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Abstract

Taxonomic marker gene analysis allows uncovering taxonomic profiles of

microbial communities at low cost, making it omnipresent in microbiome

research. There is an ever‐expanding set of tools to extract further biological

information from this kind of data. In this perspective, we enunciate several

concerns regarding the biological validity of predicting functional potential from

taxonomic profiles, especially when they are generated by short‐read sequenc-

ing. The taxonomic resolution of marker genes, intragenomic variability of

marker genes, and the compositional nature of microbiome data are discussed.

Combining actual measurements of microbiome functions with predicted

functional potentials is proposed as a powerful approach to better understand

microbiome functioning. In this context, the significance of predicted functional

potentials for generating and testing hypotheses is highlighted. We argue that

functions of microbiomes predicted from microbiome DNA read count data

generated by short‐read amplicon sequencing should not serve as the only basis

to draw biological inferences.
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Highlights

• Concerns regarding the biological validity of predicting functional potential

from taxonomic profiles of microbiome data sets are enunciated.

• Taxonomic resolution of marker genes, intragenomic variability of marker

genes, and the compositional nature of microbiome data are discussed.

• Combining measurements of actual functions and predicted functional

potential profiles is a powerful approach to understanding microbial

functioning.
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INTRODUCTION

Over the last two decades, next‐generation sequencing
(NGS) technologies gained enormous popularity for the
analysis of microbial communities. Modern NGS plat-
forms are affordable, allowing users to multiplex large
amounts of samples, and have high base calling accuracy.
These technologies enabled researchers to decipher the
composition of microbial communities in varied habitats
(e.g., [1–3]). With the rapid rise in microbiome research,
several tools emerged to predict functional potential
profiles from the taxonomical profiles of microbiome
data sets [4]. Functional potential profiles usually list the
microbial functions predicted to be present in a micro-
biome as well as the relative importance of each function
based on the proportion of microbes in which they are
predicted to be present. As microbial functions are
important for the basic understanding of microbial
communities, these tools aim to complement taxonomi-
cal microbiome data sets. Despite all the additional
information that such tools offer, we here communicate
several concerns that we have regarding the use of
taxonomic annotation of microbiome data sets generated
by short‐read amplicon sequencing to derive microbial
functions. While the prediction algorithms themselves
have been discussed intensively (e.g., [4]), this perspec-
tive focuses on the applicability of short‐read amplicon
sequencing data to the task of functional potential
prediction, and not the efficiency of prediction
algorithms.

Taxonomic resolution of amplicon
sequencing

At the time of writing, short‐read amplicon sequencing
using the Illumina platform is the most common
sequencing technology. On Illumina's widely used MiSeq
System, short paired‐end reads of up to 2 × 300 base pairs
can be generated. For the analysis of microbiomes, the
most popular targets of short‐read amplicon sequencing
are taxonomically informative parts of amplified 16S
ribosomal RNA (rRNA) and internal transcribed spacer
(ITS) loci. Sequencing of parts of these loci often lacks
taxonomic resolution at species level. For example,
almost two decades ago, Blackwood et al. [5] sequenced
the hypervariable V1 to V3 regions of the 16S rRNA
genes of Bacillus spp. and found that species of the
clinically relevant Bacillus cereus group, Bacillus anthracis
and Bacillus cereus, could not be distinguished. In fact,
sequencing of full 16S rRNA genes of the B. cereus group
revealed only some isolates of B. anthracis and
B. cereus presented discriminable 16S rRNA sequences

[6, 7], pointing to the limited taxonomic resolution of this
marker gene for certain taxa. Recently, the importance of
strain‐level identification of members of the human
microbiome has been pointed out [8, 9]. Short‐read
amplicon sequencing, however, mostly fails to differenti-
ate closely related strains [9].

Previous studies proved the self‐evident fact that a full‐
length 16S assessment, which is achievable by employing a
long‐read sequencing technology such as PacBio, increases
taxonomic resolution (e.g., [10]). As an alternative to long‐
read sequencing, Loop Genomics proposed adapting
Illumina short‐read sequencing technology to produce
synthetic long reads by using unique molecular barcodes
in each 16S amplicon, which also showed to improve
taxonomic resolution at species level [11]. Additionally, by
using computational tools such as SMURF [12], it is
possible to infer taxonomic profiles with a greater
taxonomic resolution by aggregating information regard-
ing amplicon sequencing libraries targeting different 16S
hypervariable regions. This alternative is currently more
accessible because there is no need for replacing sequenc-
ing platforms or adapting library preparation workflows.
However, this is still suboptimal since, in opposition to
Loop Genomics technology, full‐length 16S sequences
cannot be reconstructed with this strategy.

Although the costs are still prohibitive for wide
adoption, we predict that full‐length 16S assessment
either by long‐read amplicon sequencing or bio-
informatics reconstruction of the full‐length 16S based
on uniquely identified short reads will gradually replace
short‐read amplicon sequencing in the long term, leading
to increased taxonomic resolution and, thus, more
accurate prediction of functional potential profiles.

Apart from taxonomic distinction, genomic variability
among isolates of the same species further impedes the
accurate prediction of functions. In 2004, Jaspers and
Overmann [13] found that 11 isolates of Brevundimonas
alba had identical full 16S rRNA gene sequences but high
genomic diversity [13]. The authors were able to show that
despite identical 16S rRNA gene sequences, these isolates
showed pronounced differences in their physiology. This
illustrates the need to isolate microorganisms to precisely
assess their functions. Although the lack of reference
genomes in public databases undoubtedly limits functional
potential prediction tools [4], this example further illus-
trates that reference genome availability does not guaran-
tee reliable functional potential inferences.

Intragenomic variability of marker genes

Another complication in exploring microbiome structure
using amplicon sequencing data is the variable copy
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number of marker genes in microbial genomes. Fungi
can contain up to several hundred copies of rRNA genes
(which are interspaced by ITS sequences), but this varies
by order of magnitude across fungi [14]. Even among
isolates of a single fungal species, copy numbers of 18S
and 28S rRNA genes per genome can vary largely
[14–17]. Lavrinienko et al. [18] speculate that nontran-
scribed regions such as ITS may have an even greater
copy number variability. Similarly, as shown in Rainey
et al. [19], bacteria may contain multiple copies of the
16S rRNA gene. Recent estimates indicate the median
16S rRNA gene copy number per bacterial species can
vary between 1 and 19 [20]. Although tools to correct for
the gene copy number variability of 16S rRNA genes in
archaeal and bacterial genomes have been developed [21,
22], the reliability of gene copy number correction
remains questionable [23, 24]. In addition, it is known
for over two decades that the 16S rRNA genes in a single
bacterial genome are not always identical (e.g., [25]).
This may cause amplicon sequencing studies to identify
16S rRNA alleles within the same bacterial cell as
pertaining to different species [26], which often leads to
inflated diversity estimates [27]. Therefore, besides the
obvious implications of variable marker gene copy
numbers in attempts of estimating the relative contribu-
tion of each species in the environment under study (i.e.,
distortion of relative abundances), this variability some-
times translates into allele diversity, which can even
confound microbiome membership. As functional poten-
tial profiles reverberate all biases in taxonomic profiles,
intragenomic variability of marker genes confounds the
relative importance estimation of potential functions
and likely inflates the predicted diversity of functional
potential profiles.

The compositional nature
of microbiome data

Because there is no relationship between the number of
reads generated by NGS from a sample and the number
of bacterial cells in that sample [28], bacterial reads do
not translate into bacterial abundances. The number of
reads generated for each taxon during NGS informs
solely on the relative sizes of parts of the community,
making NGS microbiome data sets compositional [29].
In other words, this means they unlock the relative
sequencing read abundance of the taxa (i.e., proportions
or frequencies) present in a microbial community, but
because the size (microbial biomass) of the whole
community remains unknown, they do not reveal
absolute abundances of taxa [28–31]. Therefore, even if
the predicted functional potential profile of a community

matches the profile of its actually realized functional
potential, the total population size of the community is
still ignored which disables estimation of the magnitude
of the functional potential. For example, given two
compositionally identical microbiomes (microbiome A
and B) that differ in their overall population size by
factor two (microbiome A has double the population size
of B), we would like to compare their predicted to their
realized functional potential. Although their predicted
functional potentials based on taxonomic profiles will be
identical, microbiome A has double the realized func-
tional potential due to the double population size. Great
efforts have been undertaken to overcome this limitation
of microbiome analysis through various ways of addi-
tional quantification of microorganisms (e.g., [28, 30,
32–34]); however, different quantification methods may
introduce additional data variability [35].

A further strategy to circumvent the caveats of
compositional data analysis is the use of ratios (division
between elements of the composition, i.e., proportions)
[36]. This is because the microbial load bias vanishes in
ratios [37]. So if the microbiome function of interest can be
expressed in terms of ratios between molecules/functions/
processes, as is often the case in biological systems (e.g.,
carbon/nitrogen, albumin/globulin, neutrophil/lympho-
cyte), relative abundances of potential functions turn into
valuable information and quantification of the microbial
load becomes less critical. Although not always practical,
such that our concerns regarding the compositional nature
of the data still hold, we suggest the use of ratios whenever
possible when analyzing functional potential profiles.
Regardless, compositionally‐aware statistical methods,
which employ ratio‐based transformations to make the
data less contingent on community sizes, are also useful
and should be favored in this setting [29].

Finally, although not discussed here, it is worth
mentioning that PCR bias is a well‐known source of error
that can distort community composition (e.g., [38]) and
consequently predicted functional potential profiles.

Measuring the actual function
of the microbiome

Another but more demanding approach is to measure the
actual functions of interest of the microbiome if possible.
For example, processes regulated by environmental
microbiomes such as enzymatic activity [39], greenhouse
gas fluxes [40], and nitrogen fixation [41] can often be
measured in situ. Likewise, the function can be assessed
from human/animal gut microbiomes by orthogonal
measures of stool metabolites, which has been success-
fully used to investigate the relationship between the gut
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microbiome and biotransformations that partly explain
the interpatient variability in the efficacy and toxicity of
several drugs [42], including immunosuppressants [43].
Measuring actual microbial functions is only an option if
microbial communities are accessible to functional
measurements, functionally active at the point of
sampling, and have a sufficient population size and
amount of sampling material to detect the functions. For
microbiomes that do not meet these criteria, additional
quantification of functional genes using techniques like
real‐time PCR is a valuable addition to quantifying their
genetic potential for a given function. It has to be noted
though that these genetic potentials do not necessarily
translate into microbial activities and processes [44–46].
In this regard, omics techniques such as transcriptomics,

proteomics, and metabolomics could assist with the
exploration of expressed genetic potentials. We argue
that a combination of the measurement of selected actual
functions and the predicted functional potential profiles
is a powerful approach to understanding microbial
functioning.

Generating and testing hypotheses

Despite their limitations, we recognize the particular
potential of predicted functional potential profiles for the
generation of novel hypotheses. However, it is important
not to neglect that microbiomes are complex. Accord-
ingly, functional potential profiles are high‐dimensional

FIGURE 1 Schematic illustration of the concerns, benefits, and alternatives to the prediction of microbiome functional potential from
amplicon sequencing microbiome data sets
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and can be hard to analyze. This means that oftentimes
functional potential prediction tools lead to too many
research directions so that generating straightforward
hypotheses becomes difficult. We strongly encourage
researchers to select meaningful hypotheses and to
independently test these hypotheses whenever possible.
For example, Zhang et al. [47] predicted the metabolic
functions of gut microbiota in mice and successfully
validated their predictions by using nuclear magnetic
resonance‐based metabolomics. Likewise, Wu et al. [48]
predicted altered biosynthesis pathways of the gut
microbiome in patients with colorectal adenomas and
colorectal cancer as compared to healthy individuals. The
authors validated their predictions by quantifying genes
from these pathways using real‐time PCR. Even though
studies validating predicted functional potential profiles
are the exception rather than the rule, these examples
illustrate the power of predicted functional potential
profiles to find and explore new research directions.

SUMMARY

An overview of the concerns, benefits, and alternatives to
the prediction of microbiome functional potential dis-
cussed in this study is provided in Figure 1. Overall, we
appreciate the efforts undertaken to enable the predic-
tion of functional potential profiles from taxonomical
microbiome data sets. We also believe that the prediction
of functional potential profiles is useful to generate new
ideas and explore new potential research directions. In
conclusion, however, we argue that functions of micro-
biomes predicted from microbiome DNA read count data
generated by short‐read amplicon sequencing should not
serve as the only basis to draw biological inferences. We
believe that the transition from short‐ to long‐read
sequencing technologies will help to overcome some of
the challenges presented here. Still, high‐resolution
taxonomic profiling does not resolve crucial concerns
we raised (e.g., the compositional nature of microbiome
data). Therefore, measuring microbiome activity using
omics (e.g., metabolomics) and non‐omics approaches
(e.g., qPCR) will remain essential alongside taxonomic
profiling to illuminate microbiome functioning.
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