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Abstract

Global changes such as seawater intrusion and freshwater resource salinization

increase environmental stress imposed on the aquatic microbiome. A strong

predictive understanding of the responses of the aquatic microbiome to

environmental stress will help in coping with the “gray rhino” events in the

environment, thereby contributing to an ecologically sustainable future. Consider-

ing that microbial ecological networks are tied to the stability of ecosystem

functioning and that abundant and rare biospheres with different biogeographic

patterns are important drivers of ecosystem functioning, the roles of abundant and

rare biospheres in maintaining ecological networks need to be clarified. Here we

showed that, with the increasing salinity stress induced by the freshwater‐to‐
seawater transition, the microbial diversity reduced significantly and the taxonomic

structure experienced a strong succession. The complexity and stability of microbial

ecological networks were diminished by the increasing stress. The composition of

the microorganisms supporting the networks underwent sharp turnovers during

the freshwater‐to‐seawater transition, with the abundant biosphere behaving more
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robustly than the rare biosphere. Notably, the abundant biosphere played a much

more important role than the rare biosphere in stabilizing ecological networks

under low‐stress environments, but the difference between their relative

importance narrowed significantly with the increasing stress, suggesting that the

environmental stress weakened the “Matthew effect” in the microbial world. With

in‐depth insights into the aquatic microbial ecology under stress, our findings

highlight the importance of adjusting conservation strategies for the abundant and

rare biospheres to maintain ecosystem functions and services in response to rising

environmental stress.
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Highlights

• The complexity and stability of microbial ecological networks diminish with

increasing salinity stress.

• The abundant biosphere is more robust in maintaining ecological networks

under increasing stress than the rare biosphere.

• The difference in the relative importance between the abundant and rare

biospheres in maintaining networks narrows with increasing stress.

INTRODUCTION

Global changes severely alter the environmental conditions
of aquatic ecosystems [1–3]. The sixth assessment report of
the Intergovernmental Panel on Climate Change projects
that, by 2100, sea level will possibly have risen by
0.63–1.01m relative to the 1995–2014 average [4]. Coastal
areas are particularly affected by the rising sea level, with
seawater intrusion posing serious negative impacts on both
above‐ and below‐ground water bodies [1, 3, 5]. Moreover,
changes in precipitation and evaporation due to climate
warming, as well as human activities including the use of
road deicing salts, mining operations, and agricultural
practices, are threatening inland freshwater resources with
salinization on a global scale [2, 5]. Such scenarios urgently
call for a clear understanding of the potential consequences
of these “gray rhino” events (events with huge, although
incremental, and gradual risks) [6].

The microbiome, playing a vital role in maintaining a
healthy global ecosystem, is sensitive to disturbances in
environmental conditions [7–10]. Changes in the micro-
biome can ripple through the entire ecosystem functioning
and services, for example, the biogeochemical cycling of
elements and the health of all other macroscopic organisms
[11]. Thus, the impact of global changes largely depends on
the responses of the microbiome [11]. Unraveling the
ecological patterns of the aquatic microbiome under

changing environmental conditions is necessary for in-
formed coping strategies and hence an environmentally
sustainable future [11, 12].

In addition to the diversity and composition of the
microbiome, ecological networks have become a growing
focus of microbial ecology research in recent years [13–16].
The intricate associations between microorganisms contrib-
ute to community dynamics and influence the functioning
and stability of ecosystems [10, 17, 18]. A loss of complexity
and stability in microbial ecological networks is detrimental
to the ability of ecosystems to deliver the services that
support human survival and well‐being [10, 14]. Therefore,
the conservation of microbial ecological networks is impor-
tant to maintain and enhance ecosystem functions and
services [14]. However, the responses of microbial networks
to the environmental changes imposed by the Anthropocene
are complex and current knowledge in this respect is far
from sufficient.

The composition of species in the microbial world is
highly unbalanced, whereby a small number of species are
highly abundant, while a large number of other species have
a low abundance [19, 20]. The abundant microorganisms,
referred to as the “abundant biosphere,” contribute most of
the microbial biomass [21], whereas the rare microorgan-
isms, referred to as the “rare biosphere,” may act as a “seed
bank,” enabling certain species to become dominant in a
particular environment [20, 22]. Abundant and rare
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biospheres show different biogeographical patterns [21, 23],
but both are recognized as important drivers of the
functioning of ecosystems [21, 24–26]. Understanding
the roles of abundant and rare biospheres in maintaining
the stability of ecological networks and the responses of their
roles to environmental stresses contribute to an informed
management for adapting conservation strategies to better
maintain ecosystem functions and services.

Freshwater‐to‐seawater continuums provide a natural
and strong gradient of environmental stress and are ideal
for studying the ecological patterns of the microbiome
under global changes such as freshwater salinization,
sea‐level rise, and saltwater intrusion [27]. Therefore,
based on the samples collected from three freshwater‐to‐
seawater continuums, the aims of the present study were
to (i) reveal the responses of the diversity, structure, and
ecological networks of the aquatic microbiome to
environmental stress from the freshwater‐to‐seawater
transition, and (ii) explore the roles of abundant and rare
biospheres in maintaining ecological networks and the
trends in their roles across environmental gradients.

RESULTS

Reduced diversity and community
turnover along with salinity stress

First, we examined the environmental factors that fluctuated
most strongly and were consistent with geographic variation
in the freshwater‐to‐seawater transects by correlation tests
between geographic distance and environmental distance. As
expected, among all the detected physicochemical properties,
salinity showed a significantly positive correlation with
geographical distance and had the largest correlation
coefficients (Figure 1A,B and Supporting Information:
Figure S1 and Table S1). Opposite trends existed between
the concentrations of nutrient‐related parameters (dissolved
organic carbon [DOC], NO3

−, NO2
−, and NH4

+) and salinity
(Figure 1C and Supporting Information: Figure S2 and
Table S1).

Second, the drivers of the freshwater‐to‐seawater micro-
biome were analyzed using the Mantel test. Results showed
that salinity, pH, DOC, dissolved oxygen (DO),
oxidation–reduction potential (ORP), NO3

−, NO2
−, NH4

+,
and PO4

3− had significant effects on the aquatic bacteriome
structure (Figure 1C). Among them, with the largest
Mantel's r value, salinity was the strongest correlate of the
structure of the bacteriome (Figure 1C).

Third, the shifts in diversity and taxonomic composition
of the bacteriome with salinity were investigated. Linear
regression analysis showed that the α diversity of the
bacteriome decreased significantly with increasing salinity

(Figure 1D). Clear turnovers existed in taxonomic composi-
tion with the change in salinity (Figure 1E and Supporting
Information: Figure S3 and Table S2). Among the nine most
abundant microbial taxa, five experienced a significant
decrease in relative abundance (namely Betaproteobacteria,
Verrucomicrobia, Firmicutes, Epsilonproteobacteria, and Del-
taproteobacteria), three showed no significant trend, and
Alphaproteobacteria exhibited a significantly increasing trend
with rising salinity (Figure 1E and Supporting Information:
Figure S3 and Table S2). Additionally, from freshwater to
seawater, members of Alphaproteobacteria gradually became
more dominant within the bacteriome, whereas the
members of Betaproteobacteria gradually lost their domi-
nance with increasing salinity stress (Figure 1E and Support-
ing Information: Figure S3 and Table S2).

Using a Random Forest model, we identified a group of
biomarker taxa that were most sensitive to salinity
fluctuations (Figure 2). The linear regression result
(R2 = 0.95, p<0.001) showed that the established model
could predict salinity accurately (Figure 2A). The error
curve stabilized with the 23 most sensitive classes involved
(Supporting Information: Figure S4 and Table S3) and these
23 salinity‐discriminant classes, belonging to 12 phyla, were
identified as the biomarker taxa of the changes in salinity
(Figure 2B and Supporting Information: Table S3). Of the
identified biomarker taxa, 17 were low‐salinity colonizers
(significantly decreased with increasing salinity), 3 were
high‐salinity colonizers (significantly increased with increas-
ing salinity), and 3 were complex colonizers, suggesting that
most taxa were gradually depleted with increasing salinity
stress, whereas only a few were enriched (Figure 2C and
Supporting Information: Figure S5 and Table S4). With two
(Alphaproteobacteria and Flavobacteriia) of the three high‐
salinity colonizers being among the top four classes with the
highest relative abundance, the high‐salinity colonizers
exhibited a much greater mean abundance compared to
the low‐salinity colonizers (Figure 2D).

Destabilized ecological networks with
increasing salinity stress

We constructed six microbial ecological networks to unravel
the dynamic changes of microbial associations with salinity
(Figure 3A). Results showed that the co‐occurrence relation-
ships among microorganisms underwent profound changes
in the transition from freshwater to seawater (Figure 3A).
The degrees of the nodes in all six networks exhibited a
power‐law distribution with all R2 values> 0.97 (Supporting
Information: Figure S6), reflecting the scale‐free and
nonrandom features of the networks. Along the transition
from freshwater to seawater, the network size (total number
of nodes) decreased significantly, as did the total number of
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links, average degree, average clustering coefficient, density,
and connectedness (Figure 3B and Supporting Information:
Table S5). These results revealed that the complexity of the
microbial network decreased sharply and the associations
between microorganisms tended to be simple from fresh-
water to seawater. The modularity (how well a network
could be divided into communities or modules) and the total
number of modules exhibited a significantly upward trend
with increasing salinity (Figure 3B and Supporting Informa-
tion: Table S5). Species extinction was simulated by
randomly removing nodes and then the network stability
was examined by calculating the average degree and the
natural connectivity indexes after node removal. Results

showed that the robustness of the network in higher salinity
was significantly lower, regardless of the proportion of nodes
removed (Figure 3C and Supporting Information: Table S6).
Collectively, the complexity and robustness of ecological
networks diminished with increasing salinity stress.

Robustness of abundant and rare
biospheres in maintaining ecological
networks

It was further found that the composition of network
communities (a network community means a group of

(A)

(B)

(C)

(D) (E)

FIGURE 1 Shifts in the diversity and composition of the bacteriome from freshwater to seawater. (A) Geographical locations of
sampling sites, with colors indicating salinity. (B) Responses of environmental physicochemical factors with increasing geographical
distance in each transect. (C) Drivers of the bacteriome analyzed by the Mantel test. (D) Trends in the diversity of the bacteriome with
salinity. (E) Fluctuations in the taxonomic composition of the bacteriome with salinity. Only the top nine taxa (members of Proteobacteria
are shown at the class level and others are shown at the phylum level) in terms of relative abundance are shown in the plot, with the sum of
their relative abundance accounting for more than 97.7% of the entire community.
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nodes supporting the network) experienced sharp turnovers
with increasing salinity (Figure 4A and Supporting Infor-
mation: Figure S7). Although nodes that overlapped with
other network communities existed, each network commu-
nity had a considerable proportion of new members—
unique nodes—joining (Figure 4A and Supporting
Information: Table S7). The compositional similarity
between network communities declined significantly with
the increasing salinity span (Supporting Information:
Figure S7 and Table S8).

In the entire community, the abundant biosphere
with only about 6.45% in the number of amplicon
sequence variants (ASVs) was nearly 70% in relative

abundance (Supporting Information: Figure S8), showing
a hyperdominant pattern. In the network community,
the proportion of abundant taxa ranged from 26.34% to
33.62%, with an average of 30.47%, and that of rare taxa
ranged from 8.33% to 17.82%, with an average of 11.99%
(Figure 4B and Supporting Information: Table S9).
However, in the overlapping nodes between network
communities, the proportion of abundant taxa ranged
from 41.81% to 54.87%, with an average of 48.87%,
whereas the proportion of rare taxa was only 0% to
1.94%, with an average of 0.98% (Figure 4C and Supporting
Information: Table S10). That is, during the transition
from freshwater to seawater, the rare taxa supporting

(A) (C)

(D)

(B)

FIGURE 2 Biomarkers linking bacterial taxa to salinity were established using a Random Forest model. (A) Linear regression shows
that the model can predict salinity reliably. (B) The biomarker taxa listed in descending order of importance to the model accuracy. (C)
Dynamics of the relative abundance of the salinity‐discriminant biomarker taxa with increasing salinity. (D) Mean total abundance of the
salinity‐discriminant taxa with the variation in salinity.
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ecological networks had a sharper turnover than the
abundant taxa, which can also be indicated by the
compositional resistance of the abundant/rare taxa
supporting the networks during the freshwater‐to‐
seawater transition (Supporting Information: Figure S9).
This indicated that, in terms of maintaining ecological
networks, the rare biosphere was more sensitive in the

face of increasing stress, whereas the abundant biosphere
was more stable. The niche breadth of the abundant taxa
was significantly broader than that of the rare taxa
(Figure 4D and Supporting Information: Table S11),
explaining why the abundant biosphere maintaining
ecological networks was more robust than the rare
biosphere in the face of increasing stress.

(A)

(B) (C)

FIGURE 3 Succession of microbial ecological networks from freshwater to seawater. (A) Overview of microbial ecological
networks from freshwater to seawater. The networks were constructed according to the salinity stress, with the salinity of n1–n6
being 0.81, 2.14, 4.95, 12.13, 16.31, and 20.76, respectively. The nodes and links of the networks are colored according to module
attributes with the top 10 biggest modules colored differently and the remaining small modules colored gray. (B) Trends in network
topological properties along with salinity (*p < 0.05; **p < 0.01). (C) Dynamics of microbial network stability from freshwater to
seawater, computed by calculating the average degree and natural connectivity after randomly removing a certain proportion of nodes
(*p < 0.05; **p < 0.01).
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Trends in the role of abundant and rare
biospheres in stabilizing ecological
networks

In the present study, to reveal the relative importance
of nodes in different networks, we proposed a “relative
degree” index, which was calculated by dividing
the degree of each node by the average degree of the
network. Notably, the relative degree of abundant taxa
decreased significantly with increasing salinity,
whereas that of rare taxa increased significantly
(Figure 5A and Supporting Information: Table S12).
The difference in the relative degrees between the
abundant and rare taxa (i.e., the relative degree of each
node belonging to the abundant biosphere minus that
belonging to the rare biosphere) decreased significantly
with increasing salinity (Figure 5B and Supporting
Information: Table S12). Furthermore, we compared
the differences between the importance of abundant
and rare taxa in supporting the network by calculating
Freeman's θ (an index quantifying the effect size) and

the linear regression analysis revealed that the differ-
ences decreased significantly with the transition from
freshwater to seawater (Figure 5C). These results
suggest that the abundant biosphere plays a much
more important role in stabilizing ecological networks
than the rare biosphere in low‐stress environments, but
the importance of the abundant biosphere decreases
with increasing stress, whereas that of the rare
biosphere increases.

DISCUSSION

Understanding the responses of the aquatic micro-
biome to environmental disturbances is of great
importance for predicting the impacts of global
changes such as seawater intrusion and freshwater
salinization [2, 5, 28]. In this study, the exploration of
microbial ecological patterns in freshwater‐to‐seawater
continuums revealed that increasing salinity, as the
most distinctive stress in the transition from

(A) (B)

(C)

(D)

FIGURE 4 Turnover in network communities from freshwater to seawater. (A) Sankey plot shows that most nodes of the network
community were replaced during the transition from freshwater to seawater. (B) Proportions of abundant and rare taxa in each network
community. (C) Proportions of abundant and rare taxa in the overlapping nodes between network communities. (D) Comparison of the
ecological niche breadths of abundant and rare taxa (***p< 0.001; Wilcoxon rank‐sum test).
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freshwater to seawater, declined microbial diversity,
shifted taxonomic structure, weakened the complexity
and stability of ecological networks, and drove the
network community turnover. For supporting the
ecological networks, the abundant taxa exhibited
greater tolerance in the face of increasing salinity
stress during the transition from freshwater to sea-
water, whereas the rare taxa were much more
sensitive. In low‐stress conditions, the role of the
abundant biosphere in maintaining the complexity of
ecological networks far exceeded that of the rare
biosphere, but the difference between their relative
importance in the ecological networks narrowed
significantly with the increasing stress.

Salinity increases and nutrient concentrations
decrease along the gradient from freshwater to seawater,
with salinity being the most representative environmen-
tal stress (Figure 1A,B). Increased salinity increases the
extracellular osmotic pressure such that microorganisms
with low salt tolerance are more likely to be eliminated
[29, 30], which can explain the decrease in diversity of
the aquatic microbiome observed in the present study
during the transition from freshwater to seawater
(Figure 1D). Besides, the species with high salt tolerance
might have gained competitive advantages and replaced
those species with low salt tolerance [30], making them
become the dominant species in high‐salinity‐stress
environments and causing the successional dynamics of
taxonomic composition from freshwater to seawater
(Figure 1E). Microorganisms that are resistant to high‐
salinity stress usually adopt two strategies to balance the
osmotic pressure of the cytoplasm: the “salt‐in” strategy
where a high osmotic pressure inside the cells is
maintained by accumulating a high concentration of
inorganic salts in the medium, such as potassium
ions, and the “low‐salt‐in,” “compatible solute” strategy
where a high osmotic pressure inside the cells is achieved
via the accumulation of compatible solutes, which were
defined as solutes that allow all essential cell processes to
function effectively at high concentration, such as
polyols, sugars, amino acids, and betaines [30–32]. Our
study found that members of Alphaproteobacteria ex-
hibited higher resistance to salinity stress (Figure 1E),
which is in line with previous findings [30, 33]. Among
the salinity‐discriminant biomarker taxa identified by the
Random Forest model in this study (Figure 2), Alpha-
proteobacteria was also one of only three high‐salinity
colonizing taxa. Therefore, given its high abundance and
spatial prevalence, Alphaproteobacteria has the potential
to be used as a preliminary indicator of salinity
fluctuations.

(A)

(B)

(C)

FIGURE 5 Trends in the role of the abundant and
rare biospheres in maintaining the ecological networks from
freshwater to seawater. (A) The linear regression analyses
between the relative degree index and salinity, show
that the importance of abundant taxa decreases significantly
in the ecological networks from freshwater to seawater,
whereas that of rare taxa increases significantly. (B) The
difference in the relative degrees between the abundant
and rare taxa (i.e., the relative degree of each node belonging to
the abundant biosphere minus that belonging to the rare
biosphere) decreases significantly with increasing salinity.
(C) The effect size (Freeman's θ) quantifying the
difference in the relative degrees between the abundant and
rare biospheres shows a significant decrease with increasing
salinity.
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Associations among microorganisms shape microbial
diversity and functions, and changes in the ecological
network structure can affect ecosystem functioning and
stability [10, 14, 34, 35]. Our study revealed that the
network size, complexity, and stability diminished with
increasing salinity (Figure 3). The availability of
resources and nutrients are usually important drivers of
network structures [36, 37]. Combining similar findings
from previous studies [35, 37–40], we conclude that
microorganisms tend to reduce their associations under
high environmental stresses. Given the ecological core
belief of stability from complexity [14], the decay in
network complexity caused by the high stress in the
transition from freshwater to seawater will inevitably
weaken the stability of the ecological networks
(Figure 3C). Similar findings of reduced microbial
network stability have also been observed in the soil
microbiome in response to environmental stresses
resulting from elevation/water availability [39]. Dimin-
ished network stability means that the associations
among microorganisms are more vulnerable to external
disturbance or damage, thereby threatening the normal
growth or even survival of microorganisms and thus
impairing biodiversity conservation [14]. Changes in
network complexity and stability are implicated in the
microbial community functional structure and in eco-
system functional processes [10, 14, 39]; therefore, the
fragile microbial networks induced by the stress may be
detrimental to the ability of ecosystems to stably deliver
their ecological services.

Modularity is an important property of ecological
networks, which can indicate spatial compartmentaliza-
tion, resource partition, and ecological niche differentia-
tion [41, 42]. The present study uncovered that, despite
the remarkable decrease in network size, microorgan-
isms tended to form more small modules and increase
the network modularity in the face of increasing stress
(Figure 3B). This result suggests that under high‐stress
and resource‐scarce conditions, microorganisms may be
more capable of experiencing resource fluctuations and
thus surviving through the niche differentiation strategy.
By increasing the level of compartmentalization of
microbial associations, the loss of network stability from
freshwater to seawater may also be mitigated to some
extent, as the formation of more modules can effectively
weaken the effect of species extinction on the ecological
network [39].

The sharp turnover in the composition of the
microorganisms supporting the networks from fresh-
water to seawater (Figure 4A) suggests that different
environmental conditions foster different microbial
associations [43]. The turnover of the rare biosphere
supporting ecological networks was dramatically

stronger than that of the abundant biosphere
(Figure 4B,C), which demonstrates the greater robust-
ness of the abundant biosphere in maintaining ecological
networks and the higher tolerance of the abundant
biosphere to the increasing stress from the freshwater‐to‐
seawater transition. Ecological niche breadth reflects the
ability of a species to inhabit or utilize environments or
resources [44]. Species with a broader niche breadth
usually have greater metabolic plasticity, thus being less
influenced by environmental fluctuations [37, 38, 44, 45].
Therefore, our finding on the significantly broader
ecological niche (Figure 4D) of the abundant biosphere
can explain its high tolerance in response to environ-
mental disturbance.

Our study shows that, in low‐stress and nutrient‐rich
freshwater, due to their significantly higher relative
degree, the abundant taxa play a far more important role
than the rare taxa in maintaining the ecological net-
works, whereas the number of ASVs in the abundant
biosphere is much lower than that in the rare biosphere
(Figure 5A and Supporting Information: Figure S8). That
is, the absence of a node from the abundant biosphere
will have a more profound impact on the complexity and
stability of microbial ecological networks than the
absence of one from the rare biosphere. Consistent with
prior findings [46, 47], this phenomenon, a small number
of strong species controlling the dynamics of the entire
ecological network while the majority of species playing
a minor role, reflects the polarization in the microbial
world. More importantly, with the increasing stress in
the freshwater‐to‐seawater transition, the importance of
the abundant biosphere to the complexity and stability of
ecological networks declines, while the contribution of
the rare biosphere increases significantly (Figure 5).
These findings suggest that the increased environmental
stress diminishes the degree of polarization in the roles of
the abundant and rare biospheres in the ecological
network. In other words, the so‐called “Matthew effect”
[48] in the microbial world is weakened by increasing
stress. In line with previous findings [49–52], our results
highlight that maintaining ecosystem functions and
services may require adjusting the intensity of attention
to rare and abundant species in different environmental
conditions. Notably, in the microbial world, our research
may provide the first evidence about the responses of the
roles of the abundant and rare biospheres in maintaining
ecological networks under increasing stress.

Finally, we propose a conceptual paradigm to summarize
the ecological patterns of the microbiome revealed in this
study (Figure 6), contributing to a predictive understanding
of microbial responses under the globally increasing
environmental stress in the Anthropocene. With the
increasing stress from the freshwater‐to‐seawater transition,
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the microbial diversity decreases, and the structure of the
microbiome undergoes marked turnover. The complexity
and stability of microbial ecological networks diminish with
increasing stress. However, the modularity of networks
increases during the transition, which may be a strategy for
the microbiome to counteract environmental stress and slow
down network destabilization. The composition of nodes
supporting networks also shifts sharply along with the
increasing stress, with abundant taxa demonstrating much
greater robustness than rare taxa. Broader ecological niche
breadth can explain the tolerance of the abundant biosphere
to increasing stress. Importantly, we present the first
evidence in microbial ecology that the abundant biosphere
carries greater importance than the rare biosphere in
stabilizing ecological networks in low‐stress conditions, but
the relative importance of the abundant biosphere decreases,
while that of the rare biosphere increases with increasing
environmental stress. This phenomenon can be described as
the environmental stress weakening the so‐called “Matthew
effect” in the microbial world, which indicates that the
intensity of conservation concerns for abundant and rare
species may need to be adjusted to protect ecosystem
functions and services under increasing stress.

METHODS

Sample collection and detection of
physicochemical variables

Samples were collected from three freshwater‐to‐
seawater transects (the Wulong river [Transect 1], the

Moshui river [Transect 2], and the Dagu river [Transect
3], together with their corresponding coastal areas) in
September 2020 in Yantai and Qingdao, Shandong,
China (Figure 1A and Supporting Information:
Table S1). Sixteen consecutive sites were set in each
transect (Figure 1A and Supporting Information:
Table S1). Two 2‐L surface (0–20 cm) water samples
were collected using glass bottles at each site: one for
molecular analyses and the other for the detection of
physicochemical properties. The water samples for the
latter were stored at 4°C, whereas those for the former
were sequentially vacuum‐filtered through a qualitative
filter (80–120 μm) for removing interfering sub-
stances and a 0.22 μm membrane filter for collecting
microorganisms. The filters were immediately moved to
storage at −80°C until the next step in the process.

Salinity (g/L), pH, DO, and ORP were determined in
situ using a salinity meter (AR8012, SMART SENSOR), a
pH meter (PHB‐4, Shanghai INESA), a DO meter (JPB‐
607A; Shanghai INESA), and an ORP meter (PHS‐3C;
Shanghai INESA), respectively. The DOC content (mg/L)
was detected with a total organic carbon analyzer
(Elementar Acquray TOC cube). The concentrations
(mg/L) of NH4

+, NO3
−, NO2

−, and PO4
3− were measured

using a flow‐injection analyzer (Skalars San++).

Bioinformatic processing

In the present study, the bacteriome at all 48 sites was
analyzed to explore its successional dynamics from
freshwater to seawater. Then, the mycobiome of 18

FIGURE 6 Conceptual paradigm showing the responses of the aquatic microbiome under increasing salinity stress. With increasing
salinity, the microbial diversity declines, the structure of the microbiome undergoes marked turnover, and the complexity and stability of
microbial ecological networks diminish. In low‐stress conditions, the role of the abundant biosphere in maintaining the ecological networks
far exceeds that of the rare biosphere, but the relative importance of the abundant biosphere decreases while that of the rare biosphere
increases with increasing stress.
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freshwater (salinity less than 2.86 with a mean value of
1.66) and 18 seawater (salinity > 14 with a mean value of
18.05) sites were further investigated to verify the
microbial ecological patterns observed through the
bacteriome. The total genomic DNA of each water sample
was extracted from the filter using the cetyltrimethylam-
monium bromide method [53, 54]. The primer pairs 515F/
806R and ITS1‐1F‐F/ITS1‐1F‐R were used to amplify the
V4 region of the 16S ribosomal RNA gene for bacteria and
the ITS1‐1F region of the internal transcribed spacer (ITS)
gene for fungi, respectively. Paired‐end reads (2 × 250 bp)
were generated after high‐throughput sequencing on an
Illumina NovaSeq. 6000 platform. Paired‐end reads were
sequentially merged, primer‐cut, quality‐filtered, and
dereplicated using USEARCH v10.0.240 [55] and
VSEARCH v2.15.1 [56]. The dereplicated sequences were
denoised and generated ASVs using the “unosie3”
function. The corresponding taxonomic information of
bacteria and fungi was annotated based on the Ribosomal
Database Project Classifier [57] and the UNITE database
[58], respectively. Sequences assigned to chimeras,
mitochondria, chloroplasts, and archaea were discarded.

For the bacterial data, a total of 3,059,996 sequences
with a minimum number of 51,323 were obtained. The
bacterial ASV table was rarefied to 51,323 reads per
sample for subsequent analyses (Supporting Information:
Table S13). For the fungal data, a total of 1,394,166
sequences with a minimum number of 7988 were
obtained. Then, the two seawater samples from Transect
3 with reads of <10,000 were removed. To ensure a
distributional balance between freshwater and seawater
samples and to increase the reliability of the comparison
between freshwater and seawater results, we also
removed the two samples with the smallest number of
reads in the freshwater group, which coincidentally were
also from Transect 3. This resulted in the fungal data set
containing 16 freshwater samples and 16 seawater
samples, and their geographical distribution was bal-
anced. Then the fungal ASV table was rarefied to 12,454
reads per sample for subsequent analyses (Supporting
Information: Table S14). Rarefaction analyses indicated
that the rarefied bacterial and fungal communities in our
study captured most aquatic microbiome members and
were sufficient for exploring the microbial responses to
increasing salinity stress (Supporting Information:
Figure S10).

The group of microorganisms with average relative
abundance >0.1% was defined as the abundant bio-
sphere; the group of microorganisms with average
relative abundance <0.01% was defined as the rare
biosphere; and the remaining group with relative
abundance between 0.01% and 0.1% was defined as the
intermediate biosphere [23, 59].

Statistical analyses in bacterial pattern
exploration

To identify an environmental variable that could represent
the environmental stresses from the freshwater‐to‐seawater
transition, we calculated the Pearson correlation coefficients
between the geographical distance and the physicochemical
differences of the samples in each transect by using the
“psych” package [60] in R v.4.1.1 (https://www.r-project.
org/). Mantel tests were carried out to test the relationships
between the physicochemical properties and the structure of
the microbiome using the “vegan” package [61]. The
changes in the α diversity and the taxonomic composition
were revealed by performing linear regressions. To identify a
group of biomarker taxa that were most sensitive to the
salinity changes and thus could effectively link the aquatic
microbiome to salinity fluctuations, a Random Forest model
was run using the “randomForest” package [62, 63]. After
1000 iterations, the taxa were rearranged according to their
importance to the accuracy of the model, and the appropriate
number of biomarkers was determined by 10‐fold cross‐
validation with 5 repeats. The trends of the identified
biomarker taxa with salinity fluctuations were analyzed by
linear regression and visualized in a ridgeline plot using the
“ggridges” [64] and “ggplot2” [65] packages.

To investigate the dynamics of microbial ecological
networks with the salinity, we divided the samples into
six groups according to the order of their salinity (n1–n6,
with average salinity ranging from 0.81 to 20.76) and
then constructed microbial ecological networks based on
the Molecular Ecological Network Analyses (MENA)
platform (http://ieg4.rccc.ou.edu/mena.edu/mena) [41,
66]. Each group contained eight samples and only the
ASVs occurring in all samples were used for each
network construction. Following the recommendation
in the MENA platform, the compositional data of the
remaining ASVs were analyzed to obtain the Pearson
Correlation Coefficient matrix after central log‐ratio
transformation. Then the platform based on the random
matrix theory automatically generated a set of thresholds
for network construction. To ensure comparability
between different networks, a uniform threshold (0.96)
was adopted to screen for the significant links among
microorganisms. Other parameters used the pre‐set
default options in the platform. Once the networks were
constructed, the corresponding topological properties,
including the total number of nodes, total number of
links, average degree (higher average degree means a
more complex network), average clustering coefficient
(indicating the extent of module structure present in a
network), density (closely related to the average degree),
and connectedness (is 0 for graph without links and is 1
for a connected graph) were computed by the MENA
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platform. The networks were visualized using the
“igraph” package [67] and the main modules were
differentiated by different colors. The trends in the
network topological properties from freshwater to sea-
water were examined based on linear regressions. Species
extinction was simulated by randomly removing a certain
proportion of nodes in each network and then the
average degree and natural connectivity were computed
to test the stability of the networks.

Here we describe the group of nodes in each
ecological network as a network community and the
compositional similarity between different network
communities was calculated based on the Bray–Curtis
distance to reveal the turnover of the microorganisms
maintaining the ecological networks from freshwater to
seawater. The proportions of abundant and rare taxa in
each network community and in each group of over-
lapping nodes between different networks were calcu-
lated to explore the robustness of abundant and rare
biospheres in maintaining ecological networks facing the
increasing environmental stress from freshwater to
seawater. To reveal the underlying mechanisms of the
difference in robustness between abundant and rare
biospheres, the niche breadths of members in abundant
and rare biospheres were estimated through the Levins'
niche breadth index [68] calculated in the “spaa” package
[69]. The breadth of a species’ ecological niche reflects its
ability to utilize various resources and a species with a
wider niche breadth is generally considered to have
higher metabolic flexibility [70, 71]. The Wilcoxon rank‐
sum test was used to compare the ecological niche
breadths between the abundant and rare taxa, with
p‐values < 0.05 representing a statistically significant
difference.

To make the relative importance of maintaining
networks of species in different networks comparable,
we defined an index of relative degree, which is
obtained by dividing the degree of each node by the
average degree of that network. Then, the relative
importance of abundant and rare biospheres in main-
taining the complexity of ecological networks was
obtained by comparing the relative degrees of the
members in the two groups. The trends in their roles
in networks with the increasing environmental stress
were revealed through linear regressions between the
relative degrees and the salinity. By comparing the
difference in the relative degrees between abundant and
rare taxa (i.e., the relative degree of each node belonging
to the abundant biosphere minus that belonging to the
rare biosphere) and calculating the effect size (Free-
man's θ), we further investigated the trends in the gaps
between the contributions of abundant and rare taxa in
the networks with increasing stress.

Statistical analyses in fungal pattern
exploration

The difference in the α diversity of the mycobiome
between freshwater and seawater was analyzed using the
Wilcoxon rank‐sum test. A non‐metric multidimensional
scaling ordination was performed to show the difference
in the structure of the mycobiome between freshwater
and seawater. The ecological networks of the mycobiome
were also analyzed in the MENA platform. Only species
occurring in no less than half the number of samples (≥8
of 16) in each group were retained for generating
correlation matrices. A uniform threshold (0.83) was
adopted to select the significant associations among
microorganisms, thus ensuring comparability between
different networks. The recommended options in the
platform were used for other parameters. Differences in
the complexity and stability of fungal ecological networks
between freshwater and seawater were revealed by
comparing the topological properties of the networks,
as well as the average degree and natural connectivity of
the networks after randomly removing nodes, respec-
tively. Other statistical analyses were consistent with the
methods used for the bacteriome. The results for the
mycobiome are presented in the file Supporting Informa-
tion: Results, Figures S11–S16, and Tables S15–S19. In
short, the ecological patterns of aquatic microbiomes
under increasing salinity stress revealed by this study
were consistent in bacterial and fungal communities,
demonstrating the robustness of our findings.
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