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Abstract

We present multiPrime, a novel tool that automatically designs minimal

primer sets for targeted next‐generation sequencing, tailored to specific

microbiomes or genes. MultiPrime enhances primer coverage by designing

primers with mismatch tolerance and ensures both high compatibility and

specificity. We evaluated the performance of multiPrime using a data set of

43,016 sequences from eight viruses. Our results demonstrated that multi-

Prime outperformed conventional tools, and the primer set designed by

multiPrime successfully amplified the target amplicons. Furthermore, we

expanded the application of multiPrime to 30 types of viruses and validated

the work efficacy of multiPrime‐designed primers in 80 clinical specimens.

The subsequent sequencing outcomes from these primers indicated a

sensitivity of 94% and a specificity of 89%.
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Highlights

• MultiPrime is a user‐friendly and one‐step tool for designing targeted next‐
generation sequencing primer sets.
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• It integrates degenerate primer design theory with mismatch handling,

resulting in improved accuracy and specificity in detecting broad‐spectrum
sequences.

• It outperformed conventional programs in terms of run time, primer

number, and primer coverage.

• The versatility and potential of multiPrime are highlighted by its potential

application in detecting single or multiple genes, exons, antisense strands,

RNA, or other specific DNA segments.

INTRODUCTION

Targeted next‐generation sequencing (tNGS) has
become an increasingly important strategy for exploring
the crucial roles of the microbiome due to its high
speed, cost efficiency, and broad range. Metagenomic
next‐generation sequencing (mNGS) [1–3] and meta-
transcriptomic next‐generation sequencing [4, 5] allow
a comprehensive analysis of the microbiomes. However,
these methods encounter challenges, such as human
and environmental microbial genome contamination,
necessitating substantial read counts and sample sizes.
As a result, these techniques are time‐consuming,
expensive, and always challenging to interpret. Though
host DNA depletion during DNA extraction has been
employed to mitigate human genome contamination
[6, 7], their feasibility in resource‐limited and urgent
scenarios remains limited, echoing the situation with
hybridization‐based next‐generation sequencing. In
contrast, polymerase chain reaction (PCR)‐based tNGS
[8, 9] is a simple and cost‐effective method to enrich
multiple target sequences simultaneously [10]. This
method enables rapid amplification of known microbial
genomes, as well as virulence or drug resistance
genes, from small sample size, yielding results within
hours. For example, PCR amplification of rRNA gene
sequences using broad‐taxonomic‐range primers has
been instrumental in microbial community composition
analysis [11–14]. Yet, the complexity of some micro-
biomes, such as the virome, presents unique challenges
due to the absence of conserved regions and the vast
genetic diversity [15, 16]. Consequently, the application
of tNGS to such cases requires innovative approaches.

Critical to the success of tNGS is primer design, while
factors like melting temperature, GC content, and
secondary structure play pivotal roles in the efficient
annealing of primers and target [17–22]. Many software
programs have been developed to assist in primer design
[23] but few are tailored to the specific needs of tNGS.
Existing methods can be categorized into three groups.

Conventional PCR primer design tools prove laborious for
large‐scale target sets [24–26], while degenerate primers
from sequence alignments [27–39] or K‐mer generation
[40–43] require a delicate balance between coverage and
degeneracy [31, 36, 44]. Machine learning algorithms
[45–48] and other approaches [49–51] have been explored
but often encounter limitations when confronted with the
challenge of handling degenerate bases and intricate target
sequences. Despite these efforts, the challenge of design-
ing primers for large and diverse targets persists.

To fill this critical gap, we introduce multiPrime, a
novel tool developed for multiplex PCR of diverse
nucleotide sequences. The main point of its innovation
is an integrated mismatch‐tolerant methodology. At its
core, multiPrime leverages the fundamental Watson‐
Crick hybridization between complementary bases, a
process that inherently accommodates minor mis-
matches. Despite these variations, the prevailing
thermodynamic stability of accurately paired bases
typically takes precedence over unpaired ones [52].
This mechanism gives rise to primer‐template mismatch
annealing—a dynamic that, although it may affect PCR
efficiency, does not hinder the amplification process
outright. Empirical support from a plethora of studies
underscores the robustness of this approach, placing it
on par with the outcomes attained through perfect
primer‐template annealing [50, 53–58], such as estab-
lished amplification refractory mutation system PCR
(ARMS‐PCR) [59]. In the dynamic landscape of nucleo-
tide sequence analysis, multiPrime aims to strike a
delicate balance between the specificity and efficiency
of primers [60]. It further advances the field by
seamlessly integrating permissive mismatches into
primer design strategies [61, 62], thereby enhancing
the dimensions of the primer set—its size, coverage, and
efficiency. This synergistic approach opens up promis-
ing avenues, offering a nuanced solution that adeptly
navigates the complexities posed by expansive and
varied target sequences. Within the framework of our
study, we have harnessed the power of viruses as a rich
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and immensely diverse genetic source to establish this
innovative methodology. This methodology paves the
way for uncomplicated ultra‐multiplex PCR, presenting
a potent tool that holds potential not only within the
realm of virome but also for the broader application of
tNGS across diverse nucleotide sequences. Through this
innovative approach, we embark on a journey toward
advancing tNGS methodologies, offering a streamlined
and versatile solution for the rapid and cost‐effective
detection of diverse microbiomes, as well as for the
comprehensive unraveling of the intricacies inherent in
such diverse microbiotic ecosystems.

RESULTS

Target amplification through primer‐
template mismatch annealing

To assess the effect of primer‐template mismatches
annealing on target amplification, we partitioned
primer into three equal nonoverlapping regions: the 5′
end (5′), middle (Mid), and 3′ end (3′). We then
designed primers with 0–1 mismatches in these regions
to evaluate their ability of target amplification on the
Oxford Nanopore Technology (ONT) platform. Our
results showed that primers with one mismatch worked
effectively (Supporting Information: Figure S5A,B).
However, the efficiency of PCR was reduced, with the
greatest impact observed when the mismatch was
located in the 3′ end (70% and 53%, Supporting
Information: Figure S5B). Next, we designed primers
with up to two mismatches in the middle and 5′
positions and examined the efficiency of the primers.
We found that these primers worked well, with a
relative efficiency of at least 68% (Supporting Informa-
tion: Figure S5B). To further investigate the effects of
mismatch number on target amplification, we modified
a universal influenza primer, M30F2 [63], by introduc-
ing a single nucleotide substitution (A–G) at the 3′ end.
This modified primer was named M30F2‐mis. Two
primer sets were utilized, each containing only one of
the two primers, to evaluate the efficiency of both
primers independently. The primers were tested with
single‐end 75 sequencing and we observed that primers
with 0, 1, and 2 mismatches (F0, F1, and F2 of both
primers and F3 of M30F2, Supporting Information:
Figure S5D) displayed relatively high efficiency (≥61%),
indicating that the primers could function well despite
imperfect annealing (F0, F1, and F2 of M30F2‐mis,
Supporting Information: Figure S5D). The average
relative efficiency of F3 (three mismatches) in M30F2‐
mis was 56%, whereas it was only 2% in one of the three

replicates (Supporting Information: Table S1). These
findings suggest that three mismatches could signifi-
cantly reduce PCR efficiency. Additionally, our obser-
vations demonstrate a comparable performance
between primers containing mismatches and those
devoid of mismatches. Notably, we also identified a
reduction in dimer formation within the primer set
(Supporting Information: Figure S6). Overall, our
results indicated that one or two mismatches located
at the 5′ end or middle regions of primers have a
marginal impact on primer‐template annealing.

MultiPrime significantly reduces the size
of primer sets while enhancing the
coverage and compatibility of these sets

MultiPrime designs primers that can tolerate up to X (0,
1, or 2) mismatches, thereby reducing degeneracy and
improving coverage. For example, to cover all 10 input
sequences (Supporting Information: Figure S7A), a
primer with a high dependency value of 512 would be
required (Supporting Information: Figure S7B). Alterna-
tively, by allowing for a single mismatch in primer
design, four potential primers were identified that could
cover all 10 targets with a significantly lower degeneracy
of 4. To investigate the extent of achievable improvement
through mismatch tolerance, we designed primers for
1000 sequences of human rotavirus A by allowing for 0,
1, and 2 mismatches (Figure 1A). In silico results showed
that primers with 1 or 2 mismatches significantly
improved primer coverage, demonstrating that using
fewer primers with mismatch tolerance can lead to a
broader spectrum of coverage. In terms of the ability to
design degenerate primers, we compared the perform-
ance of multiPrime's primer design module with that of
DegePrime—a widely used program for designing
degenerate primers for bacterial species that has been
shown to outperform other programs such as HYDEN.
We discovered that the primers designed by multiPrime
with one mismatch tolerance had significantly higher
coverage than those produced by DegePrime (Figure 1B),
particularly when the entropy of the primer region was
less than 3 (Figure 1C). This advantage was even more
pronounced when comparing combinations of primer
pairs (Figure 1D). The results showed that the multi-
Prime primer design module yielded higher‐coverage
primers with either one primer pair (98.7%) or two
primer pairs (100%), while DegePrime required at least
four primers to attain comparable coverage (97.8%).
Additionally, we embarked on an iterative primer design
using DegePrime for the uncovered sequences. Regretta-
bly, this approach was impeded by primer compatibility
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concerns, thwarting the integration of supplementary
primers to augment coverage (Figure 1E).

While reducing the number of primers in primer
sets using multiPrime can significantly decrease the

likelihood of primer incompatibility, dimer formation
remains a significant challenge. To address this chal-
lenge, we employed an empirical loss function to assess
potential dimers in the primer set. We optimized the

(A) (B) (C)

(D) (E) (F) (G)

(H) (I) (J)

FIGURE 1 MultiPrime efficiently broadens the spectrum and enhances compatibility. (A) The coverage of primers designed by
multiPrime using 1000 sequences, allowing for 0, 1, and 2 mismatches. (B) The cumulative fraction of single primer coverage for primers
designed by multiPrime and DegePrime. (C) The coverage of single primers designed by multiPrime and DegePrime in different entropy
regions. (D) The top 100 primer pair coverage values for DegePrime and multiPrime. (E) The number of primer pairs required to achieve
satisfactory coverage. A heatmap (F) and boxplot (G) were used to show that the percentage of dimers was significantly reduced by dimer
examination. Before dimer examination (Before DZ) was defined as the primer set combination without dimer examination. After dimer
examination (after DZ) was defined as the primer set combination with dimer examination. (H) The sequence identity of the eight viruses
was used for validation. (I) The accumulated coverage of the core primer set was evaluated across all eight viruses. The primer set was
designed by multiPrime (v2.0.2) with the following parameters: identity: 0.8; seq_number_ANI: 60; drop: “T”; coordinate: 0; Others: Default.
For detailed definitions of the parameters, see YAML files on GitHub. (J) Accumulated coverage of each individual virus by the primer set.
HPIV, human parainfluenza virus; HRSV, human respiratory syncytial virus. ****p < 0.0001 by t‐test (two‐sided).
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threshold of the loss function using 154 next‐generation
libraries from five batches with an average 213‐plex PCR
system designed by multiPrime (Supporting Information:
Figure S8). Our results indicated that the proportion of
dimers was significantly reduced from 57.23 ± 23.5%
(n= 117) to 4.97 ± 2.07% (n= 37) (Figure 1F,G, Support-
ing Information: Table S2).

MultiPrime outperforms conventional
methods in primer set optimization
for large and diverse sequences

Multiple sequence alignment (MSA) can be inefficient
when dealing with large‐scale sequences due to the
required computational power and time. Therefore, we
investigated the feasibility of randomly selecting a
certain number of sequences from each class for
primer design. To determine the number of sequences
needed to achieve satisfactory coverage, 20,723
CDSs of influenza A were used. We randomly selected
10–2500 input sequences for evaluation using multi-
Prime to assess the resulting coverage. Our analysis
demonstrated that a minimum of 200 input sequences
are required to ensure precise primer coverage.
Additionally, the number of candidate primers
decreased rapidly when the number of input sequences
exceeded 1000 (Supporting Information: Figure S9A).
Furthermore, the run time for the MSA increased
significantly as the number of input sequences
increased (Supporting Information: Figure S9B). These
findings suggest that the optimal range for efficient
and effective primer design is from 200 to 1000 input
sequences.

There is no MSA‐dependent software available that
can automatically and efficiently design a minimal
primer set for the 43,016 sequences derived from eight
different viruses currently. To address this limitation,
we modified multiPrime by replacing its primer design
module with DegePrime. We then conducted a compar-
ative analysis of the performance of the modified
multiPrime and the original version. The high diversity
of the input sequences was demonstrated by the identity
of each virus (Figure 1H). Our analysis revealed that
multiPrime's primer design module outperformed
DegePrime in terms of primer design efficiency. In
particular, multiPrime's primer design module required
only 17 min to design primers, while DegePrime
required 48 min. The primer set designed by multiPrime
achieved a coverage of over 96% and 95%, with different
parameters, significantly higher than that achieved by
the DegePrime modified version (78% and 69%, respec-
tively) (Figure 1I, Supporting Information: Table S3).

The coverage achieved by multiPrime's primer set for
each virus was also significantly higher than that of the
DegePrime primer set (Figure 1J). We also compared
our tool with Primux, which is a K‐mer creation‐
dependent tool. However, Primux encountered a
segmentation fault and crashed after running for
approximately 70 h. These results indicate that multi-
Prime is effective in dealing with large and diverse
sequences, while conventional primer design software
such as DegePrime or Primux is inadequate, even when
combined with our strategy.

Experimentally validating primer‐target
amplicons using a long‐read sequencing
platform

To verify whether the target sequences were being
amplified as designed, we utilized the primer set to
amplify PCR products from 30 clinical specimens and
three negative control samples and subsequently
sequenced the product using a long‐read sequencing
platform (Oxford Nanopore Technology [ONT]). All
viruses were accurately identified with the target
amplicon, and no virus reads were detected in the
negative controls, indicating the high specificity of
the primer set (Figure 2A, Supporting Information:
Table S4). Furthermore, the detection of two target
viruses in one clinical specimen and 2–4 clinical
specimens in one tube demonstrated the capability of
the primer set to detect complex infections, which is
crucial for accurate diagnosis and treatment.

We then assigned all target reads to their primers
and estimated the effectiveness of the primers by
comparing them to primers that were perfectly
annealed. Our analysis revealed that the number of
mismatches between the primer and template DNA
plays a vital role in primer‐template annealing effi-
ciency. Moreover, mismatches located at the 3′ end of
the primer and 5′‐adjacent positions may lead to a
relatively high decrease in primer efficiency (Support-
ing Information: Figure S10A). To verify the impact of
mismatch number and position on primer design, we
synthesized a DNA fragment (NC_001488.1:4925‐5423)
and constructed a template vector. We designed a
degenerate primer and estimated its relative efficiency
(Supporting Information: Table S5). Our analysis
showed that mismatches located at the 3′ end (–1)
had the most significant impact on primer efficiency,
while those adjacent to the 5′ end (–17) had a smaller
impact than those at the 3′ end. Mismatches in the
middle (−12) had the smallest effect (Supporting
Information: Figure S10B).
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Experimental validation of the primer set's
efficacy in capturing diverse sequences

To assess the efficacy of the primer set in capturing
diversity and abundance, we devised primers targeting
16 epidemic pathogens and contrasted the outcomes
with those of mNGS using three samples. The results

demonstrated that our primer set facilitated target
detection at a level comparable to mNGS. Notably, all
designated targets were successfully identified, with their
corresponding read counts significantly surpassing those
obtained through mNGS (Figure 3A–C, Supporting
Information: Table S6). These findings underscore the
effectiveness of the multiPrime‐designed primer set in

(A)

(B)

FIGURE 2 Validation of two primer sets designed by multiPrime using two sequencing platforms. (A) Validation of the primer set on
the ONT platform. MCS, mixed clinical specimens (2–4 clinical specimens in one tube); NC, negative control; stars indicate the target virus.
(B) Validation of the primer set on the NextSeq. 500 platform. The primer set was designed by multiPrime (v2.0.3) with the following
parameters: coordinate: 4; seq_number_ANI: 10; Others: Default. Clinical NC, normal clinical specimen, which refers to samples obtained
from healthy individuals devoid of any viral sequences; NC, negative control refers to intentionally empty samples without any template;
stars indicate the target virus.
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(A)

(B)

(C)

FIGURE 3 The efficacy of the primer set in capturing diversity sequences. Target read number (barplot, left) and percentages
(radarplot, right) were obtained from both metagenomic next‐generation sequencing and targeted next‐generation sequencing analyses for
three clinical specimens: clinical specimen 1 (A), clinical specimen 2 (B), and clinical specimen 3 (C). These specimens collectively
contained a total of 16 pathogens, including fungi and bacteria.
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capturing both the diversity and abundance of targeted
sequences.

Application of multiprime in the
development of a primer set for
tNGS for 30 viruses

To further confirm the accuracy and effectiveness of the
primer set designed by multiPrime, we designed a larger
set of primers targeting 30 viruses, ensuring that 3′ end
mismatches were avoided. Subsequently, we evaluated
this larger primer set using a cohort of 80 clinical
specimens. Our results showed that the primer set was
able to detect viruses using next‐generation sequencing
with a single‐end 75 sequencing model (Figure 2B,
Supporting Information: Table S7). The primer set yielded
a sensitivity of 87%, a specificity of 94%, and an accuracy of
89% (Supporting Information: Table S8). Among the 63
infected specimens, only Hantaan orthohantavirus and
rabies lyssavirus remained unidentified, while all other
viruses were correctly identified with an accuracy score
exceeding 95% (Supporting Information: Table S9).
Subsequently, alternative cluster‐specific primers were
selected for these two viruses. The primer set was
subjected to re‐evaluation. Remarkably, both of these
viruses were successfully identified during this subse-
quent assessment (Supporting Information: Table S7).
These results demonstrated that multiPrime‐designed
primers are reliable and precise in detecting viruses.
In addition, we also assigned virus reads to their
corresponding primers to evaluate the efficiency of each
primer. Our analysis revealed that the number of
mismatches remains the most significant factor affecting
primer efficiency. Specifically, we found that positions
adjacent to the 5′ end (while avoiding the 3′ end) had a
relatively high impact compared to other positions
(Supporting Information: Figure S10C).

DISCUSSION

The effectiveness and detection capabilities of tNGS rely
heavily on the primer set used, making the enhancement
of primer coverage a major focal point. The naive
approach for tNGS primer sets candidate (PSC) would
be the “divide and conquer” procedure. This approach
involves dividing the input sequences into two groups,
one containing primer and the other without, and
repeating the procedure for the nonprimer‐containing
group until all sequences are matched or no candidate
primers can be found. However, it is challenging and
time‐consuming to design primers and assess their

compatibility at each iteration. It is crucial to ensure
that newly designed primers do not interact with existing
ones to prevent off‐target amplification and dimer
formation. To address these challenges, an effective
approach would be to group input sequences based on
their identity, design primers for each group, and
combine intergroup primers into a primer set. However,
the success of this approach depends on achieving
sufficiently high primer coverage for each group. If the
primer coverage is insufficient or unsatisfactory, this
approach would not be feasible. MultiPrime aims to
design a degenerate primer that is similar to all input
sequences and matches well with them by tolerating up
to two mismatches instead of requiring a perfect
matching. Compared to conventional primer design
programs, multiPrime yields a higher number of candi-
date primers with higher coverage, resulting in a more
efficient primer set with fewer primers. Furthermore,
multiPrime uses a loss function to evaluate the likelihood
of dimer formation, resulting in a reduced probability of
dimer formation within the primer set and facilitating
expansion of the primer set as needed. Overall, multi-
Prime offers an innovative and efficient approach for
one‐step primer set design for tNGS.

PCR failure can be attributed to various factors, such as
contamination level, poor template quality, inadequate
operator proficiency, or suboptimal PCR conditions.
Therefore, it is essential to validate all primer pairs in
the primer set and monitor their amplification efficiency to
ensure accuracy. Moreover, altering reagents or the
reaction system for a specific primer pair may influence
the amplification of other primers, thus requiring addi-
tional primer pair validation. MultiPrime offers a cluster‐
specific set of candidate primer pairs that can complement
or substitute existing primer pairs in the primer set,
empowering researchers to design more effective panels to
meet their research and development demands.

CONCLUSIONS

In our study, we have demonstrated that primers with
specific mismatches can accurately amplify targets.
MultiPrime incorporates a mismatch‐tolerant feature
that simplifies the process of managing mismatches. It
can design primers while avoiding mismatches at specific
positions and automatically generate two minimal
primer sets for tNGS. In a small cohort, direct sequencing
using ONT identified all viruses while not detecting any
nontarget virus reads in negative controls, proving
the ability of primers with mismatch tolerance to identify
target viruses. In a larger cohort, we achieved high
identification accuracy, sensitivity, and specificity.
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Overall, multiPrime significantly expands the range of
target sequences and enables ultra‐multiplex PCR.
Incorporating multiPrime into tNGS is expected to
simplify and enhance the effectiveness of the technique.

MATERIALS AND METHODS

Implementation

The workflow of multiPrime is illustrated in Figure 4 and
the bioinformatic pipeline is illustrated in Supporting
Information: Figure S1. The manual and software are
freely accessible to all users at https://github.com/joybio/

multiPrime. The installation video for multiPrime is
available on Figshare (https://figshare.com/articles/
media/Installation_video_of_multiPrime/23904159). All
scripts in multiPrime are implemented as Python scripts,
and the joint pipeline is written in Snakemake [64]. The
input of multiPrime is a FASTA format file. It can be a
set of CDSs, genes, genomes, or other kinds of sequences.
MultiPrime has three main steps: First, multiPrime
classifies the sequences by identity [65, 66]. Second,
multiPrime randomly selects N (default: 500) sequences
from each class to generate multi‐alignment results
[67, 68] and design degenerate primers for them by
allowing mismatches through the nearest‐neighbor (NN)
model. Finally, a greedy algorithm is used to combine

FIGURE 4 Schematic diagram depicting the one‐step targeted next‐generation sequencing (tNGS) primer set design method developed
by using multiPrime. The red star indicates the step where the method is described in more detail. MultiPrime comprises four primary
stages: (1) Input: In this initial phase, the collection of target sequences is required. (2) Cluster: Redundant sequences are eliminated and
clusters are established based on sequence identity. (3) Degenerate Primer Design for Each Cluster: Utilizing MUSCLE or MAFFT, a
multialignment procedure is conducted, followed by the design of candidate primers using the nearest‐neighbor model. (4) Intercluster
Primer Pair Combination: Primer pairs are selected considering factors such as PCR product length, melting temperature, dimer formation
assessment, coverage despite errors, and other pertinent criteria. Subsequently, a greedy algorithm is employed to merge primer pairs into
an optimal minimal primer set, guided by dimer formation analysis.
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intercluster primer pairs into one primer set according to
dimer examination and specificity evaluation.

IUPAC transition table

We implemented a hash table to simplify the NN model
(Supporting Information: Figure S2A). In this table,
degenerate base values are derived from normal bases,
and the features of the IUPAC transition (trans) table are
as follows:

The value of each normal base [A, G, C, T] is unique.
The value of a degenerate base is the sum of the

contained normal bases.
The value of each degenerate base is unique.
The rounded down value of each base is equal to its

degeneracy.
The value of a degenerate base minus the value of a

contained normal base is present in the IUPAC trans
table but it will not be when the value of a noncontained
normal base is subtracted.

Nearest‐neighbor model

The nearest‐neighbor (NN) model's goal is to identify a
degenerate primer that can match as many sequences as
possible with up to X (0, 1, or 2) mismatches. It takes the
multialignment result as input and identifies primer‐length
windows as candidate primers. When a window begins or
ends with a “‐” character, “‐” is removed, and the window
shifts to the next base. The window is then extended to
match the length of the primer being sought. However, not
all windows are suitable for degenerate primer design
(DPD). To filter out high‐entropy windows unlikely to yield
effective primers, we employ entropy as a metric to quantify
variation within the window. Only those windows with
entropy values below 3.6 are selected for further processing
in the DPD protocol (Supporting Information: Figure S2B).

Typically, the most frequent sequence or the most
frequent bases in each position will be used as the primary
primer (which can be called the optimal primer) to
initialize DPD. However, the NN model assumes that both
the base frequency at each position and the weight
between NN bases contribute to optimal primer selection,
and the Viterbi algorithm [69] (Supporting Information:
Figure S2C) is employed to find the optimal primer. In
certain instances, the most frequently occurring sequence
may differ substantially from the most probable one.
Therefore, we utilize both the most frequent sequence and
the Viterbi result as the optimal primer to initiate DPD
to select the best primer. A simplified version of our
algorithm is outlined as follows: First, we compute the

frequency and NN arrays of the input sequences
(Supporting Information: Figure S3A,B). Second, we
initialize DPD using the NN model until acceptable
coverage is achieved with errors or degeneracy of the
primer not exceeding the threshold (Supporting Informa-
tion: Figure S3C,D). Third, we identify candidate primer
pairs based on criteria, such as coverage with errors,
evaluation of dimers, Tm difference between primers, and
additional information. Finally, we obtain eligible candi-
date cluster‐specific primer pairs.

The efficiency of PCR with specific primer

We assigned all target reads to their primers and
estimated the effectiveness of the primers by comparing
them to primers that were perfectly annealed.

Efficiency (primer − i) =
Reads number (i)

Reads number (c)
.

Efficiency (primer‐i) refers to the PCR efficiency
specifically associated with primer‐i. Reads number (i)
represents the count of reads that correspond to the
target region of primer‐i. Similarly, reads number (c)
denotes the quantity of reads attributed to the target
region of the primer with a perfect match.

Evaluation of degenerate primer coverage
with errors

We introduce a new metric, the Y‐distance, which is an
extension of the Hamming distance (Supporting Informa-
tion: Figure S4A), to measure the distance between
degenerate primer and target sequence based on the
number and positions of noncontained bases. For example,
“G2SKR” is a common primer for Norovirus detection
[70–72], and “Base” is a hypothetical target sequence. The
Hamming distance between “G2SKR” and “Base” is 6,
which is not sufficient for describing the difference because
there is only a one‐nucleotide difference between “Base”
and the closest sequence contained in “G2SKR.” However,
there is only one value in the Y‐distance that is not in the
IUPAC trans table (Supporting Information: Figure S4B,C),
and 17 indicates that the 17th position in “G2SKR” is
different than the 17th position in “Base.” The thresholds of
the Y‐distance in multiPrime are as follows:

1) The Y‐distance length, indicating the number of
allowable mismatches, should be limited to fewer than 2.

2) Certain positions (such as the 3′ end of the primer)
should be avoided in the Y‐distance.
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Dimer examination

The loss function used in multiPrime is an empirical
formula that is modified from badness and is derived
from SADDLE [73]. It aims to evaluate the compatibility
between two primers. Primers are incompatible if the
loss function between any two primers is greater than the
threshold (high risk ≥ 3.96 and low risk ≤ 3).

∗

∗

Loss function (primer − primer) = log

2 2

(2 − 0.9) (2 − 0.9)
.

10

length GC content

distance1 distance2

Length is the length of the complementary sequence,
distance1 and distance2 are the distances of the
complementary sequence to the 3′ ends of primer, and
GC content is the number of G/C nucleotides in the
complementary sequence.

The threshold is determined by identifying the
inflection point of the dimer ratio (Supporting Informa-
tion: Figure S8) to balance the specificity and sensitivity of
primer pairs, ensuring that the selected primer pairs have
minimal dimer formation while achieving high coverage.

LDimer ratio ( ) =
DNL

DNT
,

where, L is the value of the loss function, DNL is the
dimer reads of primer‐primer with a loss function greater
than L, and DNT is the total dimer reads.

Specificity evaluation

The burrows‐wheeler transform (BWT) algorithm [74] is
employed to evaluate the specificity of the primer pairs.
Primer pairs with 1 mismatch (at least 4 bp away from
the 3′ end of the primer) having target regions in the host
genome or transcriptome are considered potential
nonspecific primer pairs. We use 9 bp of the 3′ terminus
for mapping, which means that the 9 bp terminus of
primer pairs with a target amplicon in the host should be
considered 1 unit off‐target [21].

Experimental validation

Input of multiprime

In the context of third‐generation sequencing, we
employed a comprehensive data set consisting of a total
of eight pandemic respiratory system viruses along with a

combined count of 43,016 complete genomic and CDS
(coding sequence) sequences. This data set was obtained
from the National Center for Biotechnology Information
(NCBI) and featured a diverse array of viral types,
including 2522 enteroviruses (A and D, complete
genome), 429 human coronaviruses (complete genome),
1155 human respiratory syncytial viruses (complete
genome), 27,727 influenza A viruses (CDS), 9129
influenza B viruses (CDS), 166 influenza C viruses
(CDS), 509 human parainfluenza viruses (HPIV; com-
plete genome), and 1379 rhinoviruses (A, B, and C,
complete genome), and were used as the input of
multiPrime. All of these FASTA files were consolidated
into a single file, which served as the input for the
multiPrime. For the purposes of diversity and abundance
analysis, a selection of 16 pandemic pathogens was
chosen as the input for multiPrime. Furthermore, as part
of our analysis using next‐generation sequencing, we
extended our data set to include genomic and CDS
sequences from a total of 30 distinct RNA viruses,
encompassing various subtypes. This expanded data set
was subsequently utilized as input for multiPrime.

Output of multiprime

The resulting output comprises a directory encompassing
seven subdirectories along with over 40 individual files.
A comprehensive elucidation of each file's particulars
is available in the provided URL: https://github.com/
joybio/multiPrime/README.md. Notably, the primary
output encompasses two ultimate primer sets and the
cluster‐specific primers.

Sample selection and preparation

Clinical specimens (sputum/bronchoalveolar lavage fluid
[BALF]/cerebrospinal fluid [CSF]), virus stocks, and
negative controls were used to evaluate multiPrime.

For third‐generation sequencing, a total of 19 clinical
specimens (four sputum, 14 BALF, and one CSF), five
virus stocks (three from Guangzhou BDS Biological
Technology Co., Ltd. and two from the China Center for
Type Culture Collection), and three negative controls
were used for targeted ONT direct sequencing. The target
virus sequences of clinical specimens (two influenza B
viruses and one influenza C virus) were previously
determined by mNGS.

For next‐generation sequencing (SE75), three influ-
enza A BALF samples were used to assess mismatch
effects; 63 clinical specimens with a positive RNA virus
infection diagnosis with mNGS, 17 normal controls, and
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three negative controls were used to evaluate the
performance of the 94‐plex multiPrime primer set.

RNA was extracted using a Quick DNA/RNA
Miniprep Kit (200 Preps) (ZYMO) following the manu-
facturer's instructions, and the sample was eluted in
RNase‐free water.

Library and sequencing

Amplicons for next‐generation sequencing were generated
using AccurSTART U+ One Step RT‐qPCR Super PreMix
(ONE TUBE) (Vazyme) and then purified using AMPure
XP (Beckman). The purified amplicons were then ampli-
fied using KAPA HiFi HotStart Uracil+ ReadyMix (2X)
(Roche) to complete library construction. A modified
protocol for the NextSeq. 500/550 High Output Kit v2.5
was used for amplicon sequencing, and sequencing was
performed on the Illumina NextSeq. 500 platform (75
cycles). Amplicons for third‐generation sequencing were
generated by AccurSTART U+ One Step RT‐qPCR Super
PreMix (Vazyme) and then purified using AMPure XP
(Beckman). Second‐round PCR was performed with KOD‐
Multi & Epi (TOYOBO) to complete library construction,
and the library was sequenced on GridION X5.

Analysis of next‐generation sequencing data

The RCP pipeline (see Acknowledgments) is utilized for
the analysis of next‐generation sequencing data. Briefly,
sequencing reads were trimmed by BBMap (https://
sourceforge.net/projects/bbmap). Seqkit [75] was em-
ployed to extract unique reads, and an R script was used
to determine the duplication level. Unique reads were
annotated with a simplified NT database (only viruses)
by using BLAST (2.13.0+) [76, 77]. Dimer detection and
counting were also performed using BLAST (2.13.0+).

Analysis of third‐generation sequencing data

Base calling of the raw fast5 files produced by sequencing
was performed using Guppy v1.1. Adapters were
trimmed off by Porechop (https://github.com/rrwick/
Porechop). Clean reads were mapped to the Homo
sapiens genome assembly T2T‐CHM13v2.0 and YH to
remove the host genome with minimap2 [78]. The
remaining reads were annotated with a simplified NT
database (only viruses) by using BLAST (2.13.0+).
“Confident on targets”: Reads annotated to viruses
(BLAST). “High confidence on target”: “Confident on
targets” reads with specific 5′/3′ primers.
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