 was the
electron donor, but not in a medium with stainless steel90. In
contrast, Geobacter species capable of direct electron up-
take could use either iron form as an electron donor88–90.
These results indicated that D. ferrophilus was incapable of
direct electron uptake and required the production of H2 to
mediate electron transfer between Fe0 and cells.

The most direct approach to evaluating whether H2 is an
important intermediate in electron uptake from extracellular
electron donors may be to generate a mutant that is unable
to consume H2

91. D. vulgaris Hildenborough has multiple
hydrogenases that have different localizations and metal
constituents: the periplasmic [NiFe] HynAB‐1 and HynAB‐2,
the periplasmic [Fe] HydAB, the periplasmic [NiFeSe] HysAB,
the cytoplasmic [Fe] HydC, and the cytoplasmic membrane‐
bound Coo and Ech hydrogenases92. Deletions of genes for
HydAB, HynAB‐1, or HysAB negatively impacted the growth
of D. vulgaris Hildenborough with H2 as the electron
donor93–95. However, these single‐gene deletion mutants and
a double deletion mutant of HynAB‐1 and HydAB95 still grew
on H2 as the electron donor, indicating redundant, comple-
mentary functions of the multiple hydrogenases. Thus, the
construction of a strain with multiple hydrogenase gene de-
letions may be required to rigorously evaluate the role of H2 in
corrosion.

Transcriptomic analysis comparing growth on H2 supplied
from proton reduction with an iron electrode poised at −1.1 V
versus growth on H2 simply bubbled into medium revealed
that the genes for HynAB‐1 and HydAB were more highly
expressed during growth on the cathodic H2

40. Gene tran-
scripts for HysAB were more abundant when H2 was bubbled
into the medium. Gene deletions that prevented the function
of the HynAB‐1 and HydAB hydrogenases inhibited electron
uptake from the iron cathodes40, as might be expected for
cathodes poised at a low potential to induce H2 production.
The impact of the hydrogenase gene deletions on corrosion
of iron that was not artificially poised at a negative potential
was not determined because wild‐type cells could not be
grown under these conditions40. Lack of growth on unpoised

iron suggests an inability to use Fe0 as an electron donor.
This difference between artificially poised iron cathodes and
unpoised iron metal is an important consideration when
evaluating other studies19 that have concluded that H2 is
an important intermediate in iron corrosion by D. vulgaris
based on experiments with electrochemically poised iron
electrodes.

However, there is some indirect evidence for H2 serving as
an intermediary electron carrier between Fe0 and D. vulgaris,
especially when H2 is not the sole electron donor. D. vulgaris
did not reduce sulfate when steel wool was provided as the
sole electron donor, but when lactate was added as an ad-
ditional electron donor, more sulfide was produced than was
possible from lactate oxidation alone20. In contrast, D. sap-
ovorans, which cannot utilize H2, did not produce sub-
stantially more sulfide when grown in the presence of lactate
and steel wool, than when grown with lactate alone. These
results suggested that H2 was an intermediary electron car-
rier for D. vulgaris electron uptake from the steel wool during
growth with lactate20. The expression of one or more uptake
hydrogenases is expected to be upregulated when H2 is
serving as an electron donor96–98. Thus, transcriptional and/
or proteomic studies may be useful in further assessing the
role of H2 as an electron donor during corrosion in the
presence of lactate. Additional indirect evidence for the im-
portance of H2 as an electron carrier was the finding that
D. vulgaris corroded “mild steel” faster than the gram‐
positive D. orientis, which cannot consume H2

12,13.
Other early studies suggested that H2 production from

iron was not a mechanism for corrosion10,11. However, the
medium for investigating the possibility for H2 serving as an
electron donor did not include acetate, which is required as a
carbon source for growth on H2. Therefore, no conclusion on
the role of H2 is possible from those studies.

FACTORS PROMOTING H2 PRODUCTION
In a diversity of microbes, hydrogenases released from lysed
cells, or specifically transported to the outer surface of living
cells, facilitate the production of H2 from Fe0 99–102. For ex-
ample, methanogens highly effective in corrosion can pro-
duce an extracellular hydrogenase that enhances H2

production from Fe0 99. Such extracellular hydrogenases
have not been reported in Desulfovibrio species, but mor-
ibund cells of D. vulgaris release periplasmic hydrogenases
that can retain activity for months103. Subjecting D. vulgaris
to starvation, a condition likely to promote cell death and
lysis, enhanced corrosion45,58. Therefore, studies to evaluate
the role of extracellular hydrogenases in corrosion by D.
vulgaris are warranted.

The iron sulfide that precipitates on iron‐containing metals
during corrosion coupled to sulfate reduction may also in-
crease H2 production. The addition of FeS reduced the
overpotential necessary to produce H2 from iron cathodes,
suggesting a role for FeS in promoting the formation of H2

16.
In studies in which the culture was grown on fumarate rather
than via sulfate reduction, the current was generated at more
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positive potentials when FeS was deposited on either mild
steel or platinum cathodes14. These results further indicate
that FeS may serve as a catalyst for H2 generation. However,
in studies with carbon steel coupons, it appeared that higher
accumulations of sulfide inhibited corrosion57. The ability of
D. vulgaris to corrode steel with either benzyl viologen as the
electron acceptor15 or when growing on fumarate21 demon-
strated that sulfide production was not essential for corro-
sion. Thus, a clear‐cut concept for the role of FeS in
corrosion has yet to be established.

Technology for measuring H2 concentrations at extremely
low concentrations during corrosion is available89. Thus, with
the appropriate H2 detector it should be possible to directly
evaluate the role of FeS in facilitating H2 production from
iron‐containing metals, simply by monitoring H2 generation in
the presence or absence of different quantities of FeS
precipitate.

ELECTRON SHUTTLES OTHER THAN H2
Soluble redox‐active molecules promote extracellular
electron exchange between microbes and minerals,
electrodes, and other microbial species104–107. These
electron shuttles typically accelerate extracellular elec-
tron exchange by alleviating the need for outer‐surface
electron transfer components to establish direct electrical
contact with particulate extracellular donors and ac-
ceptors. The addition of riboflavin and flavin adenine di-
nucleotide enhanced D. vulgaris corrosion of carbon steel
and stainless steel49,50,63. However, amendments of
these cofactors, which are important for the function of
numerous proteins, could influence D. vulgaris growth
and metabolism in many ways. To determine whether
flavins can serve as an electron shuttle for the corrosion of
iron‐containing metals coupled to sulfate reduction it is
necessary to demonstrate that: (1) the metals are capable
of reducing the flavins; and (2) that the reduced flavins
can serve as electron donors for sulfate reduction.

DIRECT ELECTRON UPTAKE
Direct electron uptake from iron‐containing metals has
been demonstrated with Geobacter sulfurreducens and
Geobacter metallireducens88–90. Strains unable to utilize
H2 readily reduced fumarate, nitrate, or Fe(III) with pure
Fe0 or stainless steel as the electron donor. Deletion of
genes for outer‐surface, multiheme c‐type cytochromes
previously shown to be involved in electron exchange
with other extracellular donors/acceptors inhibited the
corrosion.

There are no examples of similar studies with sulfate‐
reducing microorganisms. It was suggested that c‐type cy-
tochromes positioned in the outer membrane of D. vulgaris
might be able to make an electrical connection with Fe0108.
However, subsequent studies have indicated that D. vulgaris
does not have outer‐surface cytochromes92. Clear next steps
in this line of investigation would be to rigorously verify
whether cytochromes are exposed on the outer surface of
D. vulgaris, and if so, evaluate their role in iron corrosion

with the appropriate gene deletion studies. Genetic, bio-
chemical, biophysical, and immunological approaches pre-
viously employed for investigating the location and function
of the outer‐surface cytochromes of Geobacter would be
suitable109–112.

Although it has been suggested that several of the c‐type
cytochromes of D. ferrophilus may be localized in the outer
membrane, no genetic studies have been conducted to de-
termine whether they are involved in extracellular electron
exchange90,113–115. As noted above, experimental analysis of
iron corrosion by D. ferrophilus has suggested that it relies on
H2 as an intermediary electron carrier rather than direct
electron uptake90.

CONCLUSIONS AND FUTURE DIRECTIONS
Sulfate‐reducing microorganisms are considered to be im-
portant agents for catalyzing the corrosion of iron‐
containing metals and D. vulgaris has historically been the
model microbe of choice for elucidating the mechanisms for
corrosion by sulfate reducers. As summarized above
(Figure 1), previous studies have suggested several mech-
anisms by which D. vulgaris may enhance corrosion, but
each of the proposed mechanisms requires further ex-
perimental evaluation. The mechanisms for electron transfer
between iron‐containing metals and Geobacter species
were elucidated with genome‐scale transcriptomics cou-
pled with phenotypic analysis of mutant strains in which the
genes for proteins hypothesized to be involved in electron
transfer were deleted88,89. Deletion of the genes for hydro-
genases and hypothesized outer‐surface electrical contacts
made it possible to determine the role of H2 as an inter-
mediary electron carrier and to identify likely electrical
contacts on the outer surface of the cell. A similar approach
seems possible for the study of D. vulgaris corrosion
mechanisms. Transcriptomics of D. vulgaris biofilms is
possible39,40 to aid in identifying components that may have
increased expression during corrosion of iron‐containing
metals versus other growth modes. Other candidates for
corrosion components may be identified from the known
physiological roles of proteins or their cellular location.
Methods for the targeted deletion of genes in D. vulgaris are
available85,86 making it possible to evaluate the function of
proteins hypothesized to be of importance. In fact, an ex-
tensive library of D. vulgaris mutants is publicly available,
potentially eliminating the substantial investment of time
and resources required for mutant construction86. Com-
parison of corrosion capabilities with Fe0, which readily
reduces protons to generate H2, versus stainless steel,
which does not generate H2, provides an additional tool to
evaluate the role of H2 as an intermediary electron carrier for
corrosion89,90. Mechanisms for the corrosion of carbon
steel, the most common form of iron in structural materials,
should also be investigated. The hypothesis that FeS de-
posits stimulate H2 production from iron‐containing metals
should be readily addressable with highly sensitive H2 de-
tection systems88,89. Mechanistic and genetic116–120 ap-
proaches for the study of the role of electron shuttles in
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electron transfer to minerals and electrodes should be ap-
plicable to the study of the role of flavins as electron shut-
tles for corrosion. Therefore, it is expected that D. vulgaris
will continue to serve as an important model microbe for the
further elucidation of mechanisms for corrosion under
sulfate‐reducing conditions.
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