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Abstract

Congenital heart disease (CHD) is a prevalent birth defect and a significant

contributor to childhood mortality. The major characteristics of CHD include

cardiovascular malformations and hemodynamical disorders. However, the

impact of CHD extends beyond the circulatory system. Evidence has identified

dysbiosis of the gut microbiome in patients with CHD. Chronic hypoxia and

inflammation associated with CHD affect the gut microbiome, leading to

alterations in its number, abundance, and composition. The gut microbiome,

aside from providing essential nutrients, engages in direct interactions with

the host immune system and indirect interactions via metabolites. The

abnormal gut microbiome or its products can translocate into the bloodstream

through an impaired gut barrier, leading to an inflammatory state. Metabolites

of the gut microbiome, such as short‐chain fatty acids and trimethylamine

N‐oxide, also play important roles in the development, treatment, and

prognosis of CHD. This review discusses the role of the gut microbiome in

immunity, gut barrier, neurodevelopment, and perioperative period in CHD.

By fostering a better understanding of the cross‐talk between CHD and the gut

microbiome, this review aims to contribute to improve clinical management

and outcomes for CHD patients.
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Highlights

• Children with CHD experience gut microbiome dysbiosis in their early life.

• The gut microbiome affects CHD via immune stimulation and microbiome

metabolites, influencing immunity, gut barrier, and inflammation.

• The bidirectional interaction between the gut microbiome and CHD plays

an important role in CHD's development, treatment, and prognosis.
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INTRODUCTION

Congenital heart disease (CHD) is a common birth defect,
afflicting approximately 2% of live newborns globally, and
remains a significant contributor to infant morbidity and
mortality [1, 2]. Despite advancements in medical technol-
ogies that have led to a decline in CHD‐related deaths,
patients with CHD face an elevated risk of neurodevelop-
mental disabilities, immune dysfunctions, infections, and
cancer [3–6]. These potential complications have severe
implications for the long‐term well‐being of CHD‐affected
individuals and underscore the ongoing challenges in
managing this complex congenital disease.

Research has revealed the vastness of the microbial
population inhabiting the gastrointestinal tract, with
estimates indicating that their numbers exceed 1014 and
the genome is approximately 100 times more abundant
than the human genome [7]. The complex interplay
between the gut microbiome and its host extends far
beyond the provision of essential nutrients. This cross‐
talk is crucial to maintaining homeostasis, with studies
suggesting its important role in the development of
various physiological systems, including but not limited
to the nervous, immune, and endocrine systems [8–10].
Moreover, the gut microbiome is involved in the
progression of a spectrum of pathological conditions,
such as intestinal epithelial barrier dysfunction (EBD)
and systemic inflammation [11, 12].

In recent years, researchers have identified the substan-
tial influence of gut microbiome composition and diversity
on an individual's susceptibility to various diseases [13–15].
The gut microbiome has been demonstrated to have
associations with various cardiovascular diseases [16–21].
In our previous study, we provided the initial evidence that
an aberrant gut microbiome, coupled with metabolic
disruptions, was associated with immune imbalances and
unfavorable clinical outcomes in neonates afflicted with
critical CHD [22]. This finding underscores the significance
of restoring an optimal gut microbiome to uphold host
metabolic and immunological homeostasis. Additionally,
some pathophysiological features of CHD, such as chronic
hypoxia, are associated with changes in the composition
and homeostasis of the gut microbiome [21, 23]. Cardiac
operations, especially those requiring cardiopulmonary
bypass (CPB) usage, are related to microbiome disorder
and EBD, ultimately leading to the systemic inflammatory
response postoperatively [16, 24, 25]. Furthermore, notable
shifts in microbiome composition have been observed in
patients receiving cardiac intensive care, which is relevant
to clinical outcomes [26].

Studies focusing on the gut microbiome and CHD
have identified the significance of the gut microbiome in
CHD. We believe that the meaningful role of the gut

microbiome in CHD needs further emphasis and
exploration. This review focuses on the role of the gut
microbiome in pediatric immunity, gut barrier, neuro-
development, cardiac surgery, and postoperative pediat-
ric intensive care unit (PICU). We bring together the
relationship of the gut microbiome in multiple aspects of
CHD, aiming to understand the underlying mechanisms
and implications of such associations with a focus on
identifying potential therapeutic interventions and
directions for future research (Figure 1).

FORMATION AND DEVELOPMENT
OF THE EARLY LIFE GUT
MICROBIOME

The formation of the gut microbiome undergoes dynamic
changes from fetal to adulthood. The Firmicutes to
Bacteroidetes ratio (F/B ratio) varies at different stages of a
lifetime: 0.4 in infants, 10.9 in adults, and 0.6 in older people
[27]. Studies have demonstrated the presence of the
microbiome in the meconium, which originated from uteri
and was associated with gut colonization [28]. Bacilli and
other Firmicutes are the dominant bacteria groups in
meconium [29]. Similarly, the most abundant phyla in
infants are Firmicutes and Bacteroidetes, followed by
Actinobacteria and Proteobacteria [30]. The species diversity
in infant fecal microbiomes is highest within the first 24 h
after birth and decreases over the first‐week postpartum [31].
This change may be attributed to some microbiomes from
maternal or other sources that do not colonize the newborn's
digestive tract. In the early years of life, Bifidobacteriaceae
typically increases and becomes the dominant microbiome
in infant feces [32]. However, the proportion of phylotypes
belonging to Bifidobacterium longum declines with age [33].
In healthy adult individuals, Bacteroidetes and Firmicutes
exhibit the highest abundance [34].

The intrapersonal variation of the gut microbiome is
more significant in children compared with adults [33].
During early life, various factors can influence the
composition of the gut microbiome. Maternal obesity is
linked to the richness of neonates' Firmicutes and elevated
risk of becoming overweight [35]. A meta‐analysis pointed
out that intrapartum antibiotic use, maternal overweight/
obesity, and gestational weight gain were associated with
reduced diversity in the infant gut microbiome [36].
Premature infants, in contrast to full‐term infants, exhibit
higher levels of facultative anaerobic microbes and lower
levels of strict anaerobes, such as Bifidobacterium, Bacter-
oides, and Atopobium [37]. The comparison of the fecal
samples of infants and their mothers indicates that 72% of
the species of early life microbiomes in vaginally delivered
infants matches those microbiomes of their mothers,
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whereas this proportion is 41% in C‐section newborns [30].
The mother‐to‐child microbiome transmission via human
milk is an important way for infants to gain microbiomes,
such as Bifidobacterium and Staphylococci [38]. The human
milk oligosaccharides (HMO) may partially contribute to
the microbiological variation and the gut barrier function
for infants fed with breast milk [39]. Certain microorgan-
isms, including B. longum subsp. infantis, Bacteroides
fragilis, and Bacteroides vulgatus strains, can easily metabo-
lize HMO [40, 41]. Additionally, formula feeding leads to
alterations in the microbiome associated with obesity,
potentially attributed to the higher relative abundance of
Lachnospiraceae at 3–4months after birth [42]. It is worth
noting that the gut microbiome of breastfed infants
originates not only from breast milk itself but also from
the skin of the areola. It was reported that breastfed infants
acquired 27.7% of their bacteria from breast milk and 10.3%
from the areolar skin [32]. The induction of solid food is
associated with an elevated abundance of bacteria produc-
ing butyrate and a reduced amount of Enterobacteriaceae
and Staphylococcus [43]. Another factor affecting the infant
microbiome is antibiotic use, which has been linked to the
reduction of microbiome richness and diversity [44]. The
administration of intrapartum antibiotic use influences
microbial communities and antimicrobial genes in the gut

microbiome of infants [45]. A randomized trial examining
broad‐spectrum antibiotics against sepsis indicated a
decreased abundance of Bifidobacterium and an increased
abundance of Klebsiella and Enterococcus [46].

MICROBIOME METABOLITES
AND CARDIOVASCULAR DISEASES

Microbiome metabolites play important roles in various
physiological processes and have been found to have
significant effects on cardiovascular diseases (Figure 2) [47].
Some of the metabolites include short‐chain fatty acids
(SCFAs), trimethylamine (TMA), and trimethylamine N‐
oxide (TMAO). SCFAs are fatty acids with less than six
carbon atoms, produced by saccharolytic fermentation of
undigested carbohydrates, mainly consisting of acetate,
propionate, and butyrate [48, 49]. SCFAs can target signal
receptors on various cells within the cardiovascular system
as well as other systems, like, the immune system and
adipose tissue [50]. SCFAs regulate blood pressure by acting
as the ligand to the G‐protein coupled receptors (GPCRs),
including GPR41, GPR43, GPR109A, OR51E2, and OR51E1
[51]. The connection between SCFAs and GPCRs affects
vascular endothelial cells and immune cells, leading to

FIGURE 1 Relationship between CHD and the gut microbiome. The gut microbiome exerts its influence on the body through the
production of metabolites and immune stimulations. In the development of CHD, the gut microbiome plays crucial roles in altering gut
barrier function, modulating the immune system, and influencing the extent of injury and inflammation resulting from cardiac surgery.
CHD, congenital heart disease; PAMP, pathogen‐associated molecular pattern; TLR, Toll‐like receptor.
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increased peripheral vascular resistance, vascular remodel-
ing, and renal sodium absorption [51]. SCFAs have a
protective effect on atherosclerotic cardiovascular disease
(ACVD). Feeding apolipoprotein E knockout‐deficient mice
with propionate inhibits angiotensin II‐induced athero-
sclerosis [52].

The gut microbiome breaks down compounds contain-
ing TMA, such as red meat, resulting in the production of
TMA. This TMA can then undergo further oxidation in the
host liver to generate TMAO [53, 54]. Elevated plasma
TMAO level has been associated with an increased
incidence of all‐cause cardiovascular mortality and major
adverse cardiac and cerebrovascular events [55]. TMAO
has a proatherogenic property, typically by enhancing
vascular endothelial cell inflammation, inhibiting reverse
cholesterol efflux, and promoting platelet aggregation and
thrombosis [54]. TMAO activates NLRP3 inflammasome
and then triggers vascular inflammation [56]. Moreover, a
high circulating TMAO level is related to poor prognosis in
various types of pulmonary arterial hypertension (PAH),
including PAH associated with CHD [57].

The gut microbiome affects the metabolism of bile
acids, especially secondary bile acids. The primary bile
acids are synthesized in the liver and then conjugated with
glycine or taurine to form conjugated bile acids. The
conjugated bile acids are secreted into bile and then
into the gut, where they are deconjugated by the gut
microbiome and transformed into secondary bile acids.
The primary bile acid‐to‐secondary bile acid ratio may be
an important influencing factor in cardiovascular diseases
[58]. Patients with chronic heart failure have a decreased
primary bile acids level and an increased secondary bile
acids level [59]. Bile acids are proven to be associated with
lipid metabolism, glucose metabolism, and inflammation,

which may be the reason why bile acids metabolism is
important in cardiovascular disease [60].

Numerous studies have shown that the disruption of
the host gut microbiota can significantly impact the
occurrence and development of various cardiovascular
diseases. Alterations in the maternal gut microbiome,
characterized by a reduction in alpha diversity and
distinctive microbiome composition, along with changes
in plasma metabolites, were observed to correlate with an
increased risk of offspring CHD [61]. The decreased
composition of certain probiotics may affect fetal develop-
ment through impaired gut barrier, chronic inflammation,
and insulin resistance [61]. The disorder of gut microbiome
and metabolism was observed in patients with CHD and
heart failure, which was characterized by decreasing
microbiome diversity, richness, and downregulation of
retinol metabolism [62]. The serum level of bile acids in
patients with repaired Tetralogy of Fallot (TOF) has a
positive correlation with indexed right ventricular end‐
diastolic volume, which may suggest impaired liver
function due to right ventricular dysfunction and systemic
congestion [63]. However, it is worth noting that the impact
of gut microbiota dysbiosis on the phenotypes of these
diseases related to CHD has not yet been systematically and
comprehensively summarized.

CHD, GUT MICROBIOME,
AND IMMUNITY

The immune system starts to develop in the fetus
alongside the formation of the heart and intestine.
Functional thymus and the production of circulating
T cells commence at 10–11 weeks of gestation, and B cells

FIGURE 2 Associations between microbiome metabolites and cardiovascular diseases. Short‐chain fatty acids (SCFAs) are generated
through the fermentation of indigestible polysaccharides by the gut microbiome and act on specific SCFAs receptors. Trimethylamine
(TMA), a metabolite of the gut microbiome, undergoes an oxidation process in the liver via flavin‐containing monooxygenases (FMOs) and
is subsequently converted into trimethylamine N‐oxide (TMAO). These metabolites exert both direct and indirect effects on the
cardiovascular system, and they have been associated with certain cardiovascular diseases.

4 of 19 | LIU ET AL.



can be detected in the spleen between the 12th and 23rd
weeks of gestation [64]. The birthing process exposes the
infant to a wide range of microorganisms, initiating
the colonization of beneficial bacteria on the skin and in
the gastrointestinal tract. Studies have highlighted the
role of the immune system in CHD, which is primarily
characterized by systemic inflammation and immune
alterations [65].

CHD patients have shown the presence of circulating
markers, primarily cytokines. Fan et al. reported the
observation of immune activation in patients with CHD,
which was evident through an elevation in inflammatory
cytokines and a reduction in anti‐inflammatory cytokines
[66]. These cytokine levels returned to normal following
transcatheter CHD treatment [66]. Various studies have
reported elevated levels of tumor necrosis factor‐alpha
(TNF‐α) and interleukin‐6 (IL‐6) in CHD patients
[67–69]. It has been established that there is a positive
correlation between the levels of growth differentiation
factor‐15, β2‐microglobulin, and the severity of chronic
heart failure [70]. Additionally, the elevated circulating
inflammatory cytokines may be associated with dia-
phragm dysfunction and restrictive ventilation disorder
in CHD patients [71]. Other circulating markers, such as
IL‐1, IL‐8, plasma endotoxin, and ghrelin, also indicate
systemic inflammation of CHD [65].

Patients with CHD, especially cyanotic CHD, experi-
ence persistent exposure to hypoxia‐caused myocardial
stress, which triggers the activation of the innate
immune system at the cellular level, leading to the
activation of proinflammatory cells. [72]. The elevated
Neutrophil‐Lymphocyte Ratio (NLR) has been identified
in patients with CHD [73, 74]. Other components of the
innate immune system, including monocytes, natural
killer cells, and mast cells are also activated [65]. T cells
are key components of the adaptive immune response as
they possess the ability to recognize and selectively target
pathogens. Upon maturation, T cells circulate through-
out the body, patrolling the blood and lymphatic system
in search of foreign invaders. As T cells undergo
maturation within the thymus, a byproduct known as
T cell receptor excision circles (TRECs) is produced,
serving as biomarkers of lymphopoiesis [75]. Compared
with the normal population, a reduced level of TRECs in
children with CHD has been observed, and a combina-
tion of reduced and premature TRECs copies was
associated with infection‐caused hospitalization [76].
However, no correlation was found between the TRECs
level and the severity of CHD [76].

Surgical repair of cardiac anomalies usually occurs
within the first several years of a lifetime. Thymus
removal is a procedure often performed during CHD
operations to enhance the visibility of the heart and

facilitate the surgical intervention, while this process
may also have implications for the ongoing immune
development of children with CHD [65, 77]. Early
thymectomy in CHD patients is associated with changes
in the T cell compartment, including decreased total
T cells, CD4+ T cells, CD8+ T cells, and a reduced
diversity of the T cell receptor [78]. The peripheral naive
T cell subset in thymectomy patients exhibits similarities
to the immune profile seen in elderly individuals with
thymic involution, characterized by decreased counts of
CD4+CD45RA+CD62L+ T cells [79]. Besides, elevated
levels of the antinuclear antibody and the antineutrophil
cytoplasmic antibody are correlated with a higher percent-
age of CD4+ memory T cells after early thymectomy [80].

The pathogen‐associated molecular patterns (PAMPs),
which consist of surface layer proteins, flagella, pili, and
capsular polysaccharides of the microbiome, are specifi-
cally identified by pattern recognition receptors (PRRs)
[81]. Typically, continuous communication does not
result in inflammation; on the contrary, it enhances host
immune function [82]. However, when commensal
microorganisms are misidentified, a consistently activated
immune response occurs, which can be detrimental to the
host [83]. The gut microbiome can substantially affect host
immune homeostasis in early life, play an essential role in
the development of postnatal intestinal endotoxin toler-
ance, and have an impact on immune cells [84, 85]. A
higher relative abundance of Bifidobacteria has been
reported to be associated with improved CD4+ T‐cell
responses and vaccine memory [86]. SCFAs have a
systemic anti‐inflammatory effect by upregulating anti‐
inflammatory while downregulating proinflammatory
cytokines [87]. SCFAs regulate the mitogen‐activated
protein kinase and nuclear factor kappa‐B (NF‐κB)
signaling pathways through the activation of free fatty
acid receptors type 2/3, GPR109A, as well as the inhibition
of histone deacetylases [88]. SCFAs produced by commen-
sal microbiomes facilitate the extrathymic generation of
regulatory T cells (Tregs) and ameliorate the development
of intestinal inflammation [89, 90]. Another metabolite,
12,13‐diHOME, a monohydroxy fatty acid, influences the
development of Tregs in early life [91].

HYPOXIA AND HYPOPERFUSION
AFFECT THE GUT BARRIER

A symbolic pathophysiological characteristic of CHD is
chronic hypoxia. Patients with CHD may experience
hypoxemia or tissue hypoxia due to structural abnormali-
ties in their hearts or large vessels. The extent of hypoxia
mainly depends on the type and severity of the cardiac
defect, including shunting (e.g., patent ductus arteriosus),
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blood flow obstruction (e.g., coarctation of the aorta),
inadequate pumping (e.g., dilated cardiomyopathy), and
cyanotic CHDs (e.g., TOF).

It is well known that hypoxia is associated with
inflammation. The myocardial response to chronic
hypoxia parallels that of bacterial infection, leading to
the generation of molecules, such as reactive oxygen
species (ROS) [72]. Hypoxia induces ROS production at
mitochondrial Complex III, activating inflammatory
pathways and stimulating the production of proinflam-
matory cytokines [92]. Despite the lower oxygen concen-
tration in the digestive tract, especially the large
intestine, pathophysiologic hypoxia still causes intestinal
inflammation and gut barrier injury [23, 93]. Under
inflammatory conditions, oxidative stress generated by
neutrophils results in the disruption of interendothelial
junctions and facilitates the migration of inflammatory
cells across the endothelial barrier, contributing to the
clearance of pathogens and leading to tissue injury [94].
Children with CHD face an increased risk of intestinal
barrier injury. The overgrowth of Enterococcus in CHD
neonates has been associated with gut barrier dys-
function and stimulated inflammatory responses, evi-
denced by increased levels of intestinal fatty acid binding
protein (FABP) and D‐lactate [22]. Steck et al. indicated
Enterococcus compromises the gut barrier via gelatinase,
a metalloprotease secreted by Enterococcus faecalis [95].

The hypoxia‐inducible factor (HIF) is a protein dimer
that orchestrates the expression of several genes in
adaptive responses to oxygen deprivation (Figure 3A). As
the key molecule in adapting to chronic hypoxia, HIF‐1α
upregulated glucose utilization and downregulated fatty
acid utilization to maintain adenosine triphosphate sup-
ply and cardiac function [96]. Mutations in EPAS1 (gene
encoding HIF‐2α) have been identified in patients with
CHD residing in high‐altitude regions [97]. These EPAS1
mutations are associated with angiogenesis, demonstrat-
ing adaption to chronic hypoxia.

One of the significant roles of HIF lies in maintaining
gut barrier function via regulating molecules related to
the tight junction (claudin‐1) and epithelial surface
repair (Trefoil factor‐3) [98]. The microbiome maintains
the gut barrier by generating metabolites and interacting
with PRR in the gut mucosa, thus preserving gut
homeostasis [99]. Healthy diets are metabolized by
microbiomes to yield beneficial metabolites that interact
with particular receptors located on the membrane or
nucleus, regulating HIF and enhancing barrier function
[100]. For example, microbiome‐derived butyrate stabi-
lizes HIF by inhibiting HIF prolyl hydroxylases [101].

Chronic hypoxia increases the level of ROS and is
also associated with the activation of NF‐κB [102]. NF‐κB
exists as a heterodimer of p50 and RelA subunits. When

it is activated, the NF‐κB dimer is translocated into the
nucleus and regulates the transcription of certain
inflammatory genes (Figure 3B) [103]. The gut micro-
biome can affect NF‐κB‐mediated inflammatory path-
ways. Streptococcus salivarius inhibits the activation of
the NF‐κB and its downstream inflammatory cytokines
in intestinal epithelial cells [104, 105].

Similar to hypoxemia, reduced gut perfusion is also a
risk factor for intestinal EBD, resulting in increased
uptake of lipopolysaccharide (LPS) or other PAMPs
[106, 107]. Impaired mucosal immunity and weakened
intestinal barrier can lead to the translocation of bacteria
and/or their products from the intestinal lumen into
adjacent tissues, triggering an amplified inflammatory
response and subsequent injury to the mucosal epithe-
lium (Figure 4). CHD represents a risk factor for
necrotizing enterocolitis (NEC) due to gut hypoperfu-
sion. Reduced gut perfusion initiates inflammation,
which, in turn, triggers secondary vasoconstriction that
worsens gut hypoperfusion, thereby establishing a cycle
of hypoperfusion and inflammation [108]. In patients
with right heart dysfunction, systemic veinous conges-
tion leads to intestinal edema and facilitates the
endotoxin translocation from the intestinal tract into
the bloodstream [109, 110].

(A) (B)

FIGURE 3 Regulation of HIF and NF‐κB. (A) Regulation of
HIF in hypoxic and normoxic conditions. In hypoxic conditions,
HIF‐α stabilizes and forms a complex with HIF‐β. This HIF
complex translocates to the nucleus, binds to hypoxia response
elements (HREs), and activates genes that help the cell adapt to low
oxygen. HIF‐α is hydroxylated by prolyl hydroxylases (PHDs)
under normoxic conditions. The hydroxylated HIF‐α is then
catalyzed by the von Hippel–Lindau (VHL) protein, leading to its
subsequent degradation through the proteasome pathway. (B) The
canonical activation process of NF‐κB. NF‐κB is located in the
cytoplasm and binds with the inhibitory protein IκBα. When IκB
kinase (IKK) is activated, the IκBα is phosphorylated and degraded
via the ubiquitination pathway. With the degradation of IκBα, the
p50, and RelA dimer translocates to the nucleus, where it activates
the transcription of multiple target genes. HIF, hypoxia‐inducible
factor; NF‐κB, nuclear factor kappa‐B.
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GUT MICROBIOME AND
NEURODEVELOPMENT OF
CHILDREN WITH CHD

A concern in CHD patients is the occurrence of
neurodevelopmental disability (NDD). NDD is observed
in nearly half of the children who have undergone
cardiac intervention, leading to various challenges, such
as cognitive dysfunction, attention and hyperactivity
difficulties, motor functioning deficits, impaired lan-
guage and communication skills [111]. NDD begins at
gestation, as the complex circulation of CHD impacts the
blood delivery to the fetal brain. Take transposition of the
great arteries (TGA) as an example, the fetal brain of
patients with TGA receives venous blood with decreased
oxygen and metabolic substrates. TGA fetuses had lower
brain‐to‐body ratios and higher cerebellar‐to‐total brain
ratios compared with normal fetuses with similar
gestational age and body growth, indicating immature
brain development [112]. Risk factors such as pre-
maturity, chronic hypoxia, and surgical interventions
likely have a cumulative effect on the progression of
NDD from the fetal period through childhood, with
potential persistence into school age and even adulthood
[113, 114]. Hemodynamically impaired CHD children
have deficiencies in skills related to gross motor, fine
motor, and language [115]. Moreover, children who

underwent CHD operation with CPB have worse
performance for cognition and fine motor skills [116].

The mechanisms underlying brain injury in CHD
patients have not been fully studied. Tissue hypoxia and
systemic inflammation can lead to the dysfunction of the
blood–brain barrier (BBB) and subsequent injury to
the nervous system, as indicated by the presence of the
phosphorylated form of high molecular weight neurofila-
ment protein [117]. Researchers have attempted to
identify morphological differences between the brains
of CHD patients and those of healthy individuals. It has
been found a delayed brain maturation and a smaller
gestational age‐ and weight‐adjusted total brain volumes
in fetuses with CHD [118]. Additionally, children with
CHD have smaller hippocampal volumes and surface
area, and these morphologic alterations are correlated to
executive function [119].

Delayed brain development increases susceptibility to
acquired white matter injury (WMI). A cohort study
involving fetuses/neonates with TGA who underwent
preoperative magnetic resonance imaging (MRI) scans
revealed that the brain volume of the fetus was associated
with acquired WMI after birth [120]. The immaturity of
the brain increases the write matter vulnerability to
hypoxic‐ischemic brain injury [121, 122]. Early in
the 1990s, acquired neuropathology, such as hypoxic‐
ischemic lesions and intracranial hemorrhage, was found
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FIGURE 4 Pathological hypoxia/hypoperfusion induces microbiome dysbiosis and gut barrier dysfunction. Pathological hypoxia/
hypoperfusion can result in an alteration of gut barrier integrity. The protective peptide in the mucus barrier and the tight junction between
epithelial cells are important components for maintaining gut homeostasis. A weakened gut barrier may facilitate the translocation of
bacteria and/or their byproducts from the gut lumen into the surrounding tissues, triggering an amplified inflammatory response.
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to be related to CPB procedures involving hypothermic
total circulatory arrest lasting longer than 40min [123].
The CPB‐induced oligodendrocyte dysmaturation and
microglial expansion have been observed in a porcine
model, suggesting brain damage [124]. Preterm infants
exposed to general anesthesia are at an increased risk of
brain abnormalities, as evidenced by findings from
postoperative MRI scans [125].

The gut microbiome is involved in neurodevelopment
in early life and the integrity of BBB, which contributes
to NDD in patients with CHD. The gut microbiome can
influence BBB integrity through microbe‐stimulated
cytokines or metabolites derived from gut microbiomes
[126]. Germ‐free mice exhibit higher BBB permeability,
which begins with intrauterine life and maintains
adulthood. However, exposure to a pathogen‐free gut
microbiome has been shown to restore the permeability
of BBB and enhance the expression of tight junction
proteins, such as occludin and claudin‐5 [127]. The
neuroprotective effect of the gut microbiome can be
mediated by metabolites. Microbiomes that produce
abundant SCFAs, such as Clostridium tyrobutyricum,
have been found to improve BBB integrity in mice [127].
Moreover, TMAO has been shown to enhance the
integrity of BBB, protect BBB from inflammatory injury,
and improve cognitive function through the tight
junction regulator Annexin A1 [128]. Another protective
metabolite is p‐cresol glucuronide, the gut metabolite of
amino acids tyrosine and phenylalanine. This metabolite
promotes BBB integrity by antagonizing the LPS receptor
TLR4 [129].

The gut microbiome has a significant impact on
neuroimmune during brain development. Signals gener-
ated from the maternal microbiome may shape the
development of fetal microglia [130, 131]. The micro-
biome metabolites have been shown to influence
microglia maturity and functioning [132]. Acetate has
been identified as an essential SCFA for microglia
maturation and for maintaining their homeostatic
metabolic state [133]. Moreover, maternal perinatal
probiotic intake leads to an alteration of offspring's
astrocyte metabolism, marked by the increased expres-
sion of prefrontal cortex PFKFB3 [134].

GUT MICROBIOME AND
PEDIATRIC CARDIOVASCULAR
SURGERY

Cardiovascular surgery leads to significant alterations in
the gut microbiome. Aardema H et al. analyzed fecal
samples from patients who underwent coronary artery
bypass graft and/or valve surgery [26]. The 16s RNA gene

sequencing identified a significant increase of patho-
bionts (e.g., Eggerthella, Enterococcus, Rothia, and
Peptococcus) and a decrease in strictly anaerobic SCFA‐
producing gut bacteria (e.g., Anaerostipes, Faecalibacter-
ium, Blautia, and Roseburia). The imbalance of the gut
microbiome during the perioperative period may be
associated with patients' clinical features and post-
operative complications. The postoperative dysbiosis of
the gut microbiome and metabolic abnormalities can
impact patients' susceptibility to cardiac surgery‐
associated acute kidney injury (AKI) [135, 136]. Analysis
has identified Escherichia coli, Rothia mucilaginosa, and
Clostridium innocuum as AKI‐related microbiomes [136].
Similarly, by analyzing fecal samples from cardiac
surgery patients with postoperative pseudopsia, the
increased count of Staphylococcus and Pseudomonas
were identified [137].

CPB is a crucial and challenging technique employed
in cardiac surgery to temporarily assume cardiac and
pulmonary functions, ensuring continuous blood flow
and oxygen supply. Most CHD surgery involves CPB,
while CPB introduces extra risks to the surgery, such as
ischemia‐perfusion injury (IRI) [138]. SCFAs have
demonstrated the ability to improve cardiac function
after IRI [48]. Propionate can act as a protector against
myocardial IRI by alleviating the increased Angiotensin
II levels through GPR41 [139]. Treatment with butyrate
has been shown to significantly improve myocardial IRI
via a gut–brain neural circuit, which can be inhibited by
subdiaphragmatic vagotomy [140]. Other cardioprotec-
tive metabolites including Urolithin B, protect against
IRI via the p62/Keap1/Nrf2 signaling pathway [141].

CPB is known to induce inflammation, both at the
intestinal and systemic levels [142]. In the early stages
following CHD operation, intermediate monocytes exhibit
increased levels of CD64, TLR2, and TLR4, which may
be associated with impaired postoperative recovery and
organ dysfunction [143]. The classical perioperative factor
NLR serves as a reflection of systemic inflammation and
has been correlated with the composition of the gut
microbiome [73, 74]. Elevated NLR is often a risk factor for
unfavorable outcomes of CHD operation, including
prolonged ventilation duration, extended ICU and hospital
stay after TOF repair, reduced cardiac output, and worse
single ventricular physiology after the bidirectional Glenn
procedure [74, 144–146]. Compared with pediatric patients
without cardiac surgery (without CPB), children who
received CHD operation (with CPB) exhibit a greater
relative abundance of Actinobacteria and Proteobacteria,
as well as significant intestinal barrier dysfunction [16].
An animal experiment further revealed CPB‐mediated
dysbiosis of the gut microbiome, SCFAs levels reduction,
inflammatory cytokines expression, and EBD [147].
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EBD is a important contributor of CPB‐induced systemic
inflammation. The dysregulation of claudin‐2 and claudin‐3
after CPB may suggest impaired tight junction and elevated
intestinal permeability [147]. However, the loss of gut
barrier function seemed to begin preoperatively, marked by
the elevated concentration of intestinal FABP2 [148].
Pediatric patients with CHD experienced a disrupted
microbiome at baseline, which includes large proportions
of proinflammatory, LPS‐expressing bacteria and reduction
of gut health‐promoting bacteria [16]. These disruptions
may be attributed to chronic hypoxia associated with CHD,
and their severity may be exacerbated by subsequent CPB
procedures.

Risk factors for impaired gut barrier not only include
abnormal circulation, hypoxemia, and poor intestinal
perfusion, but also include surgery‐related impairment.
Studies have pointed out that children who underwent
CHD surgery exhibit abnormal gut permeability [149].
The impaired permeability leads to postoperative en-
dotoxemia, systemic inflammation, and organ dys-
function. Several pathways are activated after the CHD
operation, including pathogen‐sensing pathways,
antigen‐processing pathways, and immune‐suppressing
pathways [150]. The Fontan procedure, a palliative
intervention for complex CHD, creates a connection
between the right atrium and the pulmonary arteries and
redirects the oxygen‐depleted blood directly to the lungs
without passing through the impaired right ventricle.
Fontan circulation significantly improves the survival of
certain CHD patients; however, it has several serious
long‐term complications, such as protein‐losing entero-
pathy (PLE). Fontan‐PLE may be related to elevated
resistance of mesenteric vasculature [151]. Patients with
Fontan‐PLE exhibit abnormal intestinal permeability and
elevated systemic proinflammatory cytokines, marked by
intestinal FABP, TNF‐α, and IL‐6 [152].

Postoperative antibiotic use reduces both the richness
and diversity of the gut microbiome and increases the
relative abundance of Enterococcus and Lactobacillus
[153]. Compared with preoperative antibiotic use,
postoperative antibiotic use continuously impacts the
gut microbiome, which may need an antibiotic with-
drawal of more than 2 weeks to diminish.

DISCUSSION

While numerous studies have elucidated the critical role of
the gut microbiome in various aspects of life, including
growth, aging, and various diseases, there is a paucity of
research focused on CHD. It is evident that there exists a
bidirectional cross‐talk between CHD and the gut micro-
biome. Nonetheless, the detailed interplay has primarily

been explored through research conducted in other related
fields, particularly studies on pediatric and adult cardio-
vascular surgery.

Another important CHD‐relevant field is prematurity.
Although CHD and prematurity are distinct conditions,
neonates with CHD are more likely to be born
prematurely, and preterm neonates have increased
possibilities of comorbidities with CHD [154]. CHD
infants and premature infants share certain similarities,
such as respiratory challenges, extended hospital stays,
proinflammatory environment, immature immune sys-
tem, and intestinal dysbiosis [155].

Preterm infants encounter sustained inflammatory
challenges since birth. In terms of the immune defense,
preterm infants primarily rely on nonspecific innate
immunity, the functionality of T cell responses, including
those mediated by T helper cells responsible for
regulating inflammation, may be less effective. [156].
The immature hearts of preterm infants, when exposed
to systemic inflammation, may experience perturbations
in epigenetic modifications of genes involved in cardiac
development [157]. In premature infants, the intestinal
environment fosters the expansion of facultative anae-
robes due to several factors, such as patchy mucous layer,
increased permeability of tight junctions, and reduced
antimicrobial peptides [158]. Dysbiosis of the gut
microbiome may be associated with various pathological
conditions. Take NEC as an example. Infants with NEC
tend to exhibit a significantly lower relative abundance of
B. longum and a higher relative abundance of Enter-
obacter cloacae in their gut microbiome profiles [159].
Premature infants have a high susceptibility to NEC due
to the challenges their immature gut faces in managing
enteral feeding and establishing a healthy bacterial
environment [160]. In patients with critical CHD, there
is also a noted decrease in the proportion of probiotics
and an increase in the proportion of opportunistic
pathogens [22]. Several studies have reported that the
administration of probiotics can effectively reduce
inflammation of preterm infants, resembling their gut
environment to that of full‐term infants [161–163]. The
above evidence underscores the importance of future
research aimed at investigating microecological therapies
targeting probiotic metabolites to improve many clinical
phenotypes in children with CHD.

Despite the microbiome homeostasis in the gut, the
microbiome in other systems is also worth investigating.
For instance, oral microbiome homeostasis of CHD
patients. Patients with CHD and caries have elevated
abundance of Fusobacterium, Prevotella, Capnocytophaga,
and Oribacterium, compared to healthy individuals [164].
It was reported that the immune dysregulation, produc-
tion of proinflammatory cytokines, and progressive
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inflammation due to periodontal pathogens were respon-
sible for ACVD [165]. Preventing oral microbiome
dysbiosis may serve as an effective approach to reduce
the risk of systemic inflammation and infection. Maternal
microbiome, as they can affect offspring microbiome,
should also be valued in research related to CHD. It has
been identified that the maternal microbiome is associated
with neurodevelopment, immunity, and inflammation
[166, 167]. During pregnancy, microbes derived within
the maternal gut are captured by dendritic cells and
translocated to the fetus, then participate in the develop-
ment of the offspring [168]. Furthermore, the maternal
microbiome also plays a significant role in pregnancy‐
related diseases, such as hypertensive disorder of preg-
nancy and insulin resistance, increasing the risk for fetal
development and potential teratogenic effect [61, 169].

Several research gaps persist in our understanding of
the relationship between the gut microbiome and CHD.
While various studies have identified the direct involve-
ment of the gut microbiome in cardiovascular diseases,
limited research provides direct evidence of its role in
CHD. The oral microbiome and maternal microbiome
should also be valued as they play key roles in CHD
occurrence and progression. The direct impact of
metabolites should be carefully investigated in various
aspects of CHD, such as growth, neurodevelopment, and
immune development. Cells and molecules associated
with inflammation, such as immune cells, cytokines,
HIF, and NF‐κB within this cross‐talk are also essential
areas of exploration. The relationship between the gut
microbiome and noncoding RNAs, such as micro‐RNAs
also warrants comprehensive examination. Existing
studies have identified micro‐RNAs as regulators in both
cardiovascular diseases and the gut microbiome. Several
biological processes associated with CHD, such as
cardiac development, myocardial protection during
hypoxia, and adaptive right ventricular hypertrophy in
response to PAH, have been linked to certain micro‐
RNAs [170].

The therapeutic potential of the gut microbiome in the
treatment of CHD is also a promising area for future
research. Various laboratory and clinical evidence have
underscored the impact of the gut microbiome on the
treatment of cardiovascular disease. For example, the gut
microbiome can affect the bioavailability and effectiveness
of drugs by metabolizing drug compounds, regulating host
genes related to drug transport, and influencing the
intestinal reuptake process [171]. Individualized analysis
of the microbiome based on metabolomic profiling, holds
the potential for guiding dietary choices and optimizing
perioperative management [172]. Dietary and nutritional
strategies can modify the gut microbiome and accelerate
patients' recovery, potentially serving as a complementary

approach to enhanced recovery after surgery [173]. Cohort
studies and clinical trials are vital for evaluating the
therapeutic potential of the microbiome in CHD treat-
ment. This may encompass interventions like probiotic
therapy in PICU and strategies to optimize the composi-
tion of patients' gut microbiome during the perioperative
period. Additionally, innovative approaches like fecal
microbiome transplantation have the potential to reshape
the gut microbial ecology to produce beneficial metabo-
lites. By maintaining gut microbiome homeostasis, it may
be feasible to regulate systemic inflammation resulting
from surgical injury or CPB. Reconstituting balanced host‐
microbiome interactions in patients with CHD may
ameliorate the metabolic and immunity disorder, thus
preventing certain clinical outcomes and improving
prognosis.
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