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Abstract

Revealing the roles of biotic factors in driving community assembly, which is

crucial for the understanding of biodiversity and ecosystem functions, is a funda-

mental but infrequently investigated subject in microbial ecology. Here, combining

a cross‐biome observational study with an experimental microcosm study, we

provided evidence to reveal the major roles of biotic factors (i.e., soil fungi and

cross‐kingdom species associations) in determining soil bacterial biogeography and

community assembly in complex terrestrial ecosystems of the arid regions of

northwest China. The results showed that the soil fungal richness mediates the

balance of assembly processes of bacterial communities, and stochastic assembly

processes decreased with increasing fungal richness. Our results further suggest

that the predicted increase in aridity conditions due to climate change will reduce

bacterial α‐diversity, particularly in desert soils and subsurface layer, and induce

more negative species associations. Together, our study represents a significant

advance in linking soil fungi to the mechanisms underlying bacterial biogeographic

patterns and community assembly in arid ecosystems under climate aridity and

land‐use change scenarios.
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Highlights

• Soil fungal richness mediates the bacterial community assembly.

• Stochastic assembly processes decreased with increasing fungal richness.

• Increase in aridity reduced bacterial α‐diversity.

INTRODUCTION

Soil microbes play important roles in a variety of ecolo-
gical processes in terrestrial ecosystems, including soil
decomposition, nutrient cycling, pollutant degradation,

and maintaining stable ecosystem services in face of
environmental changes [1–3]. Revealing the fundamental
mechanisms that underpin microbial community di-
versity and biogeographic patterns is crucial for de-
termining their linkage with community stability and
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ecosystem functions, which are key topics in community
ecology [4–7]. The viewpoint in microbial biogeography,
everything is everywhere, but the environment selects
[8], highlights the remarkable dispersal ability and niche
fitness of microorganisms [9–11]. Yet, it is widely ac-
knowledged that both deterministic and stochastic pro-
cesses influence the biogeographic patterns of microbial
communities and distance‐decay relationships (DDRs)
(i.e., microbial community similarity decreases as geo-
graphical distance increases) [2,12]. Deterministic pro-
cesses involve nonrandom and niche‐based mechanisms
[13], including environmental filtering and interspecific
interactions (e.g., competition, facilitation, mutualisms,
and predation). In contrast, stochastic processes mainly
reflect random changes in the relative abundance of
species, involving random birth, death, and dispersal
events [14,15]. Several microbial biogeographic studies
across various habitats [12,16,17] and different scales
(e.g. regional [12,17,18], continental [10], and global
[19–21]) are turning attention toward the importance of
quantifying the contributions of the two major processes
that drive microbial community assembly, which is still
an ongoing debate [22]. Currently, characterizing the
entire range of processes underpinning spatial variation
in microbial communities across complex terrestrial
ecosystems remains a challenge [23–25].

Within the framework of deterministic and stochastic
processes, previous research has focused on investigating
how abiotic factors (e.g., edaphic, climatic, and geo-
graphic) affect microbial community structure across
habitats with a wide range of environmental hetero-
geneity [26]. For example, environmental factors, such as
soil pH, nutrients, soil texture, and climatic conditions
can significantly affect microbial community distribution
[27–29]. However, far fewer studies explore the roles of
biotic interactions between microbial taxa in shaping
community assembly, which could determine the func-
tional attributes or niche occupancy of microbial
communities [30–32]. For example, species interactions
due to fitness differences, for example, competition and
mutualisms, could result in the niche partitioning of
community members under environmental hetero-
geneity [33,34]. This could be inferred based on the
species co‐occurrence patterns and their network topo-
logical properties [35–37]. It is assumed that the highly
unexplained variation in microbial β‐diversity is attrib-
uted to the large varieties of species co‐occurrence pat-
terns and topological features in microbial networks
across different spatial scales [26,38,39].

Elucidating the factors that mediate the balance be-
tween stochastic and deterministic processes could ad-
vance the mechanistic understanding of community
assembly processes [7,22,40,41]. For example, variation

in soil pH could influence the assembly processes that
shape soil bacterial communities during pedogenic pro-
cesses [42]; sulfur can mediate the balance between sto-
chastic and deterministic processes of agro‐soil fungal
communities, as indicated by greater stochasticity found
at higher sulfur concentration [43]. Particularly, inter-
actions between fungi and bacteria are common in soils
[30,44–46], which play important roles in stimulating
ecosystem processes [47]. For example, soil bacteria and
fungi could share common resources, and competition
for substrate might induce the antagonism between
bacteria and fungi [48]; soil fungi may dominate the
decomposition of the recalcitrant organic matter, for ex-
ample, lignin, and bacteria may symbiotically utilize the
fungal‐derived substrates [49].

In the present study, we used a cross‐biome ob-
servational field study and a controlled microcosm ex-
periment to test the influence of biotic factors on the
bacterial community assembly. We first conducted a soil
analysis of 251 samples along the Hexi Corridor, which is
a representative oasis–desert ecotone in the arid regions
of northwest China [50]. Specifically, we explored the
biogeographic patterns of cross‐biome soil bacterial
communities at large spatial scales and quantified the
contributions of abiotic and biotic factors (i.e., soil fungi
and cross‐kingdom species associations) on bacterial
β‐diversity and community assembly. We also used a
controlled microcosm experiment to examine the effect
of fungal richness on the assembly processes of the soil
bacterial community. Here, we hypothesize that (i) biotic
interactions between microbial taxa contribute to sub-
stantial variations in community β‐diversity across dif-
ferent habitats at large scales; (ii) soil fungi mediate the
balance of assembly processes of soil bacterial commu-
nities. Our study could provide a perspective on the im-
portant roles of biotic factors in shaping the bacterial
landscapes and community assembly in complex terres-
trial ecosystems, which should not be overlooked under
land‐use change scenarios.

METHODS

Field survey

Soil sampling

One hundred and twenty‐six sites were selected, 37 in
agricultural field, 28 in forest, 15 in wetland, 26 in
grassland, and 20 in desert. The sampling sites extended
from 36°56' N to 40°34' N, and 94°37' E to 103°31' E
(transect intervals of 1257.6 km) along the Hexi Corridor
in the northwest of China (Figure 1). The dominant
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species in these habitats included Zea mays (agricultural
field), Calligonum spp., Stipa spp., Leymus spp., and
Achnatherum spp. (wetland, grassland, and desert), and
Populus spp. (forest). The dominant soil types were
Aripsamment and Calciorthids, which have a loose
structure and low organic matter content. In July–August
2017 (near the period of the highest aboveground plant
biomass), three 100m2 plots were sampled at each site.
Five soil cores (2.5 cm diameter) were combined per plot
and were taken at depths of 0−15 and 15–30 cm. One
subsurface desert sample was abandoned due to DNA
extraction failure. Therefore, a total of 251 soil samples
were used for this study.

Soil properties

Standard methods were used to measure soil pH,
moisture, cation exchange capacity (CEC), organic car-
bon (SOC), dissolved organic carbon (DOC), total nitro-
gen (TN), nitrate‐nitrogen (NO3), ammonium‐nitrogen
(NH4), total phosphorus (TP), available phosphorus (AP),
total potassium (TK), available potassium (AK) as pre-
viously described [36,51]. We obtained climatic data in-
cluding mean annual temperature (MAT) for all
sampling sites from the Worldclim database (www.
worldclim.org). In addition, we estimated the aridity
(AI, 1–precipitation/evapotranspiration) at each site
using the Global Potential Evapotranspiration database
[52], which is based on interpolations provided by
WorldClim [53].

Diversity measures

Soil bacterial and fungal communities were analyzed
using high‐throughput amplicon sequencing [54]. Total
genomic DNA was extracted from soil samples using a
FastDNA SPIN Kit for Soil (MP Biochemicals). The mi-
crobial communities were profiled by targeting the
V4–V5 region of the 16S rRNA gene for bacteria, and the
ITS1 region of the 18S rRNA gene for fungi. The target
sequences were amplified by PCR using the primer pairs
515F/907R (bacteria) and ITS5‐1737F/ITS2‐2043R (fungi)
[55,56]. Sequencing was conducted on an Illumina
HiSeq. 2500 platform (Illumina Inc.). We assembled
quality‐filtered reads into amplicon sequence variants
(ASVs) using DADA2 v1.14 [57]. ASVs were filtered
when they were present in fewer than two samples.
Taxonomy was assigned for sequence identification using
The Ribosomal Database Project Classifier tool, im-
plemented using DADA2 accessing the SILVA database
(release 138) for bacteria and UNITE+ INSD (UNITE

and the International Nucleotide Sequence Databases)
for fungi [57]. Before we calculated the soil microbial
diversity, the ASV tables were resampled to a minimum
number of sequences from each sample, at 28,955 for
bacteria and 20,065 for fungi. We calculated the Shannon
diversity for bacteria and richness for fungi, which were
the most extensively used. On average, fungal commu-
nities were dominated by Ascomycota (relative abun-
dance: 68.8%), Basidiomycota (10.8%), Mortierellomycota
(9.2%), and Chytridiomycota (5.8%) in this order. The
raw sequencing data of the field survey study were de-
posited in the Genome Sequence Archive at the BIG Data
Center under BioProject ID PRJCA004036.

Microcosm study

Study site and soil sampling

This microcosm study was conducted in soils in-
dependent from the large‐scale survey presented above,
explaining the slight methodological differences between
these two studies, and enabled us to test relationships
between soil fungal richness and bacterial community
assembly independently of the data used to assess the
spatial patterns. Soil sampling was performed in August
2019 at the location of the arid area in northwest China
(38°18' N, 100°9' E). Soil samples were collected at depth
of 0–15 cm. The location was a grassland dominated by
Calligonum spp., and was selected owing to its similar
aridity condition (aridity = 0.663) with the sites of the
field survey.

Microcosm preparation and diversity
measurement

Soil samples were sieved to <2mm to remove the stones
and debris, and placed at the artificial climate room
(25°C) for several weeks to reach a balanced and stable
state. The prepared soil samples were transferred into the
plastic pots and amended with fungicide (Cyclohex-
imide) solution to achieve a final concentration of 0 (D0),
6 mg kg−1 (D1), and 14mg kg−1 (D2), according to the
method in a previous study [58]. The concentration of
fungicides was set based on the standard ecotoxicological
practice for establishing possible environmental effects of
pesticides [59]. A total of 12 microcosms (500 g each;
3 treatments × 4 replicates) were prepared. The moisture
contents in these microcosms were adjusted to 60% water
holding capacity to allow microbial activities to be
maintained (by adding sterile water if needed) during the
incubation period. These microcosms were covered with
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aluminum foil with several holes (1 mm) to avoid con-
tamination and transferred into an artificial climatic
chamber. Soil microcosms were incubated at 20°C in the
dark for 60 days.

After the incubation, soil samples were collected to
conduct diversity measurements, and soil bacterial and
fungal communities were analyzed as described above for
the cross‐biome study. Before we calculated the soil
microbial diversity, the ASV tables were resampled to a
minimum number of sequences from each sample, at
55,975 for bacteria and 26,157 for fungi. We calculated
the Shannon diversity for bacteria and richness for fungi
from rarefied ASV tables. The raw sequencing data of
the microcosm study were deposited in the Genome
Sequence Archive at the BIG Data Center under
BioProject ID PRJCA004037.

Data analysis

Spatial mapping of bacterial diversity

To predict the distribution of the bacterial Shannon
diversity across our sampling regions, we applied a
co‐kriging interpolation method that takes account of
the influence of environmental variables. Here, five
environmental predictors were included in the kri-
ging model: soil properties (soil C and pH), climate
(AI and MAT), because high‐resolution information
on these variables is available at the global scale.
The information on soil properties for this grid was
obtained using the ISRIC (global gridded soil in-
formation) Soil Grids (https://soilgrids.org/#!/?layer=
geonode:taxnwrb_250m). This analysis was per-
formed using the automap package [60] in R, which
automates the interpolation process by automatically
estimating a semivariogram and performing kriging.
The cross‐validation of the maps was based on Pear-
son's correlation between the predicted and observed
values in each sampling site using autoKrige.cv in the
automap package [60].

Correlation networks

To estimate species coexistence across different habitats
and regions, cross‐kingdom co‐occurrence networks
consisting of bacterial and fungal taxa were constructed.
To reduce rare ASVs in the data set, we focused on the
microbial taxa that are present in more than 10% of all
soil samples. Robust correlations with Spearman's cor-
relation coefficients (p) > 0.6 or <−0.6 and p< 0.001
were used to construct networks, which has been

extensively used in the literature and is comparable
across studies [61]. We calculated the average values of
each edaphic and climatic factor for sites in which it was
detected, which were then weighted by the relative
abundance of that taxon per site. These were considered
the environmental conditions preferred by each taxon,
akin to niche space. The Pearson's correlations were es-
timated between the environmental preferences' values
and the degrees of the nodes.

In addition, we extracted sub‐networks by preserving
the phylotypes of individual soil samples using the in-
duced_subgraph function in igraph package in R [62].
The topological features of the sub‐networks in each
sample, including average degree (AD), the proportion of
negative associations (Neg), and the proportion of inter-
acted associations between bacterial and fungal taxa
(Int), were calculated to estimate the potential biotic
interactions, which were regarded as biotic factors in
examining their contribution to the variation in bacteria
α‐ and β‐diversity [26]. The average degree referred to
species connectivity in the community [26,63,64]. The
proportion of negative associations and the proportion of
interacted associations between bacterial and fungal taxa
could reflect their potential biological interactions
[46,65–67]. Networks were visualized using the inter-
active Gephi platform (https://gephi.org).

DDRs

DDRs were calculated as the slopes of ordinary least‐
squares regressions for the relationships between geo-
graphic distances and community similarities (1−dis-
similarity of the Bray–Curtis metric). Standard and
partial Mantel tests were performed to evaluate the
influence of environmental, biotic, and geographic vari-
ables upon bacterial community structures, using the
vegan package for R [68].

Null model analysis

Null model analysis was carried out using the framework
described by Stegen et al. [69] to classify community pairs
into underlying drivers of deterministic and stochastic
processes. The variation in phylogenetic or taxonomic di-
versity was measured respectively using null‐model‐based
phylogenetic β‐diversity metrics (βNTI). A neighbor‐joining
(NJ) phylogenetic tree was inferred with bootstrap analysis
(100 replicates) using the phangorn package [70]. Detailed
descriptions of these can be found in previous studies
[22,40,71]. Briefly, a βNTI< –2 indicates significantly less
phylogenetic turnover than expected (i.e., homogeneous
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selection); conversely, a βNTI> 2 indicates significantly
more phylogenetic turnover than expected (i.e., variable
selection). |βNTI| < 2 indicates the dominance of stochastic
processes. We then explored the major factors that influ-
enced the assembly processes of soil bacterial communities.
Variation in community assembly processes along the
gradients of the derived variables was assessed using
the Mantel tests that correlated the βNTI values with the
Euclidean distance matrices of each variable. The statistical
significance of those comparisons was determined using
999 permutations and the analyses were carried out using
the mantel function of the vegan package for R [68].

Statistical analysis

We applied the random forest analysis (rfPermute function
in rfPermute package in R [72]) and the multiple regression
model (lm function in stats package in R [73]) with var-
iance decomposition analysis (calc.relimp function in the
relaimpo package in R [74]) to estimate the importance of
influencing factors for the topological features. To test the
significance and importance of the environmental variables
for β‐diversity, we used a distance‐based linear model and
forward selection procedure based on the Bray–Curtis dis-
tance matrix by estimating the proportion of variance ex-
plained (R2). These results were displayed by Canonical
principal coordinate (CAP) analysis. These analyses were
performed using the ordiR2step and capscale function of
the vegan package [68]. Standard and partial Mantel tests
were performed to evaluate the influence of environmental,
biotic, and geographic variables upon bacterial community
structures, using the mantel function of the ecodist package
for R [75]. The nonmetric multidimensional scaling
(NMDS) analysis was performed to visualize the sample
relationships across different groups, using the metaMDS
function of the vegan package [68].

RESULTS

Soil bacterial α‐diversity patterns along the
Hexi Corridor

Across 251 cross‐biomes soil samples along the Hexi Corri-
dor (transect intervals of 1257.6 km), we modeled the spatial
distributions of the soil bacterial α‐diversity (Shannon index;
Figure 1A). The bacterial α‐diversity showed a greater value
in low latitude and high longitude fields. We observed that
most of the sequences belonged to the phyla Proteobacteria,
Actinobacteria, Acidobacteria and Chloroflexi, and so
forth, which showed different cross‐biome distributions
(Figure 1B). Proteobacteria were more abundant in wetland

soils, while the relative abundance of Acidobacteria
was significantly higher in agricultural and forest soils
(Figure S1). Desert soils harbored a relatively higher abun-
dance of Actinobacteria.

We then explored the species colored the higher abun-
dance of the soil microbiota via establishing cross‐kingdom
co‐occurrence networks based on correlation, including soil
bacterial and fungal taxa. The network consisted of 1740
nodes (i.e., ASVs) and 7088 edges (Figure 1C). We calculated
the average values of edaphic and climatic variables for sites
in which it was detected; these were considered the en-
vironmental conditions preferred by each taxon, akin to
niche space. We found that the preference for aridity (AI)
showed the highest correlations (Pearson's r=0.321,
p<0.001) with the degrees of the nodes (Figure 1D), and the
degrees were significantly decreased with an increase in AI
(Figure 1D). This suggested closer interconnections and
more frequent co‐occurrence among microbial taxa in the
lower AI environments. Subsequently, we calculated the
topological features of the extracted sub‐networks by pre-
serving the nodes of individual soil samples. Average degree
(AD), proportion of negative associations (Neg), and pro-
portion of interacted associations between bacterial and
fungal taxa (Int) were calculated to infer the biotic factors.
The random forest (Figure S2A) and multivariate regression
(Figure S2B) analysis consistently showed that AI was the
most important variable for predicting the above three to-
pological features. In addition, significant and positive linear
regressions were found between Neg and AI, while AD and
Int exhibited negative regression relationships with AI.

Across all abiotic (e.g., edaphic and climatic) and biotic
factors, fungal richness, AD and AI contributed the most
toward explaining variation in bacterial α‐diversity of dif-
ferent habitats (Figure 2A). This result was confirmed by
significant and negative simple linear regressions found
between AI and bacterial α‐diversity, whereas the bacterial
α‐diversity increased with greater fungal richness and AD
(Figure 2B). Specifically, the strongest negative effect of AI
on bacterial α‐diversity was observed in desert soils, followed
by agricultural soils; while the effect of AI on bacterial
α‐diversity was the weakest in forest soils (Figure 2B). In
addition, the effect of AI on bacterial α‐diversity was stronger
in the subsurface than in surface layers of all habitats
(Figure 2C), suggesting that bacterial α‐diversity was more
affected by AI at the subsurface layer irrespective of different
habitats.

Soil bacterial β‐diversity patterns along the
Hexi Corridor

The major abiotic and biotic factors to the bacterial β‐di-
versity were further identified using the constrained
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analysis of principal coordinates (CAP). Of the most im-
portant environmental factors contributing to the β‐di-
versity, AI and AD had the largest observed effect
(Figure 3A, and Tables S1–S5). The contributions of en-
vironmental, geographic, and biotic variables to the

variation in bacterial β‐diversity were quantified by Mantel
and partial‐Mantel tests. Biotic factors were better pre-
dictors of bacterial β‐diversity than environmental and
geographic ones (Table S6), indicating a stronger effect of
biotic interactions in driving the β‐diversity of soil bacteria.

FIGURE 1 General patterns of soil bacterial diversity and co‐occurrence network. (A) Predicted spatial distribution of bacterial
α‐diversity (Shannon index) using the co‐kriging interpolation method. (B) A circos plot showing the taxonomic distribution of soil bacterial
taxa among different biomes at the phylum level. The thickness of each ribbon represents the relative abundance of bacterial taxa assigned
to different phyla. (C) Cross‐kingdom co‐occurrence network of microbial taxa. The networks are colored based on the aridity preferences of
the taxa. A connection indicates a strong and significant (p< 0.001) correlation, divided into positive (Spearman's p> 0.6; dark gray) or
negative (Spearman's p<−0.6; red) edges. The size of each node is proportional to the degree of the ASVs; the thickness of a connection
between two nodes (i.e., an edge) is proportional to the value of Spearman's correlation coefficient. (D) Correlations between the degree of
the microbial taxa within the ecological network and their environmental preferences (top panels). The linear relationships between the
degree of the microbial taxa and the environmental preference of aridity (AI) (bottom panels). ASV, amplicon sequence variant
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To examine whether biotic factors played major roles in
determining the distributions of specific members in the
community, we combined multiple regression modeling
and variance decomposition analysis to quantify the con-
tributions of the factors to each dominant taxon, which
were ubiquitous (>50% of all samples) and abundant (the
top 10% in terms of relative abundance). The results

showed that AD was the most frequent of the best pre-
dictors of their abundance, followed by AI (Figure 4). In
addition, significantly more explained variations were ob-
served when considering the biotic factors rather than only
considering the abiotic factors, indicating the major roles of
biotic factors in governing the assembly of specific bacterial
members.

(C)(B)(A)

FIGURE 2 Drivers of soil bacterial α‐diversity across different biomes. (A) Contributions of abiotic and biotic factors to bacterial α‐diversity
based on correlation and random forest model. Circle size represents the variables' importance (i.e., percentage of increase of mean square error
calculated via random forest model). Colors represent Spearman's correlations. The abbreviations of edaphic and climatic properties accorded to
theMethod. AD, average degree; Neg, the proportion of negative associations; Int, the proportion of interacted associations between bacterial and
fungal taxa; SR, soil fungal richness. (B) Relationships between bacterial α‐diversity and the main drivers were estimated via linear least‐squares
regression analysis. Standardized effects (standardized slopes [mean± SEM]) of aridity on bacterial α‐diversity were compared among different
biomes. (C) Relationships between aridity and the bacterial α‐diversity in surface (0−15 cm) and subsurface (15–30 cm) layers, estimated via linear
least‐squares regression analysis. Standardized effects of aridity on bacterial α‐diversity were compared between these two layers
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(A) (B) (C)

FIGURE 3 Biogeographic patterns of bacterial β‐diversity across different biomes. (A) Constrained analysis of principal coordinates
(CAP) showing abiotic and biotic factors that influenced bacterial assembly. Sample points are colored according to the average degree (AD).
(B) Distance–decay curves showing Bray–Curtis similarity against geographic distances between sampling sites. Solid lines denote the
ordinary least squares linear regressions. Asterisks denote significant correlation (***p< 0.001). (C) The fraction of turnover in the assembly
of soil bacterial communities, as governed primarily by deterministic (homogeneous [HS] and variable selection [VS]) and stochastic
processes (Sto)
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Soil bacterial community assembly and
their influencing factor

Community similarity versus geographic distance for each
pairwise set of samples clearly displayed a significant DDR

for bacterial communities (Figure 3B). However, the slopes
of distance–decay that were estimated by linear regression
models varied across different habitats. The slope in the
agricultural soils (slope=−0.37) was significantly steeper
than the other habitats, and the slope in forest soils was the

FIGURE 4 Phylogenetic distributions for the dominant bacterial taxa, and their main drivers. Highly abundant (top 10% in terms of relative
abundance) and ubiquitous (presenting in all soil samples) ASVs were selected in this analysis. The phylogenetic tree was constructed using the
neighbor‐joining method. The heatmap shows the relative importance of abiotic and biotic factors in explaining the selected dominant taxa, estimated
via multiple regression modeling and variance decomposition analysis. Proportions of the most important variables explaining the variation in
dominant taxon abundance are shown as a barplot. Boxplots show the differences in the explained variations between considering the biotic and
abiotic factors (Bio) and only considering the abiotic factors (Non‐bio). ASV, amplicon sequence variant
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flattest (slope =−0.17). We then estimated the community
assembly processes behind these DDRs. Null model ana-
lyses revealed that the deterministic assembly was domi-
nant (>50%) in bacterial communities in agricultural,
forest, and grass soils, whereas stochastic assembly con-
tributed a larger fraction to the assembly of bacterial
communities in wetland and desert soils (Figure 3C). In
particular, the assembly of bacterial communities in agri-
cultural and forest soil was governed by the homogeneous
selection, and variable selection contributed to a larger
fraction in grasslands. The relationships between βNTI and
major factors were used to infer changes in the relative
influences of deterministic and stochastic assembly pro-
cesses. The Mantel tests results showed fungal richness to
be the best predictor of βNTI (Table S7), as evinced by the
pairwise comparisons of βNTI values with differences in
fungal richness (Figure 5A,B). With increasing in fungal
richness, the relative influence of stochastic assembly pro-
cesses of bacterial communities decreased, and that of
homogeneous and variable selection, respectively, in-
creased and decreased (Figure 5C,D).

To provide a further test of the importance of
fungal richness for bacterial community assembly, we
conducted a manipulative microcosm experiment
with independent soil samples, at the local stand
level. Our goal was to experimentally create a gradient
of soil fungal richness by using fungicide in in-
dependent soil collected from grassland in northwest
China. In this microcosm, we assessed the influence
of soil fungal richness on bacterial community as-
sembly processes and the variations of specific bac-
terial taxa. We found fungal richness significantly
decreased with the increase of fungicide concentra-
tions (Figure 6A), indicating the experimental success
in the generation of fungal richness gradient. In this
context, the relative influence of stochastic assembly
processes of the bacterial communities increased, and
homogeneous and variable selection respectively de-
creased and increased along with a decrease in fungal
richness (Figure 6B), consistent with the above ob-
servations based on large‐scale survey (Figure 5). In
addition, bacterial β‐diversity significantly differed

(A) (B)

(C) (D)

FIGURE 5 Relative influence of soil fungal richness on the deterministic and stochastic assembly processes in shaping soil bacterial
communities. (A,B). Patterns of βNTI across the different categories of fungal richness, based on artificially separating into 14 (A) and
21 groups (B). (C,D) Horizontal dashed lines indicate the βNTI significance thresholds of +2 and −2. Relationships between assembly
processes and fungal richness based on separating into 14 (C) and 21 groups (D), which were estimated via linear least‐squares regression
analysis with second‐order polynomial fits
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among the fungal richness gradients (Figure 6C), and
there were substantial specific bacterial taxa that
significantly varied along the gradients (Figure 6D).
While no significant difference was observed in bac-
terial α‐diversity among fungal richness gradients
(Figure S3). The results from this microcosm study
provided independent and experimental verification
of the important roles of fungal richness in mediating
the balance of assembly processes of soil bacterial
communities.

DISCUSSION

Revealing the assembly mechanisms of belowground
microbial communities is a key topic in ecology [6],
which have been explored extensively in microbial ecol-
ogy [7]. Few studies have mapped imprints of species
associations on changes of microbial β‐diversity [76].
Here we explored the underlying assembly processes of
soil bacterial community across different habitats and
regions along an oasis–desert ecotone in northwest

(A) (B)

(C) (D)

FIGURE 6 Linkages between soil fungal richness and bacterial community assembly in a microcosm study. (A) Difference in soil fungal
richness among treatments with different fungicide concentrations (D0, no addition; D1, 6 mg kg−1; D2, 14mg kg−1). Data that do not share
a letter are significantly different between treatments (p< 0.05; multiple comparisons with Kruskal–Wallis tests). (B) Variations in assembly
processes of bacterial communities among treatments, estimated via deterministic (homogeneous [HS] and variable selection [VS]) and
stochastic processes (Sto). (C) Nonmetric multidimensional scaling (NMDS) ordination plot showing the bacterial β‐diversity among
treatments. The significances were examined using the Adonis and Anosim tests (**p< 0.01; ***p< 0.001). (D) Heatmap of the bacterial taxa
showing significant differences in relative abundance among treatments. Each row in the heatmap has been standardized (to a mean of zero
and a standard deviation of one) with its color intensity proportional to the standardized relative abundance of the taxa. Prop., the
proportions of the differentiated taxa; RA, the total abundance of the differentiated taxa
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China, by considering the biotic factors inferred from soil
fungi and their species associations. We provide solid
evidence—from a large‐scale survey and a microcosm
experiment—for the major roles of biotic factors (i.e., soil
fungi and cross‐kingdom species associations) in shaping
the bacterial landscapes and mediating the community
assembly. In particular, soil fungal richness mediated the
balance of assembly processes of soil bacterial commu-
nities, with stochastic assembly processes decreasing
with an increase in fungal richness. Beyond fungal
richness, aridity was the most important abiotic factor in
influencing the bacterial α‐diversity, with more negative
effects in desert soils and subsurface layer.

Aridity is increasing worldwide because of climate
change and could substantially influence the structure
and functioning of dryland ecosystems [77–79]. In the
present study, we observed that across all abiotic (e.g.,
edaphic and climatic) factors, aridity contributed the
most toward explaining variation in bacterial α‐diversity
of different habitats in our sampling arid regions, and
increases in aridity were linearly associated with reduc-
tions in bacterial α‐diversity. This is supported by a
previous study, reporting similar trend in global drylands
[78]. Specifically, the bacterial α‐diversity in desert soils
was the most negatively affected by aridity comparing
with other habitats, suggesting that desertification could
aggravate the loss of soil microbial diversity under the
increase of global aridity. Desertification is a serious
problem, leading to the land degradation, biodiversity
loss and functioning reducing of dryland ecosystems
[80]. In addition, the negative effect of AI on bacterial
α‐diversity was stronger in the subsurface than in surface
layers of all habitats, implying that the losses of microbial
diversity in deeper soils are more dramatic to the in-
crease of aridity such as those forecasted with climate
change. Given that subsoils contain >50% of global soil
organic carbon stocks and nearly 35% of the total mi-
crobial biomass [81,82], the losses of biodiversity in
deeper soil might substantially influence the carbon cy-
cling of the terrestrial ecosystem. Previous study showed
that aridification led to systemic and abrupt changes in
multiple ecosystem attributes, and more than 20% of the
terrestrial surface will cross the aridity thresholds by
2100 [77]. Uniquely, our results suggest that the policies
developed to minimize the negative impacts of ar-
idification on belowground biodiversity and functions in
terrestrial ecosystem should not overlook the land‐use
change and sensitive subsurface soils.

We also found that more frequent co‐occurrences
(higher degree) among microbial taxa in the low‐aridity
environments, supported by the notion that higher pre-
cipitation strengthens microbe–microbe interactions
[83]. Higher network complexity under a lower level of

aridity might be partially explained by the increasing
biomass stimulated by a greater supply of water, pro-
viding more opportunities for different species to interact
with each other [83]. In addition, significant and positive
linear regressions were observed between negative mi-
crobial associations and aridity, indicating that an in-
crease in aridity might induce more antagonistic or
competitive biological interactions. This might be the
result of the low moisture in high‐aridity environments
leading to lower community stability with more compe-
tition between species [84], which could reduce the ef-
ficiency of resource transfer compared with those
inhabiting a more isolated space [85]. On the basis of the
above findings, we revealed that aridity is an important
abiotic factor in shaping the bacterial community struc-
ture and species coexistence.

Species interactions, which could determine the
functional attributes or niche occupancy of microbial
communities [30,31], play important roles in stimulating
ecosystem processes [47]. Previous studies demonstrated
that species association played important roles in driving
β‐diversity of diazotrophic and bacterial communities in
paddy soil [26]. In the present study, we revealed that
biotic factors were better predictors of bacterial α‐ and
β‐diversity compared with environmental ones, indicat-
ing a larger role for biotic interactions in driving the
diversity and assembly of soil bacterial communities
across different habitats. This observation was also con-
firmed by examining the major roles of biotic factors in
determining the distributions of specific members in the
communities. The biotic mechanisms were probably in-
volved with species association, which is typically used in
ecology and biogeography as a proxy for species inter-
action in the community [26,86]. Species interactions due
to fitness differences, for example, competition and mu-
tualisms, could result in the niche partitioning of com-
munity members under environmental heterogeneity
[33,34]. For example, competition caused by limited
nutrient sources and antagonistic effects among species
has been suggested to limit the coexistence of species
[30,44–46], which has consequences for microbial com-
munity assembly [27]. Metabolic interdependence among
taxa could induce species coexistence that leads to ag-
gregation of microbes [87]. Thus, these studies could
support our conclusion that biotic interactions between
microbial taxa contribute substantial variations in com-
munity β‐diversity across different habitats at large
scales, corresponding to our first hypothesis.

Disentangling the assembly mechanisms of below-
ground microbial communities is crucial to better un-
derstand the maintenance and generation of terrestrial
microbial diversity [6]. In our study, pairwise compar-
isons of βNTI values of bacterial communities were
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significantly correlated with differences in fungal rich-
ness, suggesting that fungal richness was closely linked
to the balance between stochastic and deterministic as-
sembly processes of soil bacterial communities. Our ex-
perimental tests further support the observed linkages
between soil fungal richness and mechanisms underlying
bacterial community assembly across terrestrial ecosys-
tems using laboratory manipulations, which held most
environmental sources of variation relatively constant.
This is corresponding to our second hypothesis. In par-
ticular, with increasing fungal richness, the relative in-
fluence of stochastic assembly processes of bacterial
communities decreased, and that of homogeneous and
variable selection respectively increased and decreased.
This could be due to the complex interaction between
fungi and bacteria in the soil. For example, some soil‐
derived fungal species could synthesize antibiotics and
showed antagonistic effects on bacterial species [88,89]
or soil fungi could decompose the recalcitrant organic
matter, e.g. cellulose and lignin, providing the sub-
strates for bacterial symbiotically utilization [49]. Given
these cases, higher fungal richness might induce more
homogeneous sorting effects on bacterial taxa, resulting
in their weaker stochastic assembly and stronger
homogeneous selection. Together, our study—to our
knowledge—first built the linkage between soil fungal
richness and mechanisms underlying bacterial com-
munity assembly, and highlighted the potential roles of
cross‐kingdom biotic interactions in regulating the bal-
ance of microbial community assembly processes across
complex terrestrial ecosystems.

A few potential limitations should be considered
within the context of the present study. First, some biotic
factors were inferred from the topological properties of
the cross‐kingdoms network. Correlation network ana-
lyses are only a simplistic representation of a complex
system. In addition, ecological networks that are based
on correlations can yield spurious results [90], and as-
sociations between taxa within such networks cannot be
automatically interpreted as interactions. However, eco-
logical network information is still essential for offering
insights into the topological properties of community
members [35–37,63,64] and is regarded as a valuable tool
to identify species associations within a community
[26,39,91]. Second, fungicide cyclohexemide might be
toxic for all eukaryotic organisms and therefore other
groups rather than fungi were probably affected. Cyclo-
hexamide might only be acting on a subset of the fungi as
well, potentially selecting fungal members that interact
more favorably/significantly with the bacteria. Fungicide
could also be a resource for bacteria, and the setup of pot
experiments might limit the immigration of bacteria;
these could affect the bacterial community assembly.

More elaborate experiments under natural conditions
would be conducted in future work.

CONCLUSIONS

Our findings provide observational and experimental
evidence to reveal the major roles of biotic factors and
aridity in shaping the bacterial landscapes and mediating
the community assembly in complex terrestrial ecosys-
tems. Specifically, soil fungal richness mediates the bal-
ance of assembly processes of soil bacterial communities,
with stochastic assembly processes decreasing along with
an increase in fungal richness; this is true in both our
cross‐biomes study and manipulated experiment. In-
creased aridity conditions due to climate change could
reduce the bacterial α‐diversity, with more negative ef-
fects in desert soils and subsurface layers, and induce
more antagonistic or competitive biological interactions.
Together, our research represents an important step to
link soil fungi to the mechanisms underlying biogeo-
graphic patterns and community assembly of soil bac-
teria in arid terrestrial ecosystems. Considering the
importance of cross‐kingdom biotic interactions for the
community assembly, future empirical and theoretical
research are needed to investigate the biotic mechanisms
underpinning the generation and maintenance of mi-
crobial diversity in response to future climate aridity
changes, which together with other adverse effects (e.g.,
reduced water availability) may pose serious threats
to key ecological processes and services, such as food
production, in drylands worldwide.
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