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Abstract

Microbial strains of variable functional capacities coexist in microbiomes. Current

bioinformatics methods of strain analysis cannot provide the direct linkage between

strain composition and their gene contents from metagenomic data. Here we

present Strain‐level Pangenome Decomposition Analysis (StrainPanDA), a novel

method that uses the pangenome coverage profile of multiple metagenomic

samples to simultaneously reconstruct the composition and gene content variation

of coexisting strains in microbial communities. We systematically validate the

accuracy and robustness of StrainPanDA using synthetic data sets. To demonstrate

the power of gene‐centric strain profiling, we then apply StrainPanDA to analyze

the gut microbiome samples of infants, as well as patients treated with fecal

microbiota transplantation. We show that the linked reconstruction of strain

composition and gene content profiles is critical for understanding the relationship

between microbial adaptation and strain‐specific functions (e.g., nutrient utilization
and pathogenicity). Finally, StrainPanDA has minimal requirements for computing

resources and can be scaled to process multiple species in a community in parallel.

In short, StrainPanDA can be applied to metagenomic data sets to detect the

association between molecular functions and microbial/host phenotypes to

formulate testable hypotheses and gain novel biological insights at the strain or

subspecies level.
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Highlights

• Strain‐level Pangenome Decomposition Analysis (StrainPanDA) uses the

pangenome coverage profile of multiple metagenomic samples to
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simultaneously reconstruct the composition and gene content variation of

coexisting strains in microbial communities.

• StrainPanDA allows accurate and robust inference of strain composition

and gene content profiles on synthetic data sets.

• Linked reconstruction of strain composition and gene content profiles

provided by StrainPanDA furthers our understanding of the relationship

between microbial adaptation and strain‐specific functions (e.g., nutrient

utilization and pathogenicity).

INTRODUCTION

There is mounting evidence that multiple within‐
species variants coexist in microbiomes [1, 2]. Coex-
isting microbial cells of the same species can have
substantial variations in their gene contents (i.e.,
accessory genome), which is largely generated by
horizontal gene transfer (HGT) [3–5]. The intraspecies
variation in the accessory genome can lead to
substantial phenotypic differences (e.g., nutrient utili-
zation, pathogenicity, and antibiotic resistance) and
plays an important role in microbial adaptation across
environments [6–9]. Moreover, many health outcomes
linked to host‐associated microbiomes have been
found to be consequences of the function of individual
strains [8, 10–14].

Metagenomic sequencing has revolutionized mi-
crobiome studies by providing a culture‐independent
approach to studying the composition and function of
complex microbial communities. Commonly used
tools for metagenomic analysis, known as metage-
nomics profilers, typically provide species‐level taxo-
nomic composition [15–18]. In parallel with the rapid
increase of sequenced microbial isolates from cul-
turomics studies [1, 9, 19, 20], high‐resolution
analyses of metagenomic data have revealed notable
within‐species variations [21, 22]. Methods that
enable strain‐level analysis of metagenomes have
been used for tracking strain transmission or disper-
sal [23, 24], studying the population genetics of
microbial strains [25], and typing strains of specific
interest [26–32].

The gene content profile of a microbial strain
determines its biological function. To date, the majority
of strain‐level analysis methods use single nucleotide
variants (SNVs) to identify strain composition [25, 28,
29, 33, 34]. By assuming an association between SNV

haplotypes and gene content profiles [4], SNV‐based
methods can indirectly profile the within‐species
gene content variation. However, for many species, it
has been shown that SNV haplotypes cannot capture
microbial genetic diversification resulting from
HGT [4]. Alternatively, the current pangenome‐based
method can infer the gene content of the dominant
strain in a metagenomic sample [35] but fails to provide
the abundance and gene contents of coexisting strains
within the sample. Establishing the linkage of compo-
sition and gene contents of coexisting within‐species
variants can provide crucial insights into microbial
adaptation and microbiome–host interactions, but is
inaccessible from currently available reference‐based
bioinformatics tools.

To meet the increasing needs of strain‐level
functional inference from metagenomics data, we
developed a novel method known as Strain‐level
Pangenome Decomposition Analysis (StrainPanDA)
to simultaneously reconstruct the composition and
gene contents of coexisting strains using the pangen-
ome coverage profile from metagenomic data
(Figure 1). We validated the performance of Strain-
PanDA with a comprehensive collection of synthetic
data sets and showed that StrainPanDA was able to
accurately infer strain composition and gene content
profiles from metagenomic data. To demonstrate
the practical use of StrainPanDA in human micro-
biome studies, we analyzed longitudinal gut micro-
biome samples of mother–infant pairs [36] and
patients treated with fecal microbiota transplantation
(FMT) [29, 37]. We found that StrainPanDA was able
to identify the association between strain‐specific
functions and microbial adaptation (or host pheno-
types), leading to novel biological insights at the
infraspecific level and testable hypotheses of molecu-
lar mechanisms.
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RESULTS

Decomposition of the pangenome coverage
profile to infer strain composition and
gene content

The pangenome coverage profile of a microbial species
from metagenomic data is composed of the gene contents
of all coexisting strains. If there are multiple metage-
nomic samples with varying strain compositions, in
principle it is possible to infer the composition of strains

within the sample as well as the gene contents of each
strain from the pangenome coverage profile [38].
Building on this intuition, the main algorithm of
StrainPanDA aims to decompose the gene family
abundance data matrix D into the product of two
matrices, the gene content profile matrix P, and the
strain composition matrix S (Figure 1A, see Methods sec-
tion for details). Here the pangenome coverage profile
from metagenomic data is represented by matrix D,
where Dij is the normalized count of gene family i in
metagenomic sample j. The gene contents of coexisting

(A)

(B)

FIGURE 1 Illustration of the StrainPanDA workflow. (A) The gene family abundance data matrix D is decomposed into the product of
two matrices P and S via nonnegative matrix factorization (Methods section). The gene content profile matrix P is a binary matrix that
denotes the presence/absence of gene families in each strain. The strain composition matrix S represents the relative abundance of
coexisting strains in each sample. In the illustrated example, the size of metagenomic samples S= 15 and the number of strains K= 6.
(B) The workflow of StrainPanDA analysis is performed in a species‐by‐species manner, including mapping metagenomic reads to the
pangenome database, strain decomposition, and functional annotation of gene family profiles. CAZy, Carbohydrate‐Active enZYmes; GF,
gene family; KEGG, Kyoto Encyclopedia of Genes and Genomes; StrainPanDA, Strain‐level Pangenome Decomposition Analysis; VFDB,
Virulence Factor Database.
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strains are represented by binary matrix P, where the
element Pij indicates the presence/absence of gene family
i in strain j. The composition of coexisting strains across
samples is represented by S, where Sij is the relative
abundance of strain i in sample j S S( 0 and = 1)ij i ij≥ .
In the implementation of StrainPanDA, the gene family
abundance matrix D is decomposed by nonnegative
matrix factorization (NMF) [39–41] to solve for matrices
P and S. This processing allows StrainPanDA to
simultaneously delineate the composition and gene
contents variation of coexisting strains.

The StrainPanDA software provides a fully auto-
mated workflow of strain analysis (Figure 1B), which
imports raw sequencing data from multiple metagenomic
samples, and performs reads mapping, strain decomposi-
tion, and downstream annotations (see Methods section
for details). To assist the interpretation of gene content
variation in strains, StrainPanDA incorporates functional
annotation from several databases, including but not
limited to Kyoto Encyclopedia of Genes and Genomes
(KEGG) [42], Carbohydrate‐Active enZYmes (CAZy)
[43], and Virulence Factor Database (VFDB) [44].

StrainPanDA provides accurate
predictions of strain composition and gene
family profiles in synthetic data

We validated the performance of StrainPanDA using
synthetic metagenomic data (Methods section). For
synthetic mixtures of Escherichia coli strains (ranging
from 2 to 8 strains, see Methods section), the strain
composition predicted by StrainPanDA was overall close
to the actual composition (Ground Truth; Figure 2A),
and its performance was better at a lower number of
coexisting strains (2 and 4 strains). For quantitative
comparison, we calculated the Jensen–Shannon diver-
gence (JSD) and Matthews Correlation Coefficient
(MCC) between the predicted and actual strain composi-
tion of simulated samples. JSD and MCC have been
widely used in the evaluation of strain analysis tools [28,
30, 33]. At a lower number of coexisting strains (2 and 4
strains), the predicted strain composition by StrainPan-
DA was better than the state‐of‐the‐art SNV‐based
methods, including StrainEst [30] and PStrain [33] (the
latter was modified based on ConStrains [28]). While the
results of StrainEst tended to include false positives at a
lower number of coexisting strains, its performance was
better at 6 and 8 strains. Furthermore, we generated
synthetic mixtures of E. coli strains with varying levels of
sequencing errors (Supporting Information Figure S2),
sequencing depths (Supporting Information Figure S3),
and different background noises (mixed with different

metagenomic data sets, Supporting Information
Table S1 and Figure S4). In comparison to SNV‐based
methods, the performance of StrainPanDA in predicting
strain composition was robust.

To evaluate the performance of StrainPanDA in different
bacterial species, we generated synthetic data for common
human gut bacterial species (Bifidobacterium longum,
Clostridium difficile, Enterococcus faecalis, Faecalibacterium
prausnitzii, and Prevotella copri; Supporting Information
Table S2, see Methods section). In comparison to other
methods, StrainPanDAmade the most accurate prediction of
strain composition across all species when strain number
was 4 (with JSD as 0.021± 0.006; Figure 2C).

While current SNV‐based methods can reconstruct
the composition of coexisting strains from metagenomic
samples, they could not directly provide the gene
contents of the predicted strains. Here we show that
StrainPanDA allows simultaneous reconstruction of
strain composition in each metagenomic sample and
the gene content variations among strains. In synthetic
mixtures of E. coli strains, the predicted gene family
profiles by StrainPanDA were close to the actual
profiles (Figure 2D, Supporting Information Figure S5;
precision = 0.91–0.96, recall = 0.87–0.96, for the four
strains in a synthetic mixture). In particular, we note
that StrainPanDA is able to infer the gene family profile
of strains not included in the prebuilt reference genome
database. The area under the Precision‐Recall Curve
(AUPRC) was over 0.95 for all E. coli strains, indicating
that StrainPanDA was able to reconstruct the gene
contents of microbial strains with high sensitivity and
precision (Supporting Information Figure S6).

We further evaluated the predicted gene family
profiles of the human gut bacterial species included in
the synthetic data. The AUPRC was on average above 0.9
and significantly better than random guesses (Figure 2E).
The predicted gene family profiles were robust to
sequencing errors, sequencing depths, and the back-
ground of real metagenomic data (Supporting Informa-
tion Table S4). Moreover, to demonstrate the ability of
StrainPanDA to identify strain‐specific genes, the patho-
genic E. coli outbreak strain O104 [45] was introduced in
a synthetic mixture with other E. coli strains (Supporting
Information Table S5). All outbreak‐related gene families
were successfully recovered by StrainPanDA (Supporting
Information Figure S7). Finally, the performance
of StrainPanDA and Pangenome‐based Phylogenomic
Analysis (PanPhlAn)/PanPhlAn3 in inferring the gene
content profiles were comparable (Supporting Informa-
tion Figure S8). We note that PanPhlAn and PanPhlAn3
can only report the gene content profile of the “dominant
strain” in a particular metagenomic sample (i.e., the
strain with the highest relative abundance); in contrast,
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(D) (E)

FIGURE 2 (See caption on next page)
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StrainPanDA can identify the gene content profiles of all
coexisting strains.

Taken together, our benchmarking results demon-
strate that StrainPanDA provides accurate predictions of
compositional profiles and gene contents of coexisting
strains from metagenomic samples. In the following
sections, we will demonstrate the application of Strain-
PanDA in two longitudinal metagenomic data sets to
elucidate the diversity of the gut microbiome at the
subspecies level.

Succession of B. longum subspecies in
infant gut microbiome is associated with
breastfeeding patterns and the selection of
nutrient utilization

The direct inference of both the population structure and
gene content variation at the strain level is crucial to
understanding the ecology of microbial communities.
Here we apply StrainPanDA to study the adaptation of
coexisting bacterial subspecies in the infant gut micro-
biomes. We analyzed a previously published data set
that includes gut metagenomic samples from ~100
mother–infant pairs (infants were sampled at three
time points: newborn, 4 months, and 12months) [36]
(Supporting Information Table S6). At the species level,
the authors found that the composition of the infant gut
microbiome had distinctive features at each sampled
time point, and the cessation of breastfeeding was clearly
associated with the maturation of an infant gut micro-
biome into an adult‐like microbiome [36].

We focused on the infraspecific analysis of B. longum,
which is known to play an important role in the
development of the infant gut microbiome [36, 46–50] and
was found to be enriched in 4‐month infant samples in this

study (Supporting Information Figure S9). Interestingly, we
discovered a clear pattern of succession in the subspecies
composition of B. longum over time, that is, a shift in the
dominant subspecies (Figure 3A). Among the three B.
longum subspecies predicted by StrainPanDA, B. longum
subspecies 2 was dominant in the gut microbiomes of
mothers. In the gut microbiomes of infants, B. longum
subspecies 3 was most prevalent for newborns, while
subspecies 1 transiently increased at the intermediate time
point (at 4months) and then was outcompeted by subspecies
2 (at 12months). On the basis of the diet history provided in
the original study, we further grouped infant samples into
two different categories: “discontinued breastfeeding” and
“continued breastfeeding” between successive time points
(Methods section). It was evident that the relative abundance
of B. longum subspecies 1 was enriched in infants that
continued breastfeeding (Figure 3B). By contrast, once
breastfeeding was discontinued, B. longum subspecies 1
was taken over by subspecies 2.

The association between B. longum subspecies compo-
sition and breastfeeding patterns suggests within‐species
competition in nutrient utilization functions (Figure 3C).
On the basis of functional annotations of KEGG [42] and
CAZy [43], we found clear variations in nutrient utilization
genes among the predicted B. longum subspecies. B. longum
subspecies 1 had unique gene families (marked in red,
Figure 3C) that are key enzymes related to human milk
oligosaccharide (HMO), including galactosidase, α‐L‐
fucosidase, sialidase, and their corresponding CAZy groups
(GH33, GH29, and GH95; Supporting Information
Figures S12 and S13 and Table S7). In addition, the
urease‐related gene families were only found in the gene
family profile of subspecies 1. Therefore, the unique
functional potential of B. longum subspecies 1 in utilizing
HMO and urea [51] from breast milk could confer a
competitive advantage under breastfeeding, consistent with

FIGURE 2 Validation of StrainPanDA using synthetic metagenomic data. (A) Comparison between the actual strain composition
(Ground Truth) and the strain composition predicted by StrainPanDA and existing tools (StrainEst and PStrain) in synthetic mixtures of
Escherichia coli strains (pWGS data set, 1× sequencing depth, see Methods section). The number of actual E. coli strains in the mixture
(n= 2, 4, 6, and 8) is shown in rows. Each stacked bar is one simulated sample. Strains are displayed by the order of sorted relative
abundance. If the number of predicted strains exceeds the number of actual strains, the extra strains are grouped into “Extras.” (B) Jensen–
Shannon Divergence (JSD) between the actual and predicted strain composition. No BG, No Background; BG1/BG2/BG3, synthetic data of
E. coli strains mixed with three different metagenomic data sets as background (WGSBG data set, 100‐fold background, see Methods
section). Each dot represents one simulated sample (n= 20). (C) JSD between the actual and predicted strain composition is evaluated for
different microbial species. Each dot represents one simulated sample (n= 24). Outputs not available are marked as “NA.” (D) The reference
and predicted gene family profiles of E. coli strains (the synthetic data used are the same as panel A). Each row is one gene family, and each
column is one strain. Hierarchical clustering is based on Euclidean distance. (E) The area under the Precision‐Recall Curve (AUPRC) for the
gene family profiles of coexisting strains is evaluated for different microbial species. Each dot represents the AUPRC of one strain (n= 4
strains). Brown dots represent random guesses of gene family profiles (see Methods section). p values from paired t test: *p< 0.05, **p< 0.01,
and ***p< 0.001. Bifidobacterium longum, Clostridium difficile, Enterococcus faecalis, Faecalibacterium prausnitzii, and Prevotella copri.
pWGS, pure whole genome sequencing; StrainPanDA, Strain‐level Pangenome Decomposition Analysis; WGSBG, whole genome
sequencing background.
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FIGURE 3 (See caption on next page)
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our observations of its transient dominance at 4months in
infant gut metagenomes.

Our finding is consistent with previous reports [52] on
HMO utilization genes in some B. longum strains as well as
observed changes in the frequency of B. longum subspecies
infantis after weaning [4, 46, 47, 53, 54]. The functional
profile of subspecies 1, in comparison to B. longum reference
genomes, suggests that it may correspond to the B. longum
subsp. infantis (Supporting Information Figure S14), which
has been isolated from infants and known to be associated
with breastfeeding [46, 55, 56].

Overall, we show that StrainPanDA is able to identify
associations between strain‐specific functions (via
reconstruction of gene contents) and adaptation (via
reconstruction of strain composition), leading to novel
biological insights and testable hypotheses about micro-
bial ecology at the subspecies level.

Analysis of post‐FMT gut metagenomes
reveals individualized subspecies profiles
and subspecies‐specific functions

FMT introduces bacterial strains from healthy donors into
recipients and has a profound impact on the structure and
function of the recipient's gut microbiota [57, 58]. Here we
apply StrainPanDA to analyze the metagenomic samples
from FMT recipients in a clinical trial to treat Crohn's
disease [37], including 17 patients (eight in the FMT group
and nine in the sham group) and multiple samples (4–8 time
points) for each patient. We analyzed the subspecies
composition of commonly observed bacterial species in the
human gut metagenome (Supporting Information Table S8).
Hierarchical clustering of the predicted subspecies composi-
tional profiles revealed strong individual signatures, which
remained stable throughout 24weeks (Figure 4A). The
pairwise distance in subspecies composition profiles among
samples of the same individual (sampled at multiple time
points, that is, the “intrasubject” group) was significantly

lower than the pairwise distance among samples of different
individuals (i.e., the “intersubject” group; Figure 4B,
p<10−15), similar to the pattern at the species level.
Furthermore, we found that the dissimilarity in subspecies
composition between paired FMT donors and recipients (i.e.,
the “donor–recipient” group) was significantly lower than
the “intersubject” group (p<0.001), indicating the engraft-
ment of donor strains and coexistence of donor and recipient
strains [37]. We noted that the engraftment of donor gut
bacteria was more obvious at the subspecies level (effect
size= 1.4) than at the species level (effect size= 0.78;
Figure 4B). Similarly, we applied StrainPanDA to analyze
an independent FMT data set of metagenomic samples from
patients with C. difficile infection [29]. We observed a clear
pattern of subspecies engraftment in post‐FMT gut meta-
genomes, consistent with SNV‐based strain analysis in the
original study [29] (Supporting Information Figure S15).
Overall, we show that StrainPanDA is able to delineate the
difference in subspecies composition among individuals
and track the transmission of strains.

To elucidate the potential role of the gut microbiome
in the maintenance of remission in Crohn's disease
patients, we further investigated the strain‐level genetic
signatures associated with post‐FMT clinical outcomes.
The original study showed that the enrichment of
Bacteroidetes species in patients relapsed after FMT [37].
We focused our analysis on Bacteroides ovatus, which was
found to be enriched in relapsed individuals (false
discovery rate [FDR]‐adjusted p= 0.2; Figure 4C–E).
Among the predicted subspecies of B. ovatus, the relative
abundance of subspecies 2 was positively correlated with
the abundance of species‐level B. ovatus in gut metagen-
omes (Spearman correlation= 0.64, and FDR‐adjusted
p< 10−6, Supporting Information Figure S16). We
found substantial gene content variation among different
B. ovatus subspecies (Figure 4D). Interestingly, we found
that B. ovatus subspecies 2 had more CAZy family genes
than others, indicating its functional potential to utilize
diverse carbon sources and potential competitive

FIGURE 3 Succession of Bifidobacterium longum subspecies in infant gut microbiome can be attributed to the selection of nutrient
utilization. (A) Ternary plots of the predicted composition of three subspecies of B. longum from mothers and infants of multiple time points
(newborns, 4 months, and 12months). Each dot represents one sample. (B) The shift in the relative abundance of B. longum subspecies
between successive time points. According to the breastfeeding status at the subsequent time point, infants are divided into two groups
(purple, discontinued breastfeeding, N= 86; red, continued breastfeeding, N= 71). ****p< 0.00005; ns, not significant; Student's t test. (C)
Gene family profiles of predicted B. longum subspecies. Gene families related to the metabolism of host glycans, urease, and CRISPR (KEGG
annotations) are selected for display. The color bar on the left indicates the class of gene clusters. Each row is a subclass of gene families and
unique gene families of subspecies 1 are marked in red. The color scale in the heatmap indicates the normalized gene family coverage in the
specific subclass (i.e., the fraction of detected gene families belonging to the subclass). HMO, human milk oligosaccharide; KEGG, Kyoto
Encyclopedia of Genes and Genomes; ABC, ATP‐binding cassette transporters; ATP, adenosine triphosphate; CRISPR, clustered regularly
interspaced short palindromic repeat; Gal, galactose; Gal‐NAc, N‐acetylgalactosamine; Glu‐NAc, N‐acetylglucosamine; GNB, galacto‐N‐
biose; LNB, lacto‐N‐biose; LNT, lacto‐N‐tetraose; PTS, phophotransferase system; ROK, repressor, open reading frame, kinase.
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advantages (Figure 4E). Thus, the strain‐specific metabolic
functions of B. ovatus subspecies 2 may explain its
dominance within the species (~20%) as well as its
positive correlation with species abundance (Figure 4C
and Supporting Information Figure S16). In addition,
B. ovatus subspecies 2 carried several strain‐specific

virulence factor genes (e.g., type IV secretion system and
cholesterol‐dependent cytolysin), which may contribute to
the positive association between B. ovatus and post‐FMT
relapse (Supporting Information Figure S16). For example,
cholesterol‐dependent cytolysin is a pore‐forming toxin
that can disrupt the host plasma membrane [59], whose

FIGURE 4 Analysis of post‐FMT gut metagenomes reveals individualized subspecies profiles and the association between subspecies‐
specific functions and phenotypes. (A) Hierarchical clustering of predicted subspecies compositional profiles of common gut species
(Supporting Information Table S8) reveals strong individual signatures. The subject IDs were collected from the original paper [37] and
marked by different colors. (B) The dissimilarity (Bray–Curtis dissimilarity) in subspecies composition and species composition between
samples. The pairs are classified into three groups for comparison: intersubject (samples from different individuals), intrasubject (samples
from the same individuals), and donor–recipient (FMT donor vs. the post‐FMT sample of the recipient). (C) The relationship between the
relative abundance of Bacteroides ovatus and its subspecies (normalized by centered log‐ratio transformation). Lines represent fitted linear
regression (shaded areas: 95% confidence interval). The density plots on the side show the distribution of the corresponding variables. At the
species level, B. ovatus is enriched in the relapse group. (D) The summary of pangenome information of predicted B. ovatus subspecies.
(E) Gene family profiles of Carbohydrate‐Active enZYmes (CAZy) in predicted B. ovatus subspecies. CAZy genes shared by all the subspecies
are not shown. FMT, fecal microbiota transplantation.
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integrity has been linked to inflammatory bowel disease
[60]. In addition, we noted that B. ovatus subspecies 4 was
more abundant in the remission group (Figure 4C,
FDR‐adjusted p< 10−5); whether this B. ovatus subspecies
contributes to post‐FMT remission remains to be validated
in future studies. Similarly, we performed StrainPanDA
analysis for Bacteroides vulgatus, which was also enriched
in relapsed individuals, and found clear functional
variation among its subspecies (Supporting Information
Figure S17).

In summary, we show that the linkage of strain
composition and gene contents provided by StrainPanDA
can greatly facilitate our understanding of microbial ecology
beyond the species level. For microbes closely related to host
health, this linkage helps formulate testable hypotheses on
the association between molecular functions (e.g., pathoge-
nicity) and clinical outcomes, which can be directly tested in
experiments of isolated microbial strains.

DISCUSSION

Here we report a novel method, StrainPanDA, to simulta-
neously profile the composition of coexisting strains and
their corresponding gene content from metagenomics data.
Our benchmarking results showed that StrainPanDA
provided accurate and robust predictions from synthetic
data. The predicted strain composition was better than or
comparable to state‐of‐the‐art methods; meanwhile, the
predicted gene content profile was close to the actual profile,
even for strains not included in the prebuilt reference
genome database. Furthermore, we applied StrainPanDA to
metagenomic data sets to resolve within‐species variation of
bacterial taxa of interest. For example, we found that the
composition of B. longum subspecies in infant gut micro-
biomes was associated with dietary shifts, and the unique
functional potential of certain B. longum subspecies in
utilizing nutrients from breast milk might confer a
competitive advantage. We demonstrated that the linkage
of strain abundance and gene contents could lead to direct
functional interpretations and testable hypotheses.

To study within‐species gene content variation,
current SNV‐based methods implicitly assume the associ-
ation between SNV haplotypes and gene content. How-
ever, many microbial genomes with high similarity in the
core genome have less than 70% of genes in common [3],
indicating that the indirect inference of gene content by
SNV‐based methods may be insufficient. In contrast,
StrainPanDA adopts the pangenome‐based approach to
directly infer the gene content of multiple coexisting
within‐species variants. Our current method relies on the
pangenome constructed from a collection of genomes
for a given microbial species, thus it does not account for

gene content transfers between species. To account for
interspecies gene transfer, one possible solution is to
include a pool of “putative mobile elements” to expand
the pangenome for each species. The prediction of
StrainPanDA relies on the pangenome database, but it is
not limited to the profiles of available reference genomes;
thus, StrainPanDA can also be used to identify novel
strains, as long as the relevant gene families are included
in the pangenome. Although we focused on the compari-
son of StrainPanDA to other reference‐based methods, it is
worth noting that complementary approaches based on
metagenome‐assembled genomes (MAGs) can identify
novel strains from metagenomic data. For example,
DESMAN [61] can provide the predicted draft genome
of each strain; other recently developed MAG‐based
methods include mixtureS [62], STRONG [63], and so
forth. In contrast to reference‐based methods, MAG‐based
methods can identify novel species and genes, yet the
quality of MAG will greatly affect the results. In addition,
the MAG‐based methods require much higher sequencing
depth than reference‐based methods, which prohibits
their application to species with low abundance. In
comparison, sequencing depth is not a limiting factor for
StrainPanDA (Supporting Information Figures S3 and S4).

StrainPanDA is most suitable for the analysis of multiple
metagenomic samples with shared within‐species variants,
such as longitudinal studies. While the analysis in this study
focused on the human gut microbiome, StrainPanDA is
broadly applicable to microbiomes in different environments,
as long as the pangenomes of the target species are available.
The performance of StrainPanDA, including the accuracy of
predicted strain composition and gene content profiles,
improves with sample size (Supporting Information
Figure S18) and sequencing depth (Supporting Information
Figure S3). To apply StrainPanDA on a typical metagenomic
data set, it would be desirable to have at least 10 samples and
the relative abundance of the species of interest to be above
1%. Due to the nature of StrainPanDA's algorithm, it may be
difficult to disentangle within‐species variants with genetic
mosaic or highly similar gene content profiles (i.e., lacking
strain‐unique features), thus StrainPanDA is most suitable
for analysis at the level of subspecies [3]. Finally, in
comparison to MAG‐based methods, StrainPanDA has
minimal requirements for computing resources (Supporting
Information Figure S19) and can be scaled to process
multiple species in parallel.

CONCLUSION

In summary, we show that StrainPanDA is able to
provide accurate profiling of strain composition and gene
content from metagenomic data. We envision that the
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application of StrainPanDA to the rapidly increasing
metagenomic data sets, especially in the context of
spatiotemporal characterization of microbiomes [64–67],
will help elucidate novel associations between molecular
functions and microbial/host phenotypes as well as
microbial ecology at the infraspecies level.

METHODS

Generation of pangenome database and
mapping of metagenomic data

The pangenome database of bacterial species analyzed in this
study was created following the steps recommended by
PanPhlAn (version 1.2.8) [35]. For each bacterial species,
genomes were downloaded from National Center for
Biotechnology Information (NCBI). Average Nucleotide
Identity (ANI) between genomes was calculated by mash
(version 1.1) [68]. Representative strains (pairwise ANI≤
99%) were selected and used as reference genomes for
pangenome construction. The annotated genes were ex-
tracted from the reference genomes and clustered into gene
families at 95% identity by usearch (v7) [69] to create the
pangenome database. Shotgun metagenomic data were
mapped to the pangenome database by PanPhlAn [35]
(version 1.2.8), which used Bowtie2 (version 2.4.1) [70] and
SAMtools (version 0.1.19) [71] to map and count the reads,
respectively. A gene family profile was generated by
summing up the read counts of genes (normalized by reads
per kilobase million [RPKM]) belonging to the same gene
family. The gene family profiles of all metagenomic samples
were grouped into a single gene family profile matrix. To
account for potential noise in reads mapping, the gene family
abundance was trimmed to 0 if the RPKM value was below
the cutoff (10, by default). After trimming, gene families
absent in all samples were removed from further analysis. In
addition, samples were filtered out if the number of gene
families detected was below 0.9 × gmin (gmin is the minimum
number of gene families found in all reference genomes).

StrainPanDA algorithm

The core algorithm of StrainPanDA decomposes the gene
family abundance data matrix (D) of the microbial species
of interest into the product of two matrices (Figure 1):

D P S= .∙

The gene family abundance data matrix D is an N × S
nonnegative matrix, where Dij is the normalized count of
gene family i in metagenomic sample j. The gene content

profile matrix P is an N × K binary matrix, where Pij is 1
if the gene family i is present in strain j and 0 otherwise.
The strain composition matrix S is a K× S matrix, where
Sij is the relative abundance of strain i in the sample

S S( 0 and = 1)ij i ij≥ . N is the number of gene families
in the pangenome of the microbial species of interest, S is
the number of metagenomic samples, and K is the
number of strains (i.e., factorization rank).

To estimate P and S, we approximate the solution
P′ and S′ using NMF, considering the nonnegative
constraints on both matrices (optimized using the
“snmf/r” algorithm implemented in the R package
“NMF” [40, 41], version 0.21.0). The addition of sparsity
constraints (i.e., regularization terms in the objective
function) ensures the uniqueness of factorization [41,
72]. The S′ matrix is then scaled into relative abun-
dances. We binarize the approximated P′ matrix,
following the assumption that the matrix elements
corresponding to “present” gene families should have
higher values than “absent” gene families, and the matrix
elements should have a tight distribution due to the
expectation that P is a binary matrix (see Supporting
Information Figure S1B). Briefly, we find the peak of the
probabilistic density curve (pmax) for each strain j, where
the number of matrix elements on the right of the peak
(Pij > pmax) is equal to the expected number of gene
families of the species of interest (i.e., averaged over all
reference genomes in the pangenome database). We then
cut the density curve at θ between the selected peak and
0 (θ= 0.5 × pmax, by default), where the gene families
with a weight greater than θ are considered as present.
The confidence score Cij for gene family i in sample j was
assigned to every gene family:







C

p θ

p θ
=

1, ′ ,

, ′ <
.′ij

ij

θ p

θ ij

− ij

≥

The confidence scores were used to rank
gene presence predictions for generating
the Precision‐Recall curves in the
benchmarking experiments

To select the proper number of strains (i.e., the rank
of NMF), we parsimoniously select the least number
of strains from a range of 1–12 (by default) satisfying
the following criteria: (1) The mean relative abun-
dance across all the samples of any strain should be
greater than τ2 (τ2 = 0.1 by default), (2) the number of
gene families of all strains should be greater than
τ3 × gmin (τ3 = 0.5 by default), gmin is the minimum
number of gene families found in all reference
genomes, and (3) the gene family profiles between a
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pair of strains should have Jaccard distance larger
than τ1 (τ1 = 0.1 by default). The program also
provides an option to accept a user‐specified number
of strains set. In this study, we did not set the number
of strains a priori in benchmarking and applications
of StrainPanDA.

Benchmarking StrainPanDA with
synthetic data

Synthetic data of E. coli strains

We generated four types of simulated sequencing reads:
(1) Error‐Free (ErrFree): pick random fragments from
the reference genome of E. coli by read simulator ART
[73] (version 2016.06.05; parameter: ‐ef ‐ss HS25 ‐l 150 ‐m
270 ‐s 27); (2) ART with sequencing errors (ARTErr): use
ART to add sequencing errors on top of ErrFree reads
(parameter: ‐ss HS25 ‐l 150 ‐m 270 ‐s 27); (3) pure whole
genome sequencing (pWGS): randomly draw reads from
the WGS data of selected strains by seq‐tk (https://
github.com/lh3/seqtk, version 1.3; default parame-
ter); and (4) pWGS data mixed with a real background
metagenomic data set (whole genome sequencing back-
ground [WGSBG]): Three different metagenomic data
sets (see Supporting Information Table S4; BG1, IBD;
BG2, FMT; BG3, MI; as shown in Figure 2) were used to
mix with the pWGS data of E. coli at different ratios (1‐,
5‐, 10‐, 25‐, and 100‐fold). Metagenomic samples were
analyzed by Kraken2 (version 2.1.1; database: miniKra-
ken2_v2_8GB_201904) to ensure a minimal abundance
of E. coli. Strains of E. coli with pairwise genome‐wide
ANI between 95%–99% were selected to represent
different subspecies (Supporting Information Table S3).
In each synthetic data set of mixed strains, 20 combina-
tions of strain composition were generated by Dirichlet
distribution (Supporting Information Table S2). All
synthetic data sets were generated by the SimStr pipeline
(https://github.com/xbiome/StrainPanDA/tree/main/
SimStr). For each strain, its genome size was considered
1× sequencing depth and used to calculate the number of
reads to generate. The minimum relative abundance (i.e.,
frequency) of a strain was set as 5% and as one unit. For
example, for E. coli synthetic data of 1× sequencing depth
that we refer to in this study, the data size of the strain
with 5% frequency was ~4.5 megabases (MB), while the
total depth of each sample in this data set was always
20×, and ~90MB in size (1× sequencing depth as a unit
and 20 units in total). To evaluate the effect of sample
size, 400 synthetic mixtures of four strains were
generated by Dirichlet distribution. The synthetic data
were separated into 10 runs (40 samples each) and

further downsampled to 20, 15, 10, and 5 samples in
each run.

Synthetic data of gut bacterial species

Synthetic data of sixspecies, including B. longum, C.
difficile, E. coli, E. faecalis, F. prausnitzii, and P. copri, were
generated separately (Sync6, pWGS at 5× sequencing
depth; Supporting Information Table S2). For each species,
the relative abundances of four strains (5%, 10%, 25%, and
60%) were permutated to generate 24 samples in total
(Supporting Information Table S2). All six species were in
the prebuilt databases of StrainPanDA and PStrain. Only
B. longum, E. coli, and E. faecalis were in the prebuilt
database of StrainEst, so the other species were excluded
in the comparison to StrainEst (Figure 2C).

Evaluation of predicted strain composition

StrainEst (v1.2.4 through docker) and PStrain (down-
loaded from GitHub on May 23, 2021) were run with
their prebuilt database and default parameters (StrainEst,
ftp://ftp.fmach.it/metagenomics/strainest/ref/; PStrain,
https://github.com/wshuai294/PStrain). The strain com-
positional profiles predicted by different methods were
evaluated and compared by SimStr. For the predicted strain
composition shown in Figure 2A (stacked bar plots), strains
with relative abundance below 0.01 were filtered and the
remaining strains were sorted by their relative abundance
(rescaled to 1) in decreasing order. After sorting, the
predicted strains in the lower tail exceeding the number of
simulated strains were grouped into “Extras.”

Two commonly used metrics were used to evaluate
the performance of predicted strain composition of
different methods:

1. JSD [74]: JSD between the predicted strain composi-
tion and actual strain composition is calculated by the
distance function in phyloseq [75] (R package) on
the sorted relative abundance (in decreasing order). If
the number of predicted strains is different from the
actual number of strains, zeros were appended to the
vector with a lower dimension. The JSD is symmetric
and is in the interval of [0, 1]. It reflects the
dissimilarity in compositional profiles of strains, that
is, JSD = 0 represents an exact prediction.

2. MCC [76]:

MCC=
TP × TN − FP × FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,
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where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false
positives, and FN is the number of false negatives. The
MCC ranges from −1 to 1, where 1 represents an exact
prediction, 0 represents a random prediction, and −1
represents total disagreement.

Owing to the lack of strain annotations from PStrain,
we only computed MCC for strain composition predicted by
StrainPanDA and StrainEst. For StrainEst, the predicted
strains were directly annotated by reference genomes. For
StrainPanDA, based on the predicted gene family profile,
the Jaccard distance ( A B A B A BJD( , ) = 1 − | | ÷ | |∩ ∪ )
between the predicted strain and all reference genomes was
calculated. The reference genome with the smallest Jaccard
distance to the predicted strain was used for annotation. If a
strain in the synthetic mixture is included in the prebuilt
database of reference genomes, the ID of the annotated
reference genome is directly compared with the actual
strain to determine if the predicted strain is a true positive.
If a strain in the synthetic mixture is not included in the
prebuilt database of reference genomes, we used the
phylogenetic tree to decide whether a predicted strain is a
true positive (Supporting Information Table S4). Briefly, we
generated a phylogenetic tree by parsnp [77] (version 1.5.1,
default parameter) including genomes of the strains used in
synthetic mixtures and all the reference genomes. If the
annotated reference genome of a predicted strain is within
the cutoff of phylogenetic distance (cutoff = 0.05 for E. coli,
corresponding to ANI ~ 99%) from an actual strain, it is
considered a true positive.

Evaluation of predicted gene family
profiles

For each microbial strain evaluated in benchmarking
data sets, ErrFree reads at 5× sequencing depth were
generated by ART simulator [73] (Sync‐Single data set)
based on its reference genome downloaded from NCBI.
The Sync‐Single data set contained three replicates for
each strain and was used to generate the actual gene
family profile of each strain by PanPhlAn and
PanPhlAn3‐v3.1 (default parameters for sensitive
mode). The gene families found in two or more
replicates were considered “present.” The actual gene
family profile (reference) of each strain was compared
with the predicted gene family profile (Figure 2D). The
Jaccard distances between microbial strains' predicted
gene family profiles and their reference profiles (or the
gene family profile of a randomly sampled reference
genome) were computed (Supporting Information -
Figure S5). The Precision‐Recall curve of gene family
profiles for each strain was generated by R package

PRROC [78] using the confidence scores to rank the
gene families predicted (Supporting Information
Figure S6). For random guesses, 1000 random gene
family profiles were generated by sampling N gene
families from the pangenome as “present,” where N is
the average number of gene families present in
reference genomes. To demonstrate the ability of
StrainPanDA to identify strain‐specific genes, the
pathogenic E. coli strain O104 (GCF_002983645) was
introduced in a synthetic data set of four strains (Sync
O104 data set, pWGS, 5× sequencing depth). The
outbreak‐related genes curated from Scholz et al. [35]
were used to evaluate StrainPanDA's gene content
prediction (Supporting Information Table S5). We also
compared the predicted gene family profiles from
StrainPanDA to the prediction from PanPhlAn and
PanPhlAn3 (Supporting Information Figure S8).

Runtime evaluation

The runtime of StrainPanDA was measured with the
time command in Linux. All these tests were run on a
workstation of Intel(R) Xeon(R) Gold 6238 CPU @
2.10 GHz and 16 GB memory. The runtime (seconds)
as a function of sample size was estimated by running
StrainPanDA with the downsampled synthetic mixture
of four E. coli strains (See Synthetic data of E. coli
strains in Methods section). The runtime (seconds) as
a function of strain number was calculated by running
StrainPanDA with the pWGS and 25‐fold WGSBG
data set.

Applications of StrainPanDA in
metagenomic data

Case study: Mother–infant gut metagenomes

All available samples of ERP005989 were downloaded
from EBI (eight samples failed, Supporting Information
Table S6). On the basis of the diet history, infants without
diet history were filtered. The rest of the 84 infants were
split into three different groups (B_F_F, discontinued
breastfeeding at 4 months; B_B_F, discontinued breast-
feeding at 12months; B_B_B, continued breastfeeding;
the F_B_M sample was excluded; Supporting Informa-
tion Table S6). Samples without enough coverage on B.
longum gene families were filtered by StrainPanDA at the
preprocessing step and excluded from the downstream
analysis. In the “continued breastfeeding” group, infants
that kept breastfeeding between successive time points
(i.e., between newborn and 4months, or between 4
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and 12months) were included. In the “discontinued
breastfeeding” group, infants who stopped breastfeeding
by 4 or 12months were included. For functional
interpretation of the subspecies, we grouped the gene
families annotated to the same KEGG (downloaded
September 1, 2021) ortholog or CAZy (downloaded July
31, 2019) family. To further analyze the key functions
related to breastfeeding, we curated a set of KEGG
orthologs from related references [51, 79]. All the KEGG
orthologs were further grouped into subclasses and
classes based on the literature [51, 79] (Supporting
Information Table S7). The gene family coverage was
calculated as the fraction of detected genes belonging to
the subclass (Figure 3C).

Case study: FMT donor–recipient metagenomes

Raw sequencing reads were downloaded from ENA
(Accession: PRJNA625520 for the study on Crohn's
disease [37], PRJEB23524 for the study on C. difficile
infection study [29]). For Crohn's disease data set, species
relative abundances were estimated using Kraken2 [18]
(version 2.0.8‐beta) with the miniKraken database
(v2_8GB_201904_UPDATE). To identify species associ-
ated with remission or relapse, the Wilcoxon rank‐sum
test was conducted to select differentially abundant
species using the mean relative abundances across
different time points for each subject (samples collected
before FMT or after relapse were discarded). The relative
abundances of subspecies were predicted by StrainPan-
DA and normalized by the centered‐log‐ratio transfor-
mation for calculating Spearman correlation with the
species abundances. For functional annotation of the
subspecies, virulence factors and CAZy annotations were
taken from the species‐specific databases constructed as
described above.

Functional annotation of gene families

To annotate the gene families by KEGG, gene family
representative sequences were mapped against KEGG
orthologs (release 2020‐07‐20) using usearch [69]
(v11.0.667; “‐ublast”). Alignments with identity >50%
and query coverage >50% are kept. To annotate the gene
families by CAZy, SeqKit [80] (0.15.0) was used to
translate the gene family centroids into six open reading
frames. The translated amino acid was used as the input
of run_dbcan [81] (2.0.11), which used DIAMOND [82]
(2.0.8), HMMer [83] (3.3.2), and Hotpep [84] (2.0.8) with
default parameters to predict the CAZy annotation. The
CAZy annotations were selected only if it was predicted

by at least two programs. If a gene family was assigned by
more than one CAZy annotation, only the first annota-
tion was used. To annotate virulence factors, gene family
centroids were mapped against the VFDB (April 9, 2021)
by DIAMOND [82] (2.0.8; blastp, query coverage >50%
and identity >50%).
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