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Abstract

Although the accomplishments of microbiome engineering highlight its significance for the targeted manipulation of microbial
communities, knowledge and technical gaps still limit the applications of microbiome engineering in biotechnology, especially
for environmental use. Addressing the environmental challenges of refractory pollutants and fluctuating environmental
conditions requires an adequate understanding of the theoretical achievements and practical applications of microbiome
engineering. Here, we review recent cutting‐edge studies on microbiome engineering strategies and their classical applications
in bioremediation. Moreover, a framework is summarized for combining both top‐down and bottom‐up approaches in
microbiome engineering toward improved applications. A strategy to engineer microbiomes for environmental use, which
avoids the build‐up of toxic intermediates that pose a risk to human health, is suggested. We anticipate that the highlighted
framework and strategy will be beneficial for engineering microbiomes to address difficult environmental challenges such as
degrading multiple refractory pollutants and sustain the performance of engineered microbiomes in situ with indigenous
microorganisms under fluctuating conditions.
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INTRODUCTION
Microorganisms live in communities and interact with their
neighbors and environments. They drive global biogeochemical
cycles, significantly change our living environments, and impact
human health1–3. For example, approximately 60% of global
wastewater is treated by microbial consortia involved in active
sludge before being released into the natural water systems4,5.
Inside the human body, the number of microbial cells is 10
times higher than that of human cells, and human microbiomes
have fundamental roles in physiology and health6. Moreover,
breakthroughs are constantly appearing in the bio‐industry
because of the capabilities of microbiomes to synthesize
valuable products7,8, degrade chemical pollutants9,10, and
produce biofuels11. Currently, a large number of important
industrial chemicals and medicines have been produced by
microbiomes, including isobutanol7, taxanes8, and hydrogen11.
Although these achievements have affirmed the enormous
potential of microbiomes for human use, formidable challenges

remain in manipulating microbiomes for controllable output.
Specifically, the ability to control the microbiome structure to
sustain its function is still lacking. To address this challenge,
a concept called “microbiome engineering” has emerged
recently12–14. “Microbiome engineering” is a process to en-
hance the performance of microbiomes through targeted
manipulation of the composition of natural communities (top‐
down) or rational design and construction of new synthetic
consortia (bottom‐up). Microbiome engineering is typically
driven by general principles derived from a mechanistic un-
derstanding of the ecology and evolution of microbiomes.
Such principles are presented as quantitative frameworks
that can accurately predict the dynamics and function of a
given microbiome and thus guide the rational engineering of
microbiomes. This process of microbiome engineering pro-
vides a significant opportunity to further unlock the large
potential of microbial communities.
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Recently, an iterative “design‐build‐test‐learn” cycle
(DBTL) was proposed as a general guideline for microbiome
engineering13. Nevertheless, the development of micro-
biome engineering is still limited by knowledge and technical
gaps. The major hurdle is the lack of quantitative theories
and techniques to accurately measure, predict, and manip-
ulate the structure and functions of microbiomes. Moreover,
the interactions between many naturally occurring microbes
are uncharacterized, and how these interactions are regu-
lated by multiple environmental factors also remains poorly
understood. Furthermore, tools to directly manipulate spe-
cific members of the microbial community have yet to be
explored. In addition to these gaps, applying microbiomes to
treat chemical pollutants in an open environment faces more
challenges than applying microbiomes in a closed bio-
reactor. For example, degradation of multiple refractory
pollutants (e.g., polycyclic aromatic hydrocarbons with high
molecular weight, plastics, and halogenated compounds) in
an open environment requires an engineered microbiome
exhibiting diverse and high degrading abilities. In addition,
fluctuating environmental conditions and indigenous micro-
organisms at contaminated sites affect the stability of en-
gineered microbiomes. Inadequate tools for real‐time
monitoring in the natural environment and policy restrictions
on the use of genetically modified organisms (GMOs) limit
the development of microbiome engineering for environ-
mental use.

Integrating the theoretical research on microbiome
engineering and its application achievements in recent years
would advance the development of microbiome engineering
in environmental science. Here, a set of microbiome‐
engineering strategies is summarized from recent cutting‐
edge studies. We then discuss how these strategies can
be applied to advance the development of microbiomes for
bioremediation. Based on present theories and practical
accomplishments, we summarize and propose an approach
that combines bottom‐up and top‐down approaches for the
applications of microbiome engineering in natural environ-
ments. Finally, an “avoidance of toxic intermediates” strategy
is discussed, which specifically addresses the environmental
applications of microbiome engineering to avoid the build‐up
of toxic intermediates that pose a risk to human health and to
the environment.

PRINCIPLES AND STRATEGIES FOR
MICROBIOME ENGINEERING
Common strategies for microbiome engineering
Microbiome engineering aims to manipulate or de novo design
a microbiome to achieve the desired functions13,15,16. Two
approaches are commonly applied to design a microbiome:
bottom‐up and top‐down approaches (Figure 1)13. The function
of a multistrain microbiome arises from the individual members
involved and from the interactions among these members17–20.

Figure 1. Two approaches to microbiome engineering. Left panel: the bottom‐up approach of microbiome engineering starts with several
isolates, whose physiologic features have been well characterized. Coculture assays are performed to identify pairwise interactions among
these isolates. Genetic engineering could be performed to design or modify the interactions. Systems based on cell‐to‐cell communications are
used to directly control the behavior of specific populations. Right panel: the top‐down approach of microbiome engineering starts with a
seeding microbiome containing uncultivated microorganisms. Then, microbiome engineering is managed to drive the seeding microbiome to
self‐assemble into a stable system with highly optimized function. Three methods, including enrichment, artificial selection, and directed
evolution, are commonly applied to perform top‐down engineering. No matter which approaches are used, the workflows should follow the
“design‐build‐test‐learn” (DBTL) cycle proposed by Lawson et al.13.
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Thus, one could select or reconstruct suitable functional
microorganisms as seeding members, identify or modify the
interactions among these strains, and assemble a microbiome
of these microorganisms, which is defined as the bottom‐up
approach18,21. However, it is still challenging to identify all
the interactions within a multimember microbiome. For
example, coculture assays of every two‐member combina-
tion are the common approach to identify pairwise microbial
interactions; however, the number of pairwise combinations
increases exponentially with the number of strains. More-
over, our understanding of how community‐level dynamics
function in interaction networks is limited22,23. Because of
these complexities, microbiome engineering can alter-
natively follow a top‐down approach. This approach aims to
select an efficient microbiome with the desired capacity
from a natural community or a premixed community with
natural strains with a well‐designed selection strategy and
carefully optimize environmental variables13. These two
approaches offer complementary strategies for engineering
microbiomes with the desired functions.

To achieve the defined engineering goal, Lawson et al.13

adopted the practice guideline of the DBTL cycle from tra-
ditional engineering studies and suggested that such a cycle
is also useful in engineering an effective and stable micro-
biome. The cycle starts with a rational design based on
quantitative modeling informed by the given principles and
assumptions, followed by the physical building of the
microbiome. After testing the function and performance of
the microbiome, researchers learn from failures and suc-
cesses and thus incorporate new knowledge into subsequent
cycles (Figure 1).

Microbiome engineering based on the bottom‐up
approach
A bottom‐up design synthesizes a microbiome with defined
naturally occurring strains or engineered strains. Microbial
systems engineered using the bottom‐up approach are usually
assembled using a limited number of members24, which are
also termed “synthetic microbial consortia”25–27. Four princi-
ples have been proposed to guide the design of such con-
sortia12: (i) control of intercellular interactions, (ii) control of
spatiotemporal coordination, (iii) maintenance of robustness
and stability, and (iv) prevention of biocontainment. This
guideline has been widely used to engineer many simple but
useful synthetic consortia28–31. In addition to finding significant
applications, studies based on these simple consortia have
also developed numerous general principles for engineering
microbiomes composed of many members.

Principles from synthetic consortia of naturally
occurring strains. The principles of how multiple eco-
logical factors determine microbiome structure and function
are fundamental to the rational engineering of microbiomes.
These principles can be derived using synthetic consortia
composed of naturally occurring strains (Table 1). For ex-
ample, this approach has been used to explain the

coexistence of competitive strains. One study predicted the
survival of different strains in synthetic consortia based on
the outcomes of every pairwise combination of strains32. The
study also suggests that all strains that coexist in pairs will
survive in a multistrain community; in contrast, strains that
are excluded by any of the surviving strains will become
extinct. A recent study further indicated that this principle
could be extended to explain the evolution of microbial
communities56.

Synthetic consortia composed of naturally occurring strains
have also been applied to test how important environmental
factors, such as temperature37, nutrient availability38, nutrient
complexity39, and pH38,40, affect the compositions of multistrain
consortia. For instance, higher temperatures are predicted to
favor slow‐growing bacterial strains in multistrain commun-
ities37. Such synthetic consortia have also been used to study
the potential impact of stochastic processes on community
composition. Several studies have found that stochastic colo-
nization of divergence between individual hosts is a key factor
affecting the assembly of synthetic host‐associated micro-
biomes41–43. Accordingly, a “lottery”‐like assembly principle
was proposed, suggesting that a rare successful colonist in
the gut dominates the individual community and resists the
invasion by new colonizers43.

One central question in microbiome engineering is how
community‐level dynamics and functions arise from strain‐
level interactions22,23. Synthetic microbial consortia of strains
with diverse interactions can be used to address this ques-
tion. Using a bottom‐up approach, the dynamics of the
synthetic gut microbiome57,58, synthetic plant‐associated
microbiomes59,60, and synthetic food microbiomes61 could
be accurately predicted by the outcomes of pairwise inter-
actions. Several model analyses have provided theories
linking such pairwise interactions to the community's struc-
ture, stability, and productivity44–46,62. For example, positive
interactions are predicted to enhance a community's diver-
sity and productivity but decrease its stability44,45. However,
many of these predictions have not been experimentally
tested because of inadequate tools for measuring the mas-
sive number of pairwise interactions in synthetic micro-
biomes composed of a large number of members. For
example, a synthetic microbiome composed of 100 members
would have 4950 pairwise interactions, which would require
155 96‐well plates to measure these interactions in triplicate
for just one environmental condition63. A recently designed
kChip device enables the parallel measurement of up to 105

pairwise interactions63,64, providing an opportunity to over-
come this limitation. Accurate quantification of microbial in-
teractions could improve our understanding of the ecology of
microbiomes65,66 and thus enhance our ability to engineer
microbiomes with widespread applicability.

Principles from synthetic consortia of engineered
strains. For a natural community, the interactions between
members may change with environmental conditions67,68,
and the underlying mechanisms are challenging to charac-
terize fully. In this case, researchers can directly construct
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synthetic consortia with predefined interaction modes to
avoid such unpredictable effects. This type of design can be
achieved by engineering the metabolism of the member
strains or mimicking cell–cell communications through the
construction of genetic circuits, usually based on quorum‐
sensing signals. Benefiting from this design, the interactions
among members become simple and mechanistically clear.
Therefore, controllable studies can be performed to de-
termine how a given interaction mode affects community‐
level properties. Moreover, these simple consortia also
facilitate the construction of mechanistic models, thus
enabling researchers to conclude general principles that can
be used for other systems (Table 1)12,25,69.

One classic example is the construction of a consortium
composed of engineered strains deficient in the synthesis of
diffusible metabolites (such as amino acids and vitamins) and
surviving by complementarily exchanging metabolites. This
design was to create a cooperative consortium, CoSMO
(cooperation that is synthetic and mutually obligatory), which
is composed of two mutually beneficial Saccharomyces
cerevisiae strains36. The authors found that cooperative ex-
change within the consortium could maintain long‐term
community stability. Subsequent studies based on CoSMO
further revealed that such cooperation drives the community
to develop an intermixing spatial pattern49, which helps
prevent invasion by cheaters50. Inspired by CoSMO, other
similar consortia have been established using different bac-
terial strains47,51,70–73. Several studies have proposed that
the cost of metabolite production is a primary factor in de-
termining the performance of a cooperative community47. A
recent study revealed that two populations exchanged amino
acids only within a short range (~5 μm)51. These studies offer
many important principles for engineering a microbiome
composed of more than two members. For example, in-
troducing such interdependent interactions facilitates the
coexistence of multiple strains that execute essential func-
tions in the desired microbiome74–78. Furthermore, manipu-
lating the spatial organization of a community52,79,80 to
decrease the distance between interacting strains could in-
crease their metabolic exchange51, potentially benefiting
community performance. Similarly, engineering synthetic
consortia containing other interaction modes provides other
useful principles. Accordingly, the above‐mentioned princi-
ples summarized in Table 1 can be used to design and build
stable and efficient microbiomes.

Synthetic microbial consortia can also be engineered to
perform metabolic division of labor (MDOL). In such a
consortium, the metabolic tasks involved in a pathway with
many enzymatic steps are divided among different inter-
acting strains54,81–83. If a pathway is performed by a single
microbial population, it requires that all of the necessary
enzymes be produced by that population. Biosynthesis of
these enzymes expends lots of energy and nutrients, thus
creating a substantial metabolic burden that limits the
growth of the population54,82. In comparison, each member
of an MDOL community only contains a subset of genetic
components required for its respective metabolic step,

resulting in a reduced metabolic burden84,85. This per-
spective can explain the findings in several engineered
communities engaged in MDOL, in which the metabolic
efficiency of such communities was higher than that of the
corresponding single‐population scenario8,53. However,
MDOL is not always a better strategy, and it has several
limitations. First, the transport efficiency of intermediate
metabolites could be limiting when the pathway segregates
into different populations. Using mathematical modeling, a
recent study found that a community performing MDOL
outperforms a single population only when the benefit
derived from reduced metabolic burden overcomes the
inefficiency of intermediate metabolite transport.54 Second,
the members involved in an MDOL community cannot
stably co‐exist in some cases. In our recent study, we div-
ided the degradation pathway of naphthalene into several
steps and engineered several MDOL communities, in which
each member was only able to perform one degradation
step33. The MDOL communities are unstable because the
strain performing the last step of the degradation pathway
can obtain more benefits than other strains by privatizing
available carbon sources. Using a mathematical model, we
summarize several principles to predict the stability and
assembly of MDOL systems based on simple pathway
parameters (Table 1). A similar study suggests that the
structure of the MDOL community can be rationally ma-
nipulated by changing the substrate concentration and
toxicity55. In summary, these quantitative principles
addressed two important questions in the engineering of a
given pathway (Table 1): (1) whether engineering a synthetic
consortium performing MDOL can increase the metabolic
efficiency of the pathway and (2) how to engineer a stable
MDOL community with a defined structure.

Different types of interactions in synthetic consortia have
also been engineered using synthetic gene circuits48,86,87.
For example, six two‐strain consortia executing six different
social interaction modes can be engineered by the modular
organization of well‐designed genetic modules48. Through
this design, the study proved that the dynamics of com-
munities composed of more members can be predicted
from the behavior of a simple two‐strain community.
Engineering cell‐to‐cell communication can also be per-
formed to directly control the behavior of different pop-
ulations involved in the microbiome88. In some cases, a
faster‐growing population may lead to the collapse of the
microbiome, so a programmed “self‐lysis” system can be
introduced to control its population size, in which the cell
self‐lyses upon receiving a quorum‐sensing signal34,35. Such
engineering approaches can even be used to generate
oscillating dynamics in a synthetic consortium89, modulate
the spatial patterning of a community90,91, stabilize micro-
bial strain ratios92, and coordinate the DNA cycling of
different strains within a consortium93. These tools create
opportunities to engineer microbiomes with designed com-
positions, spatial structures, and metabolic traits to achieve
a defined engineering goal. A recent study developed an
engineered consortium that enabled cell lysis in response
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to the concentration of an intermediate metabolite94. The
intermediate released by the lysed cell could benefit the
downstream metabolism mediated by the other population;
therefore, the strategy improves the chemical production of
the two‐strain consortium engaged in the division of
labor (DOL).

Microbiome engineering based on the top‐down
approach
Applications of the bottom‐up engineered microbiomes,
however, are impeded by several limitations. First, many
functionally important microorganisms remain uncultured.
Second, establishing a mechanistic understanding of the
interactions among the different microorganisms is chal-
lenging. Third, the practical application of engineered
microbiomes for environmental use must ensure that the
genetically engineered functions are not released into and do
not disrupt natural ecosystems12,95. As an alternative to the
limitations of bottom‐up engineering, the top‐down approach
could be used as it requires only a natural community,
independent of the isolated strains, as well as a detailed
understanding of microbial interactions. Moreover, as no
GMOs are introduced into this system, it is more convenient
and suitable to use in the natural environment.

Three common methods have been proposed to achieve
top‐down engineering of microbiomes: enrichment, artificial
selection, and directed evolution (Figure 2; Table 2). Enrich-
ment is the most common method because it is the simplest
strategy for manipulation. However, the defined conditions
and simple manipulation may reduce the variability in com-
munity succession, which leads to potentially low functional
diversity and redundancy that affects the function and
stability of the engineered microbiome101. Alternatively, more
diverse and efficient microbiomes are obtained when artificial
selection of the microbiome is performed with more well‐
designed selective cycles108,109. Directed microbiome evo-
lution is a recently proposed concept, inspired by the
directed evolution of pure strains and biomolecules110.
Regardless of the method applied, top‐down engineering has
managed to drive the seeding microbiome to self‐assemble
into a stable system with a highly optimized function, which
is governed by the ecological and evolutionary principles
involved13.

Top‐down microbiome engineering via enrichment.
Enrichment of a microbiome is performed by imposing a
seeding microbiome into multiple dilution‐growth cycles
under well‐defined environmental conditions (Figure 2A)101.
The outcome of enrichment is primarily affected by environ-
mental variables, such as temperature96, nutrient availability,
pH96,97, energy source111,112, and carbon source96,98.
Enriching microbiomes with multiple replicates has recently
been considered a powerful approach to developing a
quantitative theory of microbial ecology100. For example,
Goldford et al.98 found that the composition of the enriched
microbiomes under steady‐state conditions converged

based on experimentally imposed conditions rather than the
strain composition of the initial inoculations. These results
are highly predictable when using classical ecological
models that consider the main factors of nutrient availability
and nonspecific cross‐feeding. Another study found similar
results, showing that the composition of microcosms using
the same carbon source (petroleum hydrocarbons or as-
phaltene) was highly similar and had core microbiomes
mainly consisting of petroleum‐degrading bacteria99. There-
fore, optimizing environmental variables may be more effi-
cient than screening diverse initial seeding microbiomes to
establish high‐performance enrichment microbiomes.

The enrichment process is also driven by stochastic factors.
For example, the bottleneck effect in a community refers to a
sharp reduction in community size owing to environmental
events41,113,114. Such a stochastic effect can cause the loss of
strain diversity, thus affecting community function. Dilution
manipulation in each cycle reduces the community size and
thus imposes a bottleneck102,115–117. Studies have suggested
that decreasing the size of the bottleneck (reflected by the
increasing dilution factor) is more likely to remove rare
taxa118,119 that may possess key functions and significantly
influence microbial diversity120. Nevertheless, one study also
showed that the increasing dilution factor is not proportional to
the corresponding reduction in the diversity and functionality of
the community121. Therefore, determining an optimal dilution
factor is a critical step to obtaining a good top‐down en-
gineered microbiome through the enrichment approach.

Top‐down microbiome engineering via artificial
selection. Recently, microbiome selection using a “born‐
maturation‐reproduction” cycle has been proposed103

(Figure 2B). Each selection cycle starts with a collection of
low‐density “Newborn” communities, which grow (matura-
tion) into “Adult” communities within a given time span.
Then, several specific adult communities are chosen to
“reproduce” such that each is randomly partitioned into
multiple newborn communities to start the next cycle. Over
sufficient selection cycles, microbiomes with the desired
functional traits were obtained. This framework suggests
that natural microbial communities can be selectively bred
to produce engineered microbiomes with desirable fea-
tures, as has been done with animals and plants for
thousands of years122. Compared with the enrichment
approach, artificial selection usually starts with more repli-
cates. Importantly, at the end of one cycle, only a specific
number of adult microbiomes (normally those with top
performance) were selected for seeding in the next cycle
(Figure 2A,B). With this approach, microbiomes are con-
tinually selected to perform better in the desired function
during the selection cycles, resulting in better outcomes
than those obtained using the enrichment approach.

Many efforts have been made to develop general princi-
ples to guide the artificial selection of microbiomes. A
standard protocol for the artificial selection of microbiomes
was developed and used to establish a root‐associated
bacterial microbiome that confers salt tolerance to the

387



plant123. Four essential aspects of artificial selection were
proposed by simulating the selection process in silicon:
(1) promoting species coexistence, (2) suppressing non-
contributors, (3) choosing additional communities besides
the highest‐functioning ones to reproduce, and (4) reducing
stochastic fluctuations in the biomass of each member strain
in newborn communities103. These model predictions were
partially verified through experiments in another study, which
used a defined set of strains or soil communities as the
starting “Newborn”124. Another experimental study demon-
strated that optimizing incubation times is crucial for pre-
venting the loss of strains with key functional traits during
artificial selection104. In a recent study, individual‐based

modeling (IBM) showed that interactions that encourage
strain coexistence restrict the compositions of newborn
communities, which drives the microbiome away from max-
imal function and decreases its heritability105. Newborn
communities in artificial selection can also be built by
“breeding” different adult communities. Another study found
that “breeding” several adult communities to construct
newborns was more efficient in biomass production than
using a single adult community106. Overall, the strategies
developed from these studies could be adopted for further
top‐down engineering of microbiomes.

Although artificial selection is considered a useful top‐
down engineering strategy, it has two main limitations110.

(A)

(B)

(C)

Figure 2. Three methods, enrichment, artificial selection, and directed evolution, are used for top‐down microbiome engineering. These
methods are designed to drive the self‐assembly of a seeding microbiome into an engineered microbiome with the desired functions. (A) During
enrichment, the seeding microbiome is introduced into the multiple growth‐dilution cycles under well‐defined environmental conditions. The
microbiome is expected to gradually adapt to the environment and thus develop higher performance101. (B) In artificial selection, a collection of
low‐density newborn communities is allowed to grow (maturation) into adult communities within a given time period. Then, the adult com-
munities with enhanced functions are chosen to reproduce a novel generation of newborn communities to start the next cycle103. (C) One
iteration of directed evolution starts with building a library of generationally stable communities with varied functions, and the community with
the highest function is subjected to ecological perturbations110. As a result, a new library of generationally stable communities is generated to
start a new iteration. As shown in the right panel of every graph, all these methods can be conceptualized as the shifts of a dynamic
structure–function landscape, which represents the changes in the states with specific community structures and functions. Enrichment drives
the evolution of the seeding microbiome along one trajectory into a final state with a generationally stable structure and an expected high
function. The artificial selection first generates multiple states, and then, the states with higher functions are artificially chosen to continue the
selection. As a result, a state with the highest function evolves from diverse evolving trajectories. In addition to the self‐assembled states,
directed evolution also generates states by imposing ecological perturbations on the self‐assembled states, leading to more trajectories that
benefit the selection of best‐performing communities.
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First, artificial selection of microbiomes requires that the adult
communities after each cycle exhibit considerable variation in
the selected function; therefore, adult communities with higher
functional performance can be selected for breeding. However,
the variation usually decreases rapidly over cycles because the
selection process continually eliminates strains from the met-
acommunity, after which all adult communities are dominated
by the same selectively favorable strains. Without mechanisms
that regenerate between‐community variation, selection
cannot continue after several cycles. Therefore, approaches
benefiting from the regeneration of this variation are critical to
continue artificial selection after the first few rounds. Second,
the newborn communities may not exhibit the dynamics
and functions of their adult communities. This generational
instability may invalidate top‐down engineering.

Top‐down microbiome engineering via directed
evolution. To overcome the limitations of artificial selection,
Sánchez et al. proposed that directed evolution could be a
new tool for top‐down engineering of microbiomes110

(Figure 2C). This concept first assumes that adult communities
can converge into several structurally and generationally
stable communities within several selection cycles and that
communities with the same structure show the same func-
tional traits. Accordingly, one iteration of directed evolution
starts by building a library of generationally stable commun-
ities with varied functions through multiple‐replicated artificial
selection. Then, the community with the best function is
chosen and exposed to perturbations using different methods,
resulting in a new library of generationally stable communities
to start a new iteration. Theoretically, this process can last
longer than normal artificial selection because functional var-
iation among adult communities within a library always exists.
A key step in directed evolution is the imposition of pertur-
bations. Possible approaches include methods used in
enrichment and artificial selection (bottleneck, propagule

breeding) and other methods, including species knock‐in,
species knockout, and altering resource concentration. Thus,
it combines the components of enrichment and artificial se-
lection to form a more rational framework. This concept has
been tested in silico, suggesting that directed evolution using
several perturbation approaches is more effective for top‐
down engineering107. The study also found that directed
evolution could produce communities that are more stable
against ecological perturbations. However, the conceptual
appeal has not been tested experimentally.

Mathematical models in microbiome
engineering
Mathematical modeling is a powerful tool for establishing a
quantitative understanding of how different factors affect the
functional dynamics of microbiomes (Table 3). This under-
standing offers theoretical guidance for the rational
engineering of microbiomes13,132–134. A mathematical model
is usually built on simple assumptions that define the basic
features of a focal microbial system. The mathematical model
uses experimentally measured parameters as inputs to
determine whether the experimentally measured dynamics or
functions of the microbiome can be predicted by the given
assumptions. If it shows strong predictive power, one could
develop a simple framework linking the limited set of
assumptions with community properties. Thus, it plays an
important role in “learning” knowledge after the “test” stage.
The new theoretical knowledge can be then used as a guide
to “design” a novel microbiome in the next DBTL cycle13.

The models used for bottom‐up engineering of micro-
biomes are diverse. With the simplest assumptions, the
Lotka–Volterra model uses only a few parameters to quantify
the growth of each population and the interactions between
these populations. Conversely, pairwise interactions measured
by experiments can be incorporated into the Lotka–Volterra

Table 2. Key strategies that increase the success of top‐down microbiome engineering.

Approach Proposed way Proposed strategy References

Enrichment Experiment Optimize environmental variables [96–99]
Experiment and
model

Enrich microbiomes with multireplicates [98, 100]

Experiment and
model

Nonspecific cross‐feeding supports species diversity [98]

Experiment Control the size of the bottleneck [101, 102]
Artificial selection Model Promote species coexistence [103]

Model Suppress noncontributors [103]
Model Choose additional communities besides the highest functioning ones to

reproduce
[103]

Model Reduce stochastic fluctuations in the biomass of each member in “Newborn”
communities

[103]

Experiment Control the incubation times between transfers: transfers need to be done at the
peak of the selected phenotypic activity

[104]

Model Control the interactions that encourage species coexistence [105]
Experiment “Breeding” several “Adult” communities to construct the “Newborns” [106]

Directed evolution Model Methods to impose perturbations: bottleneck, species knock‐in, species
knockout, migration from the pool, coalescence, and altering resource
concentration

[107]
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model to generate the Lotka–Volterra pairwise model (LVPM).
LVPM was applied to describe the interactions between dif-
ferent amino acid‐deficient strains in engineered synthetic
consortia and accurately predict the experimental outcomes47.
Variants of LVPM are useful for establishing simple assembly
principles for microbial communities32. In addition, the
Lotka–Volterra model can also be combined with the molecular
mechanisms of the interactions, generating the Lotka–Volterra
mechanistic model (LVMM). A previous study proposed that
the presence of diverse metabolic interactions makes the
LVPM prediction unreliable135, and LVMM should be used in
such cases. However, the introduction of multiple mechanisms
increases the difficulty of solving these mathematical systems.
This system can be simplified by imposing reasonable as-
sumptions. For example, principles governing the function54

and assembly33 of microbial communities engaged in MDOL
can be derived from the simplified LVMM model.

The genome‐scale metabolic model (GSMM) is another
useful model for predicting community properties. It could
predict the microbe–microbe and microbe–environment in-
teractions based on the genetic information of a pure strain,
and thus, it is ideal for bridging the gap between the meta-
bolic traits of a single member with the properties of the
community33,125,136. Recent advances in large‐scale com-
putation and genome sequencing have enabled the de-
scription of community dynamics by integrating 1500
GSMMs established from the genomes of human‐associated
bacteria137. Furthermore, the IBM is typically used to simu-
late the dynamics of a community in spatially structured
environments with discrete conditions138. IBM is built based
on the characterization of the individuals involved in a com-
munity. Therefore, it can be used to examine how single‐cell
traits such as cell positioning127, cell morphology128, and
contact‐dependent interaction129, impact community‐level
properties. Incorporated with the assumptions regarding

evolutionary events (e.g., mutation and the evolution of new
genotypes), it could also simulate the evolution of micro-
biomes in spatially structured environments76. To simulate
bottom‐up established microbial ecosystems, Dukovski et al.
combined the GSMM and IBM and developed a metabolic
modeling platform named computaion of microbial ecosys-
tems (COMETS)130. Benefiting from the merits of both
models, COMETS can predict the spatiotemporal dynamics
of microbial ecosystems that result from the intracellular
metabolism of individual strains.

A limited number of models have been applied to simulate
top‐down engineering cycles. The consumer‐resource model
is a classical ecological model that successfully captures the
dynamics of resource competition among different strains.
Dynamics derived from the consumer‐resource model pri-
marily support the “competitive exclusion principle,” which
suggests that two strains competing for the same growth‐
limiting resource cannot coexist139. However, this prediction
does not completely match the case of top‐down engineered
microbiomes. By integrating ecological interactions, such as
metabolic cross‐feeding, this limitation was overcome and the
novel model was used to accurately capture the coexistence
of different strains involved in the enriched microbiomes98.
This model was further applied to construct a quantitative
framework for directed evolution107. Alternatively, IBM has
been used to search for artificial selection strategies123.

ACCOMPLISHMENTS AND PERSPECTIVES
FOR ENVIRONMENTAL USE
Researchers have adopted the concept of “microbiome
engineering” to overcome the challenges of bioremediation,
including degradation of refractory pollutants (polycyclic
aromatic hydrocarbons with a high molecular weight140,
plastics141, halogenated compounds142, etc.), and emerging
pollutants such as pharmaceuticals and personal care

Table 3. Mathematical models used for microbiome engineering.

Approach Model Main model input Feature References

Bottom‐up
engineering

Lotka–Volterra pairwise
model (LVPM)

Pairwise interactions Based on pairwise
interactions

[32, 47]

Lotka‐Volterra
mechanistic
model (LVMM)

Interaction mechanisms The model structure may be
more complex than LVPM
but can be simplified or
solved by simulations

[33, 54, 89]

Genome‐scale metabolic
model (GSMM)

Genomic data Link the metabolic traits of a
single member with the
properties of the community

[31, 61,
125, 126]

Individual‐based
model (IBM)

Interaction mechanisms;
spatial position

Simulate the dynamics of a
community in spatially
structured environments

[76, 127–129]

Computaion of microbial
ecosystems (COMETS)

Genomic data; spatial
position

Combine features of IBM
and GSMM

[130, 131]

Top‐down
engineering

Consumer‐resource
model (CRM) integrated
with ecological
interactions

Parameters regarding
nutrient availability,
interactions, etc.

Predict the dynamics of the
enriched multispecies
community

[98, 107]

IBM Parameters regarding
nutrient availability,
interactions, etc.

Capture the dynamics of the
multispecies community
with artificial selection

[105]
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products143. In addition, it has been applied to deal
with contaminated sites with high concentrations of multiple
contaminants (heavily polluted soil, landfill leachate, in-
dustrial wastewater, etc.). Here, the achievements in micro-
biome engineering for environmental use via bottom‐up and
top‐down approaches are reviewed. We then further sum-
marize perspectives on how to apply the recently proposed
theories, conceptualize a combined framework, and propose
a specific strategy for environmental use.

Bottom‐up microbiome engineering for
environmental use
Bottom‐up microbiome engineering (i.e., synthetic microbiome)
provides ecological principles and mechanistic insights into
building microbial consortia to enhance pollutant removal. First,
synthetic consortia engaging in the DOL were constructed to
degrade pollutants with complex structures30,144–146. Several
studies suggest that compared with the single strain containing
the complete metabolic pathway, the DOL engineering could
significantly reduce the metabolic burden (the energy cost
of one population performing its specific functional step) for
each member of the synthetic consortia145, resulting in higher
degradation efficiencies. Notably, although DOL potentially
reduces the metabolic burden, increased demands for inter-
mediate transport and nutrient competition among the
members may also reduce the degradation efficiencies. These
limitations are minimally considered in the above‐mentioned
studies adopting the DOL strategy (Table 1). Second, the
degrading capability of synthetic consortia can be further
enhanced by reducing the growth‐inhibiting intermediates,
such as H2S produced in aniline biodegradation145 and nitro-
phenol produced in parathion biodegradation10. A general
approach is to introduce new members capable of degrading
harmful intermediates into the consortia to relieve the accu-
mulation of intermediates145. Third, the synthetic consortia,
consisting of members with different metabolic functions, can
degrade multiple pollutants simultaneously, which can also
substantially reduce the metabolic burden compared to the
strain possessing all abilities. This strategy was used to
construct synthetic consortia for degrading multicomponent
pollutants, such as BTEX (benzene, toluene, ethyl benzene, and
xylene isomers)146 and alkanes147. Thus, it is thought to be
important in the remediation of multiple contaminants.

Despite these significant achievements, many challenges
remain in engineering microbiomes by the bottom‐up ap-
proach for environmental use. As mentioned above, DOL
may result in increased demands for intermediate transport
and nutrient competition among the members. In this case,
researchers can apply the recently proposed mathematical
frameworks (e.g., the equation derived by Tsoi and col-
leagues) to integrate specific pathway parameters. This kind
of framework can determine whether the DOL engineering is
able to increase the efficiency of the pathway of interest
before performing microbiome engineering54. Moreover,
the engineering of a DOL consortium is quite limited by the
poor understanding of metabolic pathways or the networks

of interactions involved in degrading the targeted pollutants,
especially refractory compounds. To bridge this gap, many
studies first perform meta‐omics and metabolic model
investigations to establish a basic understanding of the
degradation pathways and microbial interactions148–151.
Collecting prior knowledge using omics‐based methods can
guide the rational design and optimization of synthetic con-
sortia toward higher degradation efficiency and stability151.

Another common issue faced in bottom‐up engineered
communities is that the strains involved cannot maintain
stable coexistence because of the competition for common
resources and space. We summarize three possible strategies
from recent studies that could solve this issue (Table 1). First,
pairwise interactions among every involved strain should be
measured, and the investigators must ensure that all members
coexist with each other in pairs to survive. According to the
principle proposed by Friedman et al.,32 coexistence can be
achieved among multiple members involved in the con-
sortium. Second, strains can be introduced to achieve inter-
dependent interactions. For example, naturally auxotrophic
strains can be rationally grouped to achieve such inter-
dependence. However, the construction of consortia using
naturally occurring strains is empirical and may not be well‐
tuned, as it is difficult to manipulate the interactions between
strains. Alternatively, synthetic consortia can be constructed
using GMOs with defined functions. Genetic modules for
population control can be imposed on fast‐growing strains to
balance the overall growth and allow slow‐growing strains to
perform the desired functions. The risk of the release of GMOs
in other ecosystems can be prevented by developing more
efficient and stable “suicide strategies”152–154. But currently,
the construction of synthetic consortia with engineered strains
for environmental use is much less common than using nat-
urally occurring strains, due to the policy restriction for using
GMOs in open systems and the lack of GMOs with truly
desirable functions. Finally, when a consortium is initially
constructed, it is important to regulate the structure of a
consortium to achieve better efficiency, which can be ach-
ieved by modulating abiotic factors (e.g., temperature, nutrient
availability and complexity, and pH; Table 1) or biotic factors
(e.g., changing the relative growth rate of strains33).

Top‐down microbiome engineering for
environmental use
Compared with the bottom‐up approach, the enrichment‐
derived top‐down approach is independent of metabolic
mechanism understandings and does not involve GMOs. It
has been applied widely in bioindustrial applications, including
activated sludge155, granular sludge156, and compost157.
Several conceptual ecological models of activated and
granular sludge in wastewater treatment have been
developed156,158. These models provide important guidelines
for the further optimization of performance via changing en-
vironmental factors, such as temperature159 and organic
composition160,161. In addition, novel models that not only
incorporate traditional modeling approaches based on the
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fundamental information of “core microorganisms” but also
include microbial metabolic networks and substrate prefer-
ences of different members under alternating anoxic–oxic
conditions allow researchers to rationally preset the primary
microbial composition162. This should provide for a more ra-
tional and predictable development of routine bioremediation
technique.

Many pollutant‐degrading microbiomes have also been
enriched in the laboratory by systematic control of culture
conditions163–165. These studies offer useful microbiomes,
strains, and genes for further mechanistic insights into de-
grading different pollutants (petroleum hydrocarbons, phe-
nanthrene, lignin, etc.). Notably, the dilution‐to‐stimulation
and dilution‐to‐extinction approaches were combined to
enrich a minimal and effective lignocellulolytic microbial
consortium166. In this study, the initial lignocellulolytic con-
sortium was enriched from the inoculum source by stim-
ulating the plant‐residue‐degrading microbes using a mixture
of three different plant residues and dilution‐to‐stimulation
cycles. A minimal and effective consortium consisting of only
two species was then achieved through continued serial di-
lution to extinction from the initial lignocellulolytic con-
sortium. Such a combined top‐down strategy not only guides
the assembly of effective microbial consortia but also pro-
vides a simple inoculum source to isolate functional strains
for the more rational construction of synthetic consortia
using a bottom‐up approach.

However, the enrichment with one given setup (i.e., a
given set of environmental factors and one constant dilution
factor) usually leads to a deterministic outcome, which may
not possess optimal efficiency. In contrast, artificial selection
and directed evolution introduce variations to each dilution‐
growth cycle, creating opportunities to continuously select
for better degradation efficiency. For example, an efficient
3‐chloroaniline‐degrading consortium was obtained via arti-
ficial selection. In this case, after 4 days of incubation, three
tubes with the highest 3‐chloroaniline degrading ability were
mixed as the seed of a “new generation.” After 30 such se-
lection cycles, the 3‐chloroaniline‐degrading ability of later
generations significantly improved167. In this way, engineered
microbiomes can be continuously obtained with better pol-
lutant degradation efficiencies for environmental use104.
However, the strategies derived from the recent under-
standing of artificial selection and directed evolution (Table 2)
have not been applied to the top‐down engineering of mi-
crobiomes, although they are expected to increase the suc-
cess rate. Thus, we encourage the application of artificial
selection and directed evolution in future endeavors.

In addition to enrichment‐dependent top‐down approaches,
a recent in situ microbiome engineering method provided
an alternative strategy to manipulate the composition and
function of a natural or top‐down engineered microbial
community. Combining environmental transformation
sequencing (ET‐seq) and a DNA‐editing all‐in‐one RNA‐
guided CRISPR‐Cas transposase (DART) system, it en-
abled gene‐ and species‐specific editing in a community
context168. Based on meta‐omics data, researchers can

use the ecological network of the consortium to identify its
driver species (core species) and their competitors169.
Among them, species that can be edited in situ will be
screened out through ET‐seq. The relative abundance of
the driver species can be improved by either enhancing
their own capability or inhibiting the growth of their com-
petitors. Alternatively, with mechanistic insights into the
metabolic network of the driver species, efficiencies of the
consortium can also be improved by enhancing the de-
grading pathways or removing the unexpected byproduct
pathway. Compared with the enrichment‐dependent ap-
proach, the in situ edited consortium is easier to predict
and more diverse. In addition, because the in situ edited
member is one of the indigenous organisms, it will be more
compatible with other indigenous organisms. Although the
in situ microbiome editing approach has only been per-
formed in model communities, it may enhance the ability to
engineer microbiomes for environmental use.

Framework for combining top‐down and bottom‐
up approaches
Previous studies have mostly used top‐down and bottom‐
up approaches separately. We suggest that the two
approaches are strategically complementary. First,
the top‐down approach can directly obtain microbiomes
with a high degrading capability without a prior under-
standing of degradation mechanisms (whereas the
bottom‐up approach requires such understanding).
Second, the bottom‐up approach aims to construct a
microbiome de novo with clear mechanisms so that it can
be manipulated more easily than the top‐down micro-
biomes. Therefore, a rational integration of both ap-
proaches can leverage their strengths and mitigate their
weaknesses. Several studies show the utility of combining
both approaches165,170 such as the plant microbiome
bioremediation system for petroleum hydrocarbons148,171

and the atrazine case165.
Here, we systematically summarize these interesting

achievements and propose a possible framework that
combines one DBTL cycle of the top‐down approach with
another cycle of the bottom‐up approach, as shown in
Figure 3. First, obtain a top‐down microbiome through
one or several DBTL cycle(s) to engineer a microbial com-
munity with the appropriate degrading capability. Second,
develop mechanistic insights into the top‐down microbiome
by elucidating why the community works efficiently and
how it can be improved with a rational bottom‐up approach.
For example, important metagenome‐assembled genomes
(MAGs) could be extracted through metagenomic analysis
of the top‐down community and then GSMMs can be built
based on these MAGs to better understand the principles
governing the dynamics and functions of the community.
Third, isolate microorganisms with desirable functions.
Guided by meta‐omics data, a “core list of microorganisms”
can be developed and used to isolate microorganisms with
the desired functions. The specific microorganisms can be
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enriched or isolated using specific media or culture con-
ditions. As an alternative, a high‐throughput single‐cell
sorting technique could also be used. Fourth, construct a
synthetic consortium using a bottom‐up approach. The
bottom‐up DBTL cycle(s) could be further modified by
adding beneficial strains with defined functions or re-
constructing the consortium de novo using the bottom‐up
approach.

Proposed strategy specific to environmental use
The biodegradation usually results in the detoxification
of pollutants. However, such biotransformation may also
produce intermediates that are more harmful to humans
than their parent compounds, especially in the case of
refractory pollutant transformations172,173. For example,
1,4‐dicarboxybenzene (BDC) is a major intermediate in
the degradation of butyleneadipate‐co‐terephthalate. While

butyleneadipate‐co‐terephthalate itself is harmless to
humans, the accumulation of BDC can impact human health
and the soil environment172. In addition to the intermediates
with known toxicological effects (e.g., BDC), the toxicities of
many intermediates during refractory‐pollutant degradations
have not been clearly evaluated. Some of them can be easily
detected in the metabolism of the parent compound but we
know very little about how they are further degraded (e.g.,
2‐hydroxy‐4‐(3′‐oxo‐3′H‐benzofuran‐2′‐yliden)but‐2‐enoic acid
in the dibenzofuran‐degrading pathway)174,175.

Thus, the potential damage of toxic intermediates should
be taken into consideration during the consortium design.
Here, we propose a specific strategy of microbiome
engineering for environmental use: “avoidance of toxic
intermediates,” which aims to avoid the build‐up of toxic
intermediates that risk human and environmental health.
The intermediates that naturally accumulate in initial micro-
biomes should be determined. Critical intermediates in

Figure 3. Schematic diagram for the combined framework of top‐down and bottom‐up approaches for environmental use. (i) Preliminary
microbial community with a degrading capability of interest is derived from a seeding microbiome by one or several top‐down DBTL cycle(s), in
which enrichment, artificial selection, or directed evolution could be applied. (ii) Mechanistic insights of this top‐down engineered microbiome
can be identified by meta‐omics (metagenomics, metatranscriptomics, metaproteomics, or metabolomics), which is incorporated into math-
ematical modeling to predict interactions among the members. (iii) Based on the mechanistic insights, microorganisms of interest can be
isolated by enrichment or high‐throughput single‐cell sorting and then used for further bottom‐up microbiome engineering. (iv) Bottom‐up
design‐build‐test‐learn (DBTL) cycle(s) would be conducted, guided by mechanistic insights, to engineer a new bottom‐up microbiome with
higher degrading efficiency and assessed in its effectiveness in the intended application.
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regulating the microbial physiologic activities and inter-
actions (e.g., the effectors for quorum sensing or transcrip-
tional regulation) will then be distinguished from those that
can harm the human body. The accumulation of the latter
type needs to be prevented. With a clear understanding of
degradation pathways, the accumulation of toxic metabo-
lites can be prevented by knocking out the pathways that
generate them or overexpressing genes involved in de-
grading them. These genetic manipulations can be per-
formed in the member(s) of a bottom‐up engineered
microbiome or in indigenous microbes from a top‐down
engineered microbiome through in situ engineering. If the
knowledge of intermediate degradation pathways is unclear,
naturally occurring strains with the degradation function
need to be introduced and enriched in the engineered
microbiome. Alternatively, we should set the “prevention of
chemical contaminants” as another goal in addition to the
degradation efficiency of the substrate when performing the
top‐down approach of a microbiome.

CONCLUDING REMARKS
In summary, researchers can rationally design an efficient,
stable, predictable, and safe microbiome through micro-
biome engineering. With present mathematical models, high‐
throughput culturing techniques, and quantitative analysis
tools, the accuracy of predicting the structure and function of
a microbial community has recently been improved. In the
future, we should investigate how to rationally regulate mi-
crobiomes or de novo construct microbiomes to achieve
desired functions through environmental factors, microbial
interactions, and physical characteristics of involved strains.
To this end, we need to test the feasibility of recently pro-
posed principles of microbiome engineering under more
complex conditions (e.g., in situ environments) and integrate
different useful strategies. Benefiting from these new tests,
novel quantitative principles can be proposed to increase our
understanding of microbial ecology and guide future micro-
biome engineering. We expect that the combined framework
of top‐down and bottom‐up approaches can be applied to

address the enormous environmental challenges for bio-
remediation (Table 4).
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