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Abstract

Adrenocortical carcinoma (ACC) is a rare but aggressive malignancy. Recent

studies have discovered a pivotal role of the intratumoral microbiota in various

cancers, yet it remains elusive in ACC. Here, we explored the intratumoral

microbiome data derived from in silico identification, further validated in an

in‐house cohort by bacterial 16S rRNA fluorescence in situ hybridization and

lipopolysaccharide staining. Unsupervised clustering determined two natu-

rally distinct clusters of the intratumoral microbiome in ACC, which was

associated with overall survival. The incorporation of microbial signatures

enhanced the prognostic performance of the clinical stage in an immunity‐
dependent manner. Genetic and transcriptomic association analyses identified

significant upregulation of the cell cycle and p53 signaling pathways

associated with microbial signatures for worsened prognosis. Our study not

only supports the presence of intratumoral bacteria but also implies a

prognostic and biological role of intratumoral microbiota in ACC, which can

advance a better understanding of the biology of ACC.
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Highlights

• Adrenocortical carcinoma (ACC) harbors intratumoral microbes.

• The intratumoral microbiome is associated with prognosis in ACC.

• The intratumoral microbiota might correlate with genomic events, immune

status and specific carcinogenic pathways.
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INTRODUCTION

Adrenocortical carcinoma (ACC) is a rare but aggressive
disease. Although hormone excess is present in ~50% of
cases, most patients are diagnosed at an advanced stage,
which confers a 5‐year survival of less than 10% [1]. As
an orphan disease, the only phase III clinical trial
(namely, FIRM‐ACT trial) of advanced ACC recom-
mending an EDP+M regimen (etoposide, doxorubicin,
cisplatin, and mitotane) showed a moderate effect on
survival improvement [2]. A profound understanding of
the biology of ACC may contribute substantially to novel
treatment modalities.

Next‐generation sequencing (NGS) has enabled us to
gain deeper insight into genetic and genomic alterations
in ACC. To date, with NGS technologies, the Cancer
Genome Atlas (TCGA) and genomic profiling by Assie
et al. have depicted an unprecedented genomic under-
standing of this rare disease [3]. Genetic driver events
include mutations in TP53, CTNNB1, MEN1, PRKAR1A,
RPL22, NF1, and MLL4, as well as whole‐genome
doubling, together with several mRNA and methylation
signatures that are prognostic [4]. In addition to
providing a landscape of host genetics, NGS data from
tissue or blood were found to smuggle the genetic
materials of microorganisms, providing an opportunity to
gain a deeper understanding of the intratumoral micro-
biome [5].

Cancer‐resident microorganisms, especially intratu-
moral bacteria (ITB), have recently been revealed to play
a critical role in several cancer types [5–7]. Studies on
cancer‐associated microbiology have gone through three
eras in general. Conventional pathology‐based studies
solely identified limited carcinogenic microbiomes, such
as Helicobacter pylori in gastric cancer and hepatitis B
virus in liver cancer [8, 9]. Although limited in number,
many such studies drastically updated the understanding
and treatment of the disease. In the second era, which is
still extending today, cancers originating from “contami-
nated” organs or the gastrointestinal tract were targeted
[10]. The gut microbiome is now considered omnipotent
in mediating various physio‐ and pathophysiological
activities, including cancer [10–15]. Metabolites of gut
bacteria not only promote local carcinogenesis, but also
mediate the drug sensitivity of targeted or immuno-
therapy of other organs [10]. Only recently have scholars
been able to develop algorithms to characterize intratu-
moral microbes from NGS data focusing on investigating
host physiology rather than resident microbes and, thus,
revolutionizing our understanding of intratumoral mi-
crobiomes in various cancers [5–7]. Interrogation of the
functional role of the intratumoral microbiome is of great
interest, propelling onco‐microbiology into the third era.

Despite being associated with various tumors, the
intratumoral microbiota remains uncharacterized in
ACC. To bridge this gap, this study, for the first time,
delineates the characteristics of the intratumoral micro-
biota in ACC. By exploiting the intratumoral microbiome
data characterized by Poore et al. [5], we found that the
intratumoral microbiome is associated with prognosis,
host genomic events, and immune status in ACC.
Additionally, microbial signatures could improve prog-
nosis prediction compared with stage alone. Our study
holds promise for a better understanding of the biology
and for developing novel treatment strategies in ACC.

RESULTS

ACC harbors intratumoral microbes

To illuminate the intratumoral microbiota in ACC, we
revisited and obtained the intratumoral microbial pro-
files in different cancers, which were processed by Poore
et al. using whole‐genome sequencing (WGS) and RNA
sequencing (RNA‐Seq) data from TCGA [5] (Figure 1).
The intratumoral microbes comprised three types of
microorganisms (i.e., viruses, archaea, and bacteria).
Normalization and decontamination were also included
according to different criteria, yielding five microbial
abundance matrixes comprising no contaminants re-
moved (NR), likely contaminants removed (LR),
contaminants removed by sequencing “plate–center”
combinations (CR), all putative contaminants removed
(PR), and contaminants removed with most stringent
filtering (SR).

The ACC samples in TCGA consist of 79 RNA‐Seq
data from the primary tumor of 79 patients, in which
poly(A) enrichment of the mRNA was used when
preparing RNA‐Seq libraries. This might have skewed
the detection of intratumoral microbiota, as only partial
prokaryotic mRNA was polyadenylated [16]. To explore
this question, we first attempted to compare the
difference in intratumoral microbiota identified by
WGS and RNA‐Seq. In TCGA repository, 1837 patients
contained both WGS and RNA‐Seq data, while 224
patients contained more than one WGS data set from the
same primary tumor. We used Bray–Curtis dissimilarity
to assess microbial communities within each individual,
from WGS and RNA‐Seq or from different WGS data.
Whereas we observed a slightly larger dissimilarity
between WGS and RNA‐Seq than between different
WGS data (Figure 2A, Supporting Information:
Figure S1), no distinct double peak was found, implying
that the bias from RNA‐Seq data was negligible for the
downstream analysis.
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We next examined the microbial profile in ACC, before
and after decontamination. A total of 1794, 1552, 1406, 1284,
and 169 genera were included in the NR, LR, PR, CR, and
SR groups, respectively (Figure S2). While the genera
Mycobacterium and Pseudomonas dominated NR and LR,
Bacteroides and Streptomyces were the most abundant in PR
and CR (Figure 2B). After the most stringent filtering, the
genera Streptomyces and Desulfococcus were the most
predominant in SR. As TCGA‐ACC cohort lacked paired

normal control, we opted for adrenal pheochromocytoma
(PCPG) as the control to exclude tumor context, in view of
their similar site and surgical procedure. Principal coordinate
analysis (PCoA) showed a significantly distinct microbiome
composition between PCPG (n=178) and ACC (n=79)
(permutational multivariate analysis of variance (PERMA-
NOVA) test, p<0.001), implying that the intratumoral
microbiome was tumor type‐dependent (Figure 2C, Support-
ing Information: Figure S3).

FIGURE 1 Overview of the analysis pipeline. The Cancer Genome Atlas primary tumors were subject to whole‐genome sequencing and RNA‐
Seq, in which microbial abundance (comprising virus, archaea, and bacteria) was identified and normalized by Poore et al. (left panel). To confirm
the presence of intratumoral bacteria, 37 adrenocortical carcinoma tissue microarray chips from the in‐house cohort were stained for fluorescence in
situ hybridization and immunohistochemistry examination. Unsupervised clustering was performed on microbiome data to explore natural clusters
of patients with distinct microbiomes, thereby influencing prognoses. The microbial signatures associated with prognosis were further determined
(middle panel). Defined microbial signatures were tested to improve prognosis prediction. The intratumoral microbiome was found to be associated
with immune status, genetic events, and molecular pathways (right panel).
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To validate the presence of microbes in ACC,
especially the most abundant bacteria, we stained the
ACC tissue microarray chip (TMA) containing 37
samples from our in‐house cohort. With a universal
probe against bacterial 16S rRNA, we adopted RNA
fluorescence in situ hybridization (FISH) for detecting
bacterial RNA in ACC tissue (Figure 2D). We also
performed immunohistochemistry (IHC) staining against
bacterial lipopolysaccharide (LPS), which is specific to
detecting Gram‐negative bacteria (Figure 2D). Positive
16S rRNA and LPS staining was identified in 97.3% (36/
37) and 83.8% (31/37) of ACC samples, respectively,
indicating the actual presence of bacteria in ACC
(Figure 2E).

Intratumoral microbiome composition is
associated with prognosis in ACC

Considering the possible relationship between the tumor
microbiome and cancer prognosis [17], we sought to

determine whether intratumoral microbiome composi-
tion could influence prognosis in ACC. We speculated
that naturally distinct clusters of the intratumoral
microbiome might be associated with ACC prognosis.
For this purpose, an unsupervised clustering strategy,
partition around medoids (PAM) clustering, was applied
to five microbial abundance data of 77 patients (exclud-
ing two patients missing cancer stage) [18], according to
Bray–Curtis (BC) dissimilarity, Jaccard distance, and a
combined metric of two [19] (CM distance). Prediction
strength (PS) and silhouette index (SI) were used to
assess the cluster number and quality of the according
clusters. We observed a low PS (<0.8) and SI (<0.5),
signifying weak support for clustering (Figure 3A,
Supporting Information: Figure S4), probably due to
limited data size, potential contaminants, or no substan-
tial difference in ACC intratumoral microbiome. How-
ever, three distances indicated a consensus of optimal
cluster number, that is, two for all five abundance data
sets, and the resulting clusters were identical regardless
of the distances adopted (Supporting Information:

(A) (B)

(C) (D) (E)

FIGURE 2 Adrenocortical carcinoma (ACC) harbors intratumor microbes. (A) Comparison of two different sequencing strategies in
intratumor microbe detection for NR microbiome data. The Bray–Curtis dissimilarity was used to assess the differences in microbial
communities identified from different WGS or from WGS and RNA‐Seq. The box plot on the top and the density plot on the bottom shows
the Bray–Curtis dissimilarity distribution. (B) Principal coordinate analysis (PCoA) for ACC and PCPG, based on the Bray–Curtis
dissimilarity. Permutational multivariate analysis of variance (PERMANOVA) gave the p value. (C) Relative abundance of microbes in each
microbiome data with different levels of filtering. Only the top five genera of each microbiome data were shown. (D) Representative images
of fluorescence in situ hybridization (FISH) staining of 16S rRNA (up) and immunohistochemistry (IHC) staining of LPS (down) in tissue
containing 37 ACC samples. (E) Representative images of comparison between positive result (up) and the negative control (down) in FISH
staining of 16S rRNA (left) and IHC staining of LPS (right). Arrows were used as indication for positive signals.
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(A) (B)

(C)

(D)

FIGURE 3 Intratumoral microbial composition in Adrenocortical carcinoma (ACC) is associated with prognosis. (A) Clustering scores
of different cluster numbers. The quality of clustering was estimated by silhouette width and prediction strength, based on the CM distance.
(B) Clustering results of 77 ACC patients for five microbiome data. Each cell represents one patient. (C) Kaplan–Meier plot of two clusters
for five clusterings. The Log‐rank test gave the p value. (D) Multi‐variate cox analysis between confounders differentially distributed
between MS1 and MS2 in different clustering situations. The clinical factors in red represent the significant ones independently influencing
the prognosis. The significance was shown with asterisks. *p< 0.05; **p< 0.01; ***p< 0.001. NS, not significant.
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Figure S5). This unsupervised clustering based on
microbial composition, thus, grouped patients into two
clusters. For the remainder of the paper, the two clusters
of patients are termed MS1 (microbial signature 1) and
MS2 cohorts. In the context of the five microbial
abundance data sets, the two MS cohorts (MS1 vs.
MS2) were 55 versus 22 (NR‐clustering), 52 versus 25
(LR‐clustering), 48 versus 29 (PR‐clustering), 52 versus
25 (CR‐clustering), and 36 versus 41 (SR‐clustering),
respectively (Figure 3B). The NR‐clustering, LR‐
clustering, PR‐clustering, and CR‐clustering data sets
were relatively stable, whereas the SR‐clustering data set
was entirely distinct from the other four clusters
(Figure 3B, Supporting Information: Figure S5).

We then used principal coordinate analysis (PCoA),
based on BC dissimilarity, to confirm the difference in
the microbial community between each pair of MS1 and
MS2. As expected, we found a significant difference
(PERMANOVA test, p< 0.05) between the two MS
cohorts in all four microbial abundance data sets when
adopting NR‐clustering, LR‐clustering, PR‐clustering, or
CR‐clustering, but not SR‐clustering (Supporting Infor-
mation: Figure S6). The alpha diversity of the MS cohorts
was also assessed using the Shannon index. Regardless of
the four clusters (i.e., NR‐clustering, LR‐clustering, PR‐
clustering, and CR‐clustering), MS1 displayed a signifi-
cantly higher diversity (Wilcoxon signed‐rank test,
p< 0.05) than MS2 for NR, LR, PR, and CR but not SR.
In comparison, no significant difference was observed in
any abundance data when adopting SR‐clustering (Sup-
porting Information: Figure S7).

We then attempted to interrogate the prognosis
difference between the two MS cohorts. To do this, we
adopted the Kaplan–Meier estimate for examining the
survival distribution [20], using the log‐rank test to test
the difference between two clusters. A significantly
higher survival outcome in MS2 than MS1 was observed
when applying any of NR‐clustering (p< 0.01), LR‐
clustering (p= 0.01), CR‐clustering (p< 0.001), and PR‐
clustering (p< 0.001). In contrast, no survival difference
was found using SR‐clustering (Figure 3C). These results
suggest an association between intratumoral microbiome
composition and prognosis in ACC.

Lastly, we assessed the clinical characteristics
between the two MS cohorts. We found that the MS1
cohort (worsened prognosis) was enriched with atypical
mitotic figures, persistent tumor‐bearing status, and
primary therapy outcome in four clusters (NR‐
clustering, LR‐clustering, PR‐clustering, and CR‐
clustering) (Figure 3D, Supporting Information:
Table S1). To determine whether the microbial composi-
tion could function as an independent prognostic
biomarker, multivariate Cox analysis was performed,

which showed that microbiota subtype, as well as
atypical mitotic figures or 3 months postoperative clinical
status, failed to predict prognosis independently in ACC
cohorts. Of exploratory interest, individual microbiota
that were potentially associated with some clinical
variates (e.g., neoplasm status and primary therapy
outcome) were analyzed using random forest analysis
(Supporting Information: Table S2), in which some
genera were shown to play important roles when taking
clinical variables into consideration. For example, the
genus Lysinimicrobium might relate to the primary
therapy outcome, that is, complete response (CR) or
progressive disease (PD).

Intratumoral microbial signatures can
improve prognosis prediction

Given that particular microbes can alter prognosis [21],
we asked whether any microbes impinge on prognosis in
ACC. As several clinical factors (e.g., age, gender, race,
and clinical stage) might be associated with microbiome
composition [22], we first sought to examine potential
confounders of microbial signatures. The confounding
effects of 14 clinical factors were quantified by the
PERMANOVA test according to the BC dissimilarity. For
NR and LR, we observed that the microbiome commu-
nity composition varied with neoplasm status, 3 months
postoperative clinical status, surgical margin, and atypi-
cal mitotic figures (false discovery rate (FDR)‐adjusted
p< 0.05). In comparison, neoplasm status was the only
confounding factor in CR and PR, and no clinical factor
influenced the microbiome composition in SR (Support-
ing Information: Table S3). Even though other factors,
including age, gender, and race, were not found to
influence the microbiome community, we included them
as strata for investigating the microbial signatures
between the two clusters. We then used MaAsLin2 to
determine the significantly different genera between two
MS cohorts while adjusting for the six confounders [23].
Four clusters (i.e., NR‐clustering, LR‐clustering, CR‐
clustering, and PR‐clustering) were applied to the five
abundance data sets to ensure the robustness of potential
microbial signatures. When applying any of the four
clusters to SR data, no significantly different genus was
found between two MS cohorts; in contrast, 309 genera
were found to be consistently significantly different
between two MS cohorts (FDR< 0.05) when applying
any four clusters to any four abundance data sets (i.e.,
NR, LR, CR, or PR) (Figure 4A, Supporting Information:
Figure S8 and Table S4).

To further determine the microbial signatures that
might be associated with prognosis, we next stratified
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patients into two groups individually according to the
median abundance of 35 genus features with an effect
size <−1 or >1 (Figure 4A). The Cox proportional
hazards regression model showed consistently significant
hazard rates when stratifying patients individually
according to 15 genera (Figure 4B). The difference in
survival distribution was also confirmed by the
Kaplan–Meier estimate (Supporting Information:
Figures S9–S12), reinforcing that the high abundance of
the 15 genera was closely associated with a favorable
prognosis.

There are a limited number of reports on ACC
prognostic biomarkers. Previous studies tried to
construct a microarray‐based prognostic predictor
and identified genes pair BUB1B and PINK1 as
optimal predictors (AUC = 0.83) of poor prognosis in

ACC [24, 25]. To evaluate the predictive ability of
overall status using these 15 genera, we performed
area under curve (AUC) receiver operator character-
istic (ROC) analysis. Surprisingly, the combination of
15 microbial taxa in our study observed an AUC of
0.84 in NR‐clustering, 0.83 in LR‐clustering, 0.82 in
CR‐clustering, and 0.83 in PR‐clustering (Figure 4C).
Furthermore, we found that incorporation of MS
enhanced prognostic performance of stage alone at
early months (T = 22.07 months, p < 0.05; T = 26.96
months, p < 0.05; T = 31.90 months, p < 0.05) of
diagnosis (Figure 4D). This corresponds to another
model that tumor microbial abundances, alone or in
combination with tumor gene expression, can
predict cancer prognosis and drug response to some
extent [17].

(A) (B)

(C) (D)

FIGURE 4 Intratumoral microbial signatures improve prognosis prediction. (A) Volcano plot of 309 consistently different genera
between two clusters. Y‐axis is the log (FDR‐adjusted p values), and X‐axis is the average effect sizes. The effect size of each genus was the
coefficient value in the linear model used in MaAsLin2. Each dot denotes one genus and is colored according to the superkingdom of the
genus. Red dotted lines refer to the cutoff −1 or 1. (B) Heatmap showing hazard ratio of differently abundant 35 genus signatures. A hazard
ratio of < 1 means a high abundance of the genus benefits prognosis. 15 genera highlighted in green were consistently significant.
NR, microbiome data with no contaminants removed; LR, likely contaminants removed; CR, contaminants removed by sequencing
“plate–center” combinations; PR, all putative contaminants removed; SR, contaminants removed with most stringent filtering. (C) ROC
analysis of 15 genera‐based signature as predictive of overall status. The 15 differential genera identified were tested in aggregate. (D) Area
under curve for overall survival between clinical stage alone and stage plus MS in a time‐dependent manner. The significance was shown
with asterisks. *p< 0.05; **p< 0.01; ***p< 0.001.

INTRATUMORAL MICROBIOTA IN ACC | 7 of 20



Intratumoral microbial composition is
associated with host genomic events

A large‐scale study identified five significantly mu-
tated genes (SMGs) in ACC (TP53, CTNNB1, MEN1,
PRKAR1A, and RPL22) and showed recurrent somatic
copy number variations (CNVs) [4]. Therefore, we
next attempted to depict the landscape of genetic
mutations and CNVs of these patients. We compared
the occurrence of various genomic events between
two MS cohorts using the chi‐squared test (Supporting
Information: Table S5), and observed a higher rate of
CTNNB1 and TP53 mutations, as well as amplification
of 14q11.2, loss of 22q12.1, and loss of 9p21.3 in MS1
with a worse prognosis (Figure 5A, Supporting

Information: Figure S13). The pathway most affected
by genomic alterations was the p53 signaling pathway
(Supporting Information: Figure S14), which is the
commonly activated pathway in most ACC tumors.
We also compared tumor mutation burden (TMB)
between two cohorts and found a higher TMB in the
MS1 cohort, consistent with the previous finding that
a high TMB level is associated with a worse
prognosis [26] (Figure 5B). Although no difference
in fraction genome alteration (FGA) was observed,
MS1 was significantly enriched with a noisy
somatic copy number alteration (SCNA) cluster,
which is characterized by an aggressive disease
phenotype [4] (Figure 5C,D, Supporting Information:
Figure S15A).

(A)

(B) (C) (D)

FIGURE 5 Intratumoral microbial composition is associated with host genomic events. (A) Waterfall plot showing the differentially
distributed genomic events in adrenocortical carcinoma categorized by MS clustering. Violin plot showing the difference of (B) tumor
mutation burden and (C) fraction genome altered between MS subtypes in different clustering situations. (D) Stacked bar plot showing
χ2 test of somatic copy number alteration cluster between MS1 and MS2 in NR clustering. The significance was shown with asterisks.
*p< 0.05; **p< 0.01; ***p< 0.001; ns, not significant.
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Intratumoral microbiota might play roles
in an immunity‐dependent manner

ACC is characterized by indolent immunity and immu-
notherapy resistance [27]. To evaluate the immune status
within two MS cohorts, we scored the overall immune or
stromal cells of the tumor microenvironment (TME) and
revealed a lower immune estimation in MS1 when
compared to MS2 (Supporting Information: Figure S16).
More specifically, we estimated 28 immune cell types
infiltrating and observed a lower proportion of tumor‐
infiltrating lymphocytes (TILs) in the MS1 cohort
(Figure 6A), including activated CD4+ T cells, natural
killer T cells, type 2 T helper cells, and eosinophils. A
difference in these immune cells was also observed in
other solid tumors, such as breast and lung cancers [28,
29]. As many of intratumoral microbiota effects on the
TME appear to suppress local antitumor immunity [30],
we next interrogated the immune suppression genes
related to multiple immune cells. Accordingly, we
identified several genes, including CD8 T cell negatively
related (CX3CL1) and T cell negatively related genes
(EZH2, DNMT1, EDNRB, ICAM1, and VEGFA), which
were upregulated in the MS1 cohort (Figure 6B).

Intratumoral microbiota might activate
carcinogenic pathways

An insightful understanding of microorganism‐
associated molecular pathways (MAMPs) is a standard
procedure to identify the “friend or foe” role of the
intratumoral microbiota. We first explored host tran-
scriptomics in ACC to determine differentially expressed
genes (DEGs) between two MS cohorts. KEGG pathway
enrichment analysis of upregulated DEGs in MS1 (worse
prognosis cohort) revealed the top 10 enriched pathways
when applying four clusters (Figure 7A), with several
interesting pathways overlapping. Considering the sig-
naling pathways related to ACC progression and those
related to microbiota reported elsewhere, the cell cycle
and p53 signaling pathway attracted our attention. The
upregulation of these two pathways in MS1 was also
validated using GSEA (Supporting Information:
Table S6), with NES being 2.02 (p= 0.001) and 1.61
(p= 0.005) for the cell cycle and p53 signaling pathway,
respectively (Figure 7B). In another aspect, the MS1
cohort was enriched with an aggressive transcriptomic
subtype of C1A and steroid phenotype high [4]
(Figure 7C,D, Supporting Information: Figure S15B).
The transcriptomic subtype of C1A was defined as
malignant tumors showing a worse prognosis according
to gene expression analysis in a study, which could be

used as an independent prognostic biomarker in addition
to pathology and tumor staging; this has been accepted as
a robust predictor [31]. Additionally, MS1 showed a
higher proportion of high DNA methylation level
(Figure 7E, Supporting Information: Figure S15D), indi-
cating a more malignant phenotype in MS1. However, we
did not observe any association between the MS
signatures and signatures of histology, miRNA, protein,
or adrenocortical differentiation score (ADS) (Supporting
Information: Figure S17A–D).

DISCUSSION

In this study, we took advantage of microbial abundance
generated by Poore et al. [5] to undertake a systematic
investigation of the intratumoral microbiome in ACC.
Using bacterial 16S rRNA FISH and LPS staining, we also
validated the presence of ITB in our in‐house cohort. The
unsupervised clustering method inferred two naturally
distinct clusters of intratumoral microbiota in ACC,
which were associated with overall survival. Incorporat-
ing microbial signatures could improve the predictive
ability of disease status compared with that only based on
the clinical stage. Additionally, the intratumoral micro-
biome was also found to be associated with host genomic
events and immune status. In summary, our study
provides deep insight into the intratumoral microbiome
for ACC, and it could stimulate future studies on how the
intratumoral microbiome could guide targeted therapies
and immunotherapies.

The intratumoral microbiota has been discovered in
most, if not all, human cancers, including in adjacent
normal and deep tumor tissues, which are usually
considered sterile. However, the composition of intratu-
moral microbiota varies drastically per different cancer
types [5, 7, 32]. Consistent with previous studies of
different solid tumors, we, for the first time, observed the
presence of ITB in over 80–90% samples of ACC using
16S rRNA FISH and LPS staining. Whether residing
within or close to the tumor and/or TILs, the intratu-
moral microbiota shows strong cancer type‐dependent
characteristics [7, 32]. Indeed, we found a significant
difference in intratumoral microbiomes between ACC
and PCPG, although they are remarkably similar
concerning the site and surgical procedure. Therefore,
intratumoral microbiome uniqueness might serve as a
biomarker for identification or diagnosis, as claimed by
some scientists (Poore et al., etc.) [5, 7]. Additionally,
emerging studies highlighted the intra‐tumoral microbial
influence on more clinical phenotypes such as tumor
relapse [33], tumor metastasis [6], and prognosis [21] of
patients. Recently, the mechanism of the tumor‐resident
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microbiota affecting tumor biology has become a study
hotspot. For example, tumor‐resident F. nucleatum
triggers the GalNAc/autophagy/TBC1D5 signaling in
oral squamous cell carcinoma (OSCC), driving tumor‐
associated macrophage (TAM) formation, and OSCC

progression [34]. Following this trend, our study
proposes the prognostic role of the intratumoral micro-
biome, with the aim of comprehensively characterizing
the potential biological roles, which can pave the way for
a deeper study.

(A)

(B)

FIGURE 6 Intratumoral microbiota might play roles in an immunity‐dependent manner. (A) Heatmap showing the ratio of MS1/MS2
infiltrating estimations of 28 immune cells in tumor microenvironment. A ratio >1 means higher infiltration in MS1, while ratio <1 means
lower in MS1. (B) Violin plot showing the difference of immune‐related gene expression between MS subtypes in different clustering
situations. The significance was shown with asterisks. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001.
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(A) (B)

(C) (D) (E)

FIGURE 7 Intratumoral microbiota might activate carcinogenic pathways. (A) Dot plot showing the top 10 pathways enriched in MS1
using KEGG enrichment analysis in different clustering situations. The size of the dot represents the gene counts contributing to the
pathway. (B) Enrichment plots showing increased expression of cell cycle and p53 signaling pathway gene sets in MS1 cohort. Stacked bar
plot showing χ2 test of (C) C1A/C1B cluster, (D) mRNA cluster, (E) methylation cluster proportions between MS1 and MS2 in NR clustering.
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Unsupervised clustering is a potent machine learning
technique to detect the naturally distinct groups in data
sets, which has been widely used in various scientific
studies, such as identifying cell types from single‐cell
RNA sequencing data [35] and detecting enterotypes of
the human gut microbiome [36]. Of note, several factors,
such as clustering methodology and distance metrics,
influence cluster detection [37], while no clustering
method can perform optimally across all data sets. In this
study, we applied PAM clustering to ACC microbiome
data, optimally detecting two distinct clusters by
measuring prediction strength and silhouette index.
However, we observed a maximum prediction strength
of less than 0.8, an empirical threshold of moderate
support for clustering [38]. This may have been due to
the small data size, potential contaminants, or no
considerable difference in ACC intratumoral micro-
biome. In particular, potential universal contamination
retained in the data set might decrease the power of
cluster detection, as it would make the microbiome more
similar. Despite this, we still observed a prognostic
difference between two clusters, indicating the associa-
tion between microbial community and prognosis.

Whether intratumoral microbiome plays a role in
prognostics is quite a vital question in cancer biology.
Previous pan‐cancer survival analysis based on the
microbial signature revealed that ACC was one of the
few cancer types where the intratumoral microbiota
conferred an additional benefit to established staging
systems for prognosis prediction [17]. In a landmark
study by Qiao et al. [33], nasopharyngeal carcinoma
(NPC) was shown to harbor intratumoral bacteria,
whose composition was associated with NPC relapse,
while the ITB load was associated with prognosis.
Surprisingly, the microbiota‐based clustering in our
study substantially differentiated the patients into
subgroups with distinct clinical statuses, including
tumor‐bearing status and immediate relapse of disease.
We also proposed that 15 genera‐based signatures
could serve as a prognostic marker, reaching over 0.8
of the AUC value in predicting prognosis. Some of the
signatures have been revealed to be associated with
solid tumors or other. For example, Proteus mirabilis
localized preferentially in tumor tissues and remark-
ably suppressed primary tumor growth and pulmonary
metastasis in breast tumor models. Genera Isosphaera
and Singulisphaera belong to the phylum Planctomy-
cetes, which has generally been reported to produce
anticancer compounds [39–41]. Furthermore, com-
pared to current tools, such as tumor stage in ACC,
microbial clustering holds promise to enhance the
performance of prognostic prediction, suggesting
potential clinical transformation value.

DNA mutations are among the effects of the
intratumoral microbiota on cancer development [42].
The microbiota has been reported to be a vital cause of
DNA damage in several types of cancers, including
gastrointestinal cancer [43, 44]. DNA damage caused by
the microbiota further increases host genetic mutations,
which may finally cause tumorigenesis [45]. In agree-
ment with these findings, we found that, in addition to
some copy number variations, some driver mutations
such as CTNNB1 and mutations have mostly occurred in
the MS1 cohort with a worse prognosis. The TP53
mutation is known for its correlations with the immuno-
suppressive microenvironment [46]. These genomic
events were enriched in p53 signaling and the WNT
pathway, which were also mentioned in other studies
focusing on bacterial effectors influencing host cell
signaling cascades [44, 47]. These consistent findings
lend further credence to the causative role of the
intratumoral microbiota in tumorigenesis. However,
future studies are still warranted.

The activation of oncogenic pathways is another
effect of the intratumoral microbiota. Many studies have
uncovered that certain microbes could not only influence
cytokines such as IL‐6 and TNF‐a directly or indirectly,
but also activate the NF‐κB pathway or STAT3 pathway
to promote tumor progression [45]. The association
between specific taxa and the cell‐cycle pathway has
previously been observed [48], and the genes or micro-
RNAs in the cell cycle were found to be differentially
expressed in conventional mice compared to those of
germ‐free mice [49]. Moreover, the cell cycle is often
associated with DNA damage. Our study found that the
cell cycle was significantly enriched in the MS1 cohort,
together with the p53 signaling pathway, which is one of
the most activated pathways in ACC [4]. The p53
pathway was considered carcinogenic only in the
presence of microbially‐produced gallic acid, suggesting
a microbiome–functional genomic interaction [47]. We
also explored the microbes significantly correlated with
the genes belonging to these two pathways (Supporting
Information: Figure S18), but we did not overstate the
legitimacy of those findings. Given the limited sample
size, overfitting could have substantially skewed the
results.

ACC features indolent immunity and immuno-
therapy resistance [27], which refers to the suppressive
immune status, showing either decreased amounts of
immune cells or exhaustion of T cells, B cells, and NK
cells with the downregulated tumor‐killing effect in the
tumor microenvironment. Scientists have shown that
dysbiosis in bacterial communities in the tumor environ-
ment can either cause a chronic, pro‐inflammatory
immune response or modulate local immune
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surveillance by suppressing the antitumoral immune
response [45, 50, 51]. Our study showed a lower
proportion of overall immune or stromal infiltration, as
well as TILs such as activated CD4+ T cells and natural
killer T cells in MS1, indicating the TME suppression
status. Further analysis highlighting the upregulation of
a large number of immunosuppressive genes supported
the above conclusion. This corresponds to the fact that
MS1, enriched with C1A (characterized as a highly
steroidogenic phenotype with mainly immune suppres-
sor cortisol) [4], was shown to be associated with a worse
prognosis. Mahata et al. [52] showed that tumors induce
de novo steroidogenesis in T lymphocytes to evade
antitumor immunity, confirming the immune suppres-
sion role of steroids. Furthermore, we discovered that
excessive hormones are distinct between the two MS
cohorts, suggesting the key role of steroidogenesis in the
effects of the intratumoral microbiota on the tumor
microenvironment.

Technically, unlike gut or body fluid microbial
studies, shotgun metagenomics sequencing is not appli-
cable for ITB detection given the extremely low biomass
of intratumoral microbes [5, 7, 32]. However, several
studies using the transcriptome 16S rRNA sequencing
and FISH techniques have provided convincing evidence
of the existence and location of the ITB. Fu et al. showed
that cultured ITB from transgenic mice with spontaneous
breast cancer could promote tumor metastasis via,
surprisingly, mechanical reshaping by altering the
cytoskeleton [6]. This culturomics approach could,
however, hardly be extrapolated to ACC for us, as
transgenic ACC mice are currently lacking, and orga-
noids of ACC have rarely been reported, without even
considering the dismal chance of capturing an ITB
sequence from a patient's tumor samples given the
astronomical host genetic materials. Wang et al. applied a
metabolomics approach by evaluating the bacterial
metabolite trimethylamine N‐oxide (TMAO) in breast
cancer and traced the ITB that secreted TMAO [53]. Such
an approach appears more feasible in ACC, with the only
problem being the rarity of the disease.

The limitations of our study include the lack of
external validation and a widely accepted
decontamination protocol both in silico and in IHC.
First, the rarity of ACC renders testing of sequencing
techniques such as metagenomics and 16S rRNA
extremely hard in a reasonable sample size. Functional
analyses based on 16S rRNA sequencing and ex vivo
culture for individual ITB are currently in progress to
establish causal relationships between ITB and the host,
which is still at the stage of tissue collection. Considering
the rarity of the disease, it is hard to accomplish
substantial specimen collection in a limited time.

Additionally, the lack of fresh samples makes it hard to
validate RNA‐Seq‐based signature designation and ITB
isolation. Lastly, despite decontamination being consid-
ered, potential contaminants might still be retained
across the entire analysis. How we processed our FFPE
blocks warrants optimization. Nevertheless, our findings
enable a better understanding of the biology of ACC.

CONCLUSION

In summary, our study validated the presence of
intratumoral microbes in adrenocortical carcinoma
and characterized distinct microbiome composition
that was associated with the prognosis, with 15 genera
performing well in predicting prognosis. Intratumoral
microbiota can distinguish the immune status
of tumor microenvironment and can crosstalk with
carcinogenic pathways such as p53 signaling and cell
cycle signaling. Functional analyses warrant further
exploration.

METHODS

Online data acquisition

Microbial abundance data and the corresponding meta-
data (file “Metadata‐TCGA‐Kraken‐17625‐Samples.csv”)
were acquired from the online repository provided by
Poore et al. [5] (ftp://ftp.microbio.me/pub/cancer_
microbiome_analysis). Normalized and batch effect‐
corrected microbiome data were directly adopted for
bioinformatic analysis in this study. These microbiome
data include data with raw counts (file “Kraken‐TCGA‐
Raw‐Data‐17625‐Samples.csv”), data with Voom‐SNM
normalization (file “Kraken‐TCGA‐Voom‐SNM‐Full‐
Data.csv”), data with Voom‐SNM normalization and
likely contaminants removed (file “Kraken‐TCGA‐Voom‐
SNM‐Likely‐Contaminants‐Removed‐Data.csv”), data
with Voom‐SNM normalization and putative contami-
nants removed (file “Kraken‐TCGA‐Voom‐SNM‐All‐
Putative‐Contaminants‐Removed‐Data.csv”), data with
Voom‐SNM normalization and contaminants removed
by sequencing “plate–center” combinations (file
“Kraken‐TCGA‐Voom‐SNM‐Plate‐Center‐Filtering‐
Data.csv”), and data with Voom‐SNM normalization and
most stringent filtering (file “Kraken‐TCGA‐Voom‐SNM‐
Most‐Stringent‐Filtering‐Data.csv”). All microbiome data
were composed of viruses, archaea, and bacteria, and
they were measured at the genus level. The
decontamination process was detailed in the original
paper [5].
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The gene expression profiles of RNA‐Seq data,
including raw count and normalization to FPKM
(fragments per kilobase of transcript per million frag-
ments mapped), were downloaded from the UCSC Xena
data set [54] (https://xenabrowser.net/datapages/).
FPKM was further converted to TPM (transcripts per
million). Genes absent in over 50% of the samples were
filtered out. With a cutoff of 25% quantile of variance
across samples, genes with low variance were also
discarded, retaining 14,267 genes for downstream analy-
sis. Gene sets for single sample gene set enrichment
analysis (ssGSEA) were downloaded from the online data
repository [55], and those for GSEA were acquired from
the MSigDB database [56] (https://data.broadinstitute.
org/gsea-msigdb/msigdb/release/7.5.1/).

Somatic mutation data in the form of mutation
annotation format (MAF) were captured using the R
package “TCGAbiolinks” (v2.16.4) [57]. Gistic2 copy
number data were downloaded from the UCSC Xena
data set [54] (https://xenabrowser.net/datapages/).
Driver gene mutations or chromosomal spans with focal
recurrent amplifications and deletions, together with
molecular classification of different data types, were
required from the online repository referenced by Zheng
et al. [4]. Clinical data of TCGA‐ACC patients were
downloaded from the cBioPortal data set [58] (https://
www.cbioportal.org/).

Unsupervised clustering for
microbiome data

Unsupervised clustering was performed on five normal-
ized ACC microbiome data using PAM clustering in R
package “cluster” [18], a more robust clustering
approach than K‐means clustering. This clustering
algorithm relies on predefined distance metrics, which
influence the detection of natural clusters in the
microbiome [37]. The clustering variation can be reduced
by a combined metric of the Bray–Curtis (BC) dis-
similarity metric, which considers both microbial pres-
ence/absence and abundance, and unweighted UniFrac
distance, which only considers the microbial presence/
absence [19]. We, therefore, adopted three distances,
namely, BC dissimilarity, Jaccard distance (only consid-
ering microbial presence/absence), and a combined
metric of two with equal weight, termed CM distance,
for PAM clustering. BC dissimilarity and Jaccard distance
were computed by vegdist in R package “vegan” [59]; the
CM distance was generated by the function combMetric
in R package “MicobiomeCluster” (https://github.com/
YushuShi/MicrobiomeCluster). We defined the com-
bined metric (CM distance) as

d d d= 0.5 × + 0.5 × ,CM BC JD

where dCM is the CM distance, dBC is the Bray–Curtis
dissimilarity matrix, and dJD is the Jaccard distance
matrix. We assessed the optimal cluster number with the
prediction strength (PS) [38] and silhouette index [60]
(SI), where a score of ≥0.90 for PS or ≥0.75 for SI supports
a strong clustering. PS was computed using the function
prediction.strength in “fpc” package [38], and SI was
computed using the pam function in “cluster” package.
We also used the adjusted Rand index to compare the
resulting clusters when applying distinct distance matri-
ces to different microbiome data. In terms of the adjusted
Rand index, a score of 0 refers to unrelated clusters and a
score of 1 represents two identical clusters. This was
performed using the function adj.rand.index in the R
package “fossil” [61].

Alpha diversity and beta diversity of
microbial communities

The dissimilarity of microbial communities (beta diver-
sity) between ACC and PCPG (pheochromocytoma and
paraganglioma) or between different clusters was exam-
ined by principal coordinate analysis (PCoA) analysis
based on BC dissimilarity. Permutational multivariate
analysis of variance (PERMANOVA) based on BC
dissimilarity with 999 permutations was used to compare
the difference in microbial communities between groups,
which was performed using adonis2 in R package
“vegan” [59]. Function estimate_richness in the package
“phyloseq” was used to estimate the Shannon index
(alpha diversity), representing the richness and evenness
of microbial communities within each sample [62]. The
statistical difference between groups was tested using
Wilcoxon signed‐rank test, which was performed using
the function stat_compare_means in “ggpubr” [63].

Identification of microbial signatures
associated with overall survival

PERMANOVA analysis with 999 permutations, based on
BC dissimilarity, was performed to examine the effects of
clinical factors on microbial communities. All p values
were further adjusted for multiple comparisons with the
FDR (false discovery rate) method [64]. The clinical
factors with FDR‐adjusted p value < 0.05 were consid-
ered confounding factors. The differentially abundant
microbes between two clusters were identified by
MaAsLin2 (microbiome multivariable associations with
linear models) while adjusting confounders, including
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age, gender, race, neoplasm status, 3 months post-
operative clinical status, surgical margin, and atypical
mitotic figures [23]. In the linear models, the cluster was
considered a “fixed effect” and confounding factors were
considered “random effects”. Only the genera with FDR‐
adjusted p value < 0.05 were considered significantly
different between two clusters.

Survival analysis and prognostic
prediction

The survival distributions between the groups were
estimated with Kaplan–Meier curves, using the log‐
rank test to test the difference between clusters. This was
performed by Surv and survfit in package “survival” [65]
and further plotted using ggsurvplot in “survminer” [66].
To explore the effects of microbial signatures on overall
survival, we stratified patients into two groups according
to the cutoff of the median abundance of each genus
signature. Cox proportional hazard regression models
were used for survival analysis between two groups of
patients with low versus high abundance of a genus
signature, which was finished by coxph in package
“survival”. Hazard ratios (HR) and corresponding 95%
confidence intervals (CIs) were calculated in the Cox
models. The result was visualized by R package “forest-
ploter” (v2.0.1) [67]. Receiver operating characteristic
(ROC) curves were depicted using R package “pROC”
(v1.18.0) [68] and “timeROC” (v0.4) [69], and the area
under the curve (AUC) was used to assess predictive
ability. Additionally, we used R package “randomForest”
(v4.6‐14) [70] to identify microbial genera, most probably
contributing to different clinical factors.

Genomic analysis and visualization

Somatic variants were detected and analyzed by R
package “maftools” (v2.4.12) [71]. Candidate genes were
limited to driver events. To compare the frequency of
variations between different groups, the mafCompare
function was adopted. The waterfall plots showing the
enriched pathways were visualized using the oncoPrint
function in R package “ComplexHeatmap” (v2.13.1) [72].

Transcriptomic analysis and visualization

The immune score and stromal score were assessed using R
package “estimate” (v1.0.13) [73]. The ssGSEA was used to
evaluate the relative proportion of 28 immune cells in tumor
using R package “GSVA” (v1.36.3) [74], and the differences

were examined by function stat_compare_means in package
“ggpubr” (v0.4.0) [63]. Immune‐related genes were down-
loaded from the TIP web server (http://biocc.hrbmu.edu.cn/
TIP/) [75]. Differentially expressed genes were detected using
R package “limma” (v3.50.0) [76], with a cutoff of 1 for log‐
transformed fold change. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment of differential
expression genes was performed using R package “cluster-
Profiler” (v3.16.1) [77]. Gene set enrichment analysis was
performed using package “GSEABase” (v1.50.1) [78].

Procrustes analysis

Procrustes analysis was performed using package
“vegan” (v2.5‐7) [59] to evaluate the association between
tumor microbiome composition and host gene expres-
sion. We calculated the BC dissimilarity based on the
microbiome composition and gene expression matrix.
Then, we used the nonmetric multidimensional scaling
(NMDS) for dimension reduction and set k= 2 as the
number of reduced dimensions or axes, whose result was
the input for the rotations and statistical analysis in
Procrustes analysis, with significance being tested with
9999 permutations using function protest.

Sparse canonical correlation analysis
(Sparse CCA) and enrichment analysis

For an integrative correlation analysis of two sets of
measurements, we applied sparse CCA to identify group‐
level correlations between paired host gene expression
and microbiome data using the CCA function in R
package “PMA” (v1.2.1) [79]. Hyperparameters were
tuned with the CCA.permute function. The details of
sparse CCA were described by Priya et al. [80]. We
implemented the pathway enrichment analysis of host
genes within each component and used Fisher's exact
test for the significance test. The KEGG gene sets were
downloaded from the MsigDB database using R package
“msigdbr” (v7.5.1) [81]. The p values were corrected
using the Benjamini–Hochberg method for controlling
the false discovery rate (FDR), with FDR‐adjusted p< 0.1
considered significant.

16S rRNA staining (direct‐labeling RNA in
situ hybridization)

To examine the presence of intratumoral bacteria in
ACC, we performed 16S rRNA staining on an in‐house
ACC tissue microarray (TMA) chip containing 37
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formalin‐fixed samples. The tissues were resected adre-
nal tissues from patients with ACC receiving an
adrenalectomy in Huashan Hospital affiliated with
Fudan University. Then, they were formalin‐fixed and
embedded in paraffin (wax) to create an FFPE block or
paraffin block, which can be cut using a microtome to
generate thin sections of tissue contained in paraffin to
be stained. For downstream staining, the tissue sections
were processed at 180°C for 4–6 h. Thorough sterilization
of hood, blades, and relevant instruments was carried
out. We adopted a direct labeling protocol because a
strong background signal was observed using digoxin‐
labeled probes. Briefly, paraffinized sections were de-
waxed and dehydrated. Protease K was applied at room
temperature. A working solution was then applied, and
sections were incubated at 42°C for 2 h. After thorough
rinsing with 0.2× SSC (saline–sodium citrate) buffer,
100 μM of EUB338‐cy5 probes (sequence:
5′–GCTGCCTCCCGTAGGAGT–3′) diluted in 1 μM of
working solution were mounted and incubated at 42°C
for 12–18 h. The procedure culminated with DAPI
(1:500) staining. Scrambled probes were used as a
negative control, and paraffin on the same tissue block
was used as a contamination control.

Immunohistochemistry (IHC) of
lipopolysaccharide (LPS)

The same TMA block was used for IHC staining against
bacterial lipopolysaccharide (LPS). Briefly, the block was
sliced at 5 µm and mounted, followed by deparaffiniza-
tion and hydration. After antigen restoration, the section
was blocked with 3% hydrogen peroxide. Goat serum was
applied, and the primary antibody against Escherichia
coli LPS (Abcam, ab35654) was applied at a dilution of
1:200 overnight, followed by a mouse anti‐goat antibody
(Abcam, ab205719). Diaminobenzidine (DAB) was
applied, and slides were counterstained with hematoxy-
lin. The procedure conformed to the ethics waiver
regulation of our institute (Huashan Institutional Review
Board, HIRB), as reported previously [82].

Statistical analysis

All analyses and visualizations were performed via R
software (v4.0.2) unless otherwise specified. We used
Student's t‐test for parametric statistical testing and chi‐
squared test or Fisher's exact test for nonparametric
statistical testing between groups. We used NS (p> 0.05),
*0.05 < p< 0.01, **0.01 < p< 0.001, and *** p< 0.001 to
indicate the significance levels of p values in this paper.
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