
September 2022 | Volume 1 | Issue 3 | 323–328 wileyonlinelibrary.com/journal/mLife

CORRESPONDENCE
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Impact statement
Methane oxidizing microbes play a key role in reducing the emission of this potent greenhouse gas to the atmosphere. The
known versatility of the recently discovered anaerobic Methylomirabilota methanotrophs is limited. Here, we report a novel
uncultured Methylomirabilis species, Candidatus Methylomirabilis iodofontis, with the genetic potential of iodate respiration
from biofilm in iodine‐rich cavern spring water. Star‐like cells resembling Methylomirabilis oxyfera were directly observed
from the biofilm and a high‐quality metagenome‐assembled genome (MAG) of Ca. M. iodofontis was assembled. In addition
to oxygenic denitrification and aerobic methane oxidation pathways, the M. iodofontis MAG also indicated its iodate‐
reducing potential, a capability that would enable the bacterium to use iodate other than nitrite as an electron acceptor, a
hitherto unrecognized metabolic potential of Methylomirabilota methanotrophs. The results advance the current under-
standing of the ecophysiology of anaerobic Methylomirabilota methanotrophs and may suggest an additional methane sink,
especially in iodate‐rich ecosystems.

Methane oxidizing microbes are essential in controlling
methane emissions from various environments. In addition to
aerobic methanotrophs within the Proteobacteria and Verruco-
microbiota, anaerobic methantrophic archaea (the ANMEs)
and bacteria within the Methylomirabilota (previously NC10
phylum), capable of anaerobic oxidation of methane (AOM),
have been discovered during the last two decades. ANME
archaea are suggested to oxidize methane via reverse
methanogenesis1, using different electron acceptors, such as
sulfate2, iron oxides3, nitrate and nitrite4,5, with or without a
syntrophic partner. In contrast, bacteria within the methano-
trophic Methylomirabilota oxidize methane via a canonical
methane monooxygenase‐dependent aerobic pathway, ex-
clusively using nitrite as electron acceptor6,7. Methylomira-
bilota methanotrophs are proposed to generate their own
intracellular oxygen supply via nitric oxide (NO) dismutation
into O2 and N2, catalyzed by a putative NO dismutase8. NO
dismutase (nod) genes are widely distributed among diverse
microbial lineages9. In addition to this peculiar metabo-
lism, Methylomirabilis oxyfera was reported to display a char-
acteristic polygonal cell shape in electron micrographs10.

However, it remains to be shown whether other Methylomira-
bilota methanotrophs also show similar morphologies.

The diversity of Methylomirabilota methanotrophs as in-
ferred from functional marker genes, such as particulate
methane monooxygenase (pmoA)11 or nod genes12 seems
limited, especially in comparison to the diversity of Methylo-
mirabilota derived from 16S rRNA sequences12,13. Hitherto,
the dominant bacteria in denitrifying AOM cultures, for
example14–16, as well as environmental microbes with sup-
posed denitrifying methane‐oxidizing capability17,18, were all
closely related to M. oxyfera. Other environmental
metagenome‐assembled genomes (MAGs) affiliated with the
Methylomirabilota phylum did not indicate a denitrifying po-
tential linked to methanotrophy19,20. Recently, denitrifying
AOM enrichment cultures containing Methylomirabilota
bacteria were reported to reduce selenate21 or chlorate22

under methane oxidation. However, there was no direct
evidence for the involvement of Methylomirabilota in these
processes. Hence, our current understanding of the diversity
and metabolic versatility ofMethylomirabilotamethanotrophs
remains very limited.
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Here, we report the MAG of a novel Methylomirabilota
bacterium, Candidatus Methylomirabilis iodofontis, from
methane‐oxidizing biofilms sampled under iodine‐rich min-
eral water in a subsurface spring cavern in Sulzbrunn,
Germany. Iodine‐rich (>20mg l−1) formation water from the
subalpine Lower Marine Molasse enters the spring together
with thermogenic methane, which accumulated up to
3000 ppm in the undisturbed microoxic cavern atmo-
sphere23. Within the submersed biofilm at the cavern wall,
transmission electron microscopy revealed peculiar
star‐shaped microbial morphologies, resembling that of M.
oxyfera (Figure 1A). In addition, 16S rRNA gene sequences
related to that of Methylomirabilis spp. were retrieved via
targeted PCR and cloning (Figure S1), consistent with pre-
vious results of 16S rRNA gene amplicon sequencing of
the respective submersed biofilms, where reads of the
Methylomirabilota (NC10) accounted for up to 10%23. These
lines of evidence all indicate the presence of Methylomirabilis
methanotrophs in the cave biofilm.

Therefore, we sequenced the metagenome of the sub-
mersed biofilm and assembled a putative Methylomirabilota
genomic bin (bin48), which was over 70% complete and with
very low contamination (1.52%) (Table S1). In total, 4780
Methylomirabilota 16S rRNA gene reads were retrieved, ac-
counting for 14.3% of all 16S rRNA reads detected in the
metagenomic library, representing one of the most abundant
(sub)phylum‐level populations (Table S2). AllMethylomirabilota
16S rRNA reads were assembled into one consensus full‐
length 16S rRNA gene, which showed >99% similarity to that
of Methylomirabilis limnetica (Figure S1). Yet, the pairwise
average amino acid identity (AAI) and the average nucleotide
identity (ANI) between M. limnetica genome and bin48 were
only 85.8% and 91.3%, respectively, suggesting the newly
binned MAG to represent a novel Methylomirabilis species,
which was tentatively named Ca. M. iodofontis. Phylogenomic
analysis based on 121 concatenated protein markers further
supported that M. iodofontis was closely related to other
Methylomirabilis species, forming a monophyletic clade within
the order Methylomirabilales of the Methylomirabilota phylum
(Figure 1B).

In the MAG of M. iodofontis, a pyrroloquinoline quinone
(PQQ)‐dependent methanol‐dehydrogenase and a formate‐
dehydrogenase highly similar to those in M. oxyfera and M.
limnetica were also present. However, a particulate methane
monooxygenase (pMMO) operon was missing (Table 1),
possibly due to the incompleteness of the MAG. The pre-
sence of a complete methane‐oxidizing pathway in the MAG
was statistically assessed using MetaPOAP24, and the false‐
positive and false‐negative probabilities were 7.524e−10 and

0.069, respectively, suggesting that the pMMO genes are
likely present in the source genome. Moreover, M. iodofontis
harbored a complete Calvin−Benson−Bassham (CBB) cycle,
except for the Rubisco small unit gene (Table 1), indicating an
autotrophic lifestyle like M. oxyfera25. The Rubisco large
subunit of M. iodofontis clustered closely to that of other
Methylomirabilis spp., all falling in the type IC/D group
(Figure S2). The high similarity between M. iodofontis and
other Methylomirabilis methanotrophs on the whole‐genome
level as well as for key methane‐oxidizing enzyme genes
(Table 1) also strongly argues for a methane‐oxidizing capa-
bility in M. iodofontis. Like other Methylomirabilis species, a
complete oxygenic denitrification pathway was present, al-
though a second nod (DAMO2434‐like) gene12 was not iden-
tified in the MAG (Table 1). Yet, nod‐targeted PCR and
cloning recovered two Nod clusters as known for other
Methylomirabilis spp., and a distantly related Nod (Figure 1C),
indicating that theM. iodofontis genome likely also harbors two
distinct nod gene homologs. TheM. iodofontis Nod possessed
all characteristic substitutions known for other Nod sequences
(Figure S3). In comparison, reconstructed genomes of other
members of the Methylomirabilales19,20, distantly related
to Methylomirabilis spp., neither indicated methane oxidation
nor oxygenic denitrification capacities (Figure 1B). Likely, the
denitrifying methanotrophic lifestyle is restricted to the genus
Methylomirabilis within the Methylomirabilota.

Interestingly, the cave spring water only contained low
nitrate concentrations (<0.2mg l−1) and nitrite was un-
detectable23. Thus, a potential for respiring other electron ac-
ceptors by M. iodofontis was assessed within the MAG.
Remarkably, the corresponding MAG also harbored a gene
cluster encoding cytochrome c peroxidases (IdrP1 and IdrP2)
and an iodate reductase (IdrBA), the activity of which was
recently demonstrated for Pseudomonas sp. SCT26 and
Denitromonas sp. IR‐1227. The GC content and sequencing
depth of the contig (bin48_25), where the iodate reductase
gene cluster was located, was comparable to that of other
contigs in the MAG, supporting its origin from M. iodofontis
(Figure S4). Phylogenetic analysis demonstrated that the cat-
alytic subunit of the iodate reductase (IdrA) of M. iodofontis
was clearly placed within a cluster of iodate reductases
(Figure 1D). The organization of this iodate reductase gene
cluster (idrP2,P1,B,A) in Ca. M. iodofontis was also the same
as in Pseudomonas sp. SCT and Denitromons sp. IR‐12
(Figure 1D). This organization seems characteristic among io-
date reductases, distinct from more distantly related arsenite
oxidases and periplasmic nitrate reductase encoding gene
clusters27. These results strongly suggest that M. iodofontis
carries a functional iodate reductase. Notably, M. iodofontis

Figure 1. Cell morphology, phylogenetic analysis, gene cluster organization, and key respiratory pathways. (A) TEM image of Methylomirabilis
oxyfera‐shaped cell from the submersed biofilm. (B) Phylogenomic analysis of Methylomirabilota phylum bacteria and MAGs, including
Methylomirabilis iodofontis and other Methylomirabilis species and Rocubacteriales. (C) Nod phylogenetic tree including cloned Nod se-
quences from submersed biofilm and assembled Nod in Candidatus Methylomirabilis iodofontis genome. (D) Phylogenetic tree of the catalytic
subunit of iodate reductase (IdrA), arsenite oxidase (AioA), and periplasmic nitrate reductase (NapA). IdrA encoded in the M. iodofontis is in
bold, and the gene cluster organization of iodate reductase in Pseudomonas sp. SCT, Denitromonas sp. IR‐12 and Ca. M. iodofontis, and
arsenite oxidase, nitrate reductase in other microbes are shown. (E) Key respiratory pathways in M. iodofontis according to genetic analysis.
Both proposed iodate reduction routes taking place in periplasmic space are illustrated.
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iodate reductase genes had no significant hits in genomes of
otherMethylomirabilis species (Table 1). An incomplete operon
(idrP1,B,A) was detected on a contig of another subsurface
MethylomirabilotaMAG (GCA_001771285.1) (Figure 1B), which
also belonged to the order Methylomirabilales but was not
placed within the Methylomirabilis clade and lacked oxygenic
denitrification and methane oxidation pathways (Figure 1B).
This may indicate that M. iodofontis could have acquired io-
date reductase genes via lateral gene transfer, as also pro-
posed for other iodate‐reducing bacteria27.

SignalP analysis28 revealed that both IdrP1 and IdrP2 pos-
sess the Sec and IdrB possesses a twin‐arginine translocation
(TAT) signal peptide, suggesting a periplasmic location of theM.
iodofontis iodate reductase. This was also shown for Pseudo-
monas sp. SCT and Denitromonas sp. IR‐1226,27. It has been
proposed that in Denitromonas sp. IR‐12, IdrAB first reduces
iodate to hypoiodous acid (HIO), which is chemically unstable
and undergoes abiotic disproportionation to I− and IO3

−. The
latter is subsequently cycled back to the enzymatic reduction27.
In Pseudomonas sp. SCT, iodate reduction by IdrAB to hy-
drogen peroxide (H2O2) and HIO was proposed. The resulting
H2O2 is detoxified by cytochrome c peroxidase (IdrP1 and
IdrP2) to water and HIO is presumably disproportionated into O2

and iodide by a chlorite dismutase like (Cld‐like) enzyme26.
Both Denitromonas sp. IR‐12 and Pseudomonas sp. SCT oxi-
dize acetate to fuel iodate reduction; however, the potential
electron donor for this reaction in M. iodofontis is still unclear.
Notably, iodate reduction via the second proposed pathway
would also allow for an oxygen‐dependent methane oxidation in
M. iodofontis (Figure 1E), via the following redox reaction:

→4IO 3CH 4I 6H O 3CO3 4 2 2+ + +− −

However, this metagenome‐derived physiology of M.
iodofontis clearly awaits validation via labeling experiments in
biofilm samples and enrichment cultures under laboratory
conditions.

In summary, we report the MAG of a novel, yet uncultured
Methylomirabilota methanotroph, Ca. M. iodofontis. Con-
sistent with the specific biogeochemical setting of the iodine‐
and methane‐rich mineral spring cave, genetic and phylo-
genomic analyses suggest a capacity for methane oxidation,
oxygenic denitrification, as well as iodate reduction in M.
iodofontis (Figure 1E). This expands our perspective of the
metabolic versatility of Methylomirabilota methanotrophs.
Due to the ubiquity of iodate in ocean waters29, such eco-
physiologies might be widely distributed and represent an
overlooked methane sink in marine ecosystems.
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