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Abstract

Chinese herbal medicines (CHM) have been used to cure diseases for

thousands of years. However, the bioactive ingredients of CHM are

complex, and some CHM natural products cannot be directly absorbed by

humans and animals. Moreover, the contents of most bioactive ingredi-

ents in CHM are low, and some natural products are toxic to humans and

animals. Fermentation of CHM could enhance CHM bioactivities and

decrease the potential toxicities. The compositions and functions of the

microorganisms play essential roles in CHM fermentation, which can

affect the fermentation metabolites and pharmaceutical activities of the

final fermentation products. During CHM fermentation, probiotics not

only increase the contents of bioactive natural products, but also are

beneficial for the host gut microbiota and immune system. This review

summarizes the advantages of fermentation of CHM using probiotics,

fermentation techniques, probiotic strains, and future development for

CHM fermentation. Cutting‐edge microbiome and synthetic biology tools

would harness microbial cell factories to produce large amounts of

bioactive natural products derived from CHM with low‐cost, which would

help speed up modern CHM biomanufacturing.
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Highlights

• Fermentation of Chinese herbal medicines (CHM) using probiotics can

generate easily absorbed bioactive substances and reduce toxicities.

• Probiotic fermentation techniques for CHM are described and discussed.

• Microbiome, synthetic biology, and other cutting‐edge biotechnologies

improve probiotic fermentation of CHM.

INTRODUCTION

Traditional Chinese medicine is one of the oldest
healing systems, including herbal medicines, acupunc-
ture, moxibustion, massage, food therapy, and a few
other therapeutic strategies [1]. Chinese herbal medi-
cines (CHM) refer to natural medicines and their
processed products, and are mainly composed with
plant medicines (including root, stem, leaf, and fruit)
and mineral medicines [2]. Most CHM are derived from
medicinal plants, and they have been used to treat
human diseases in China and other Asian countries for
thousands of years [3]. CHM contain hundreds of
different components with diverse physiochemical
properties based on metabonomic analysis [4, 5]. The
artemisinin, one bioactive compound extracted from
Artemisia annua, has been used for the treatment of
malaria and other diseases [6, 7]. In the 3 years from
2018 to 2020, artemisinin‐based combination therapies
had been used to treat more than 454 million malaria
cases. Besides, some classical Chinese medicinal pre-
scriptions based on CHM have been applied for the
treatment of anxiety, insomnia, cognitive impairment,
and other diverse difficult diseases [8].

The contents of some bioactive ingredients in CHM
are lower than 1% [9–12], and some CHM components
are toxic to humans and animals [13, 14]. Microbial
fermentation is one of the traditional CHM processing
techniques, which reacts under proper temperature,
humidity, and moisture conditions [15, 16]. CHM
fermentation could increase pharmaceutical efficacy,
reduce toxicity, produce new chemical components, and
protect wild herb resources [15, 17]. The records of
fermented CHM and its products were available in “Qi
Min Yao Shu,” “Shen Nong Ben Cao Jing,” “Ben Cao
Gang Mu,” and “Pharmacopoeia of the People's Repub-
lic of China,” including Pinelliae Rhizoma Qu, Shen Qu,
Jian Shen Qu, Cai Yun Qu, Chen Xiang Qu, Semen
Sojae Praeparatum, Bai Yao Jian, and Pien Tze Huang
[15]. Moreover, some fermented CHM have been
applied in animal feeding, and they are demonstrated
to be beneficial for animal health. For example, Massa
Medicata Fermentata (Shenqu or Liushenqu) improves

intestinal homeostasis during piglets weaning [18], and
probiotics‐fermented herbal blend can improve the
growth performance of Salmonella pullorum‐infected
chicks [19].

Normally, chemical compositions and contents of
CHM were changed after microbial fermentation. Some
effective ingredients of CHM can only be transformed
and absorbed by the gut microbiota [17]. As the gut
microbiota composition of hosts and their drug absorp-
tion capacity are personalized [20], in vitro fermentation
could standardize CHM products and enhance the
clinical efficacy of CHM [21–23]. Actually, a few
fermented CHM have better pharmacological activity
than the nonfermented CHM [15, 16]. Probiotics are live
microorganisms that have demonstrated beneficial ef-
fects on human health [24]. Both probiotics and some
CHM are beneficial for human gut microbes [25],
intestinal epithelial barrier [26], and immune system
[27], thus, fermentation of some CHM with probiotics is
of great interest.

Some clinical trials on the use of probiotics‐fermented
CHM showed promising clinical effects. Fermented milk
containing Lactobacillus paracasei and the CHM Glycyr-
rhiza glabra is beneficial for patients infected with
Helicobacter pylori; the treatment group significantly
improved gastrointestinal symptoms and quality of life,
and no serious adverse events were observed [28]. An
open‐label, randomized, single‐dose, two‐period, and
crossover study of the main ginsenoside metabolites,
compound K, was conducted in 12 Japanese healthy
subjects, showing that the absorption of compound K
increased significantly after the intake of fermented
ginseng compared with nonfermented ginseng [29].
Additionally, ginseng fermented by L. paracasei A221
improved the first‐night effect in humans [30]. Fer-
mented red ginseng lowered postprandial glucose levels
in subjects with impaired fasting glucose or type 2
diabetes [31], and improved nasal congestion symptoms
and quality of life in patients with perennial allergic
rhinitis [32].

Though CHM fermentation has been applied to herbal
drug preparation, the underlying biotransformation
mechanisms of most CHM fermentation are unclear.
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Therefore, global and systematic analyses of CHM
fermentation are necessary. In this review, we focus on
the summary and discussion of current probiotic fermen-
tation of CHM, including the potential mechanisms of
CHM fermentation, the CHM fermentation advantages,
the probiotics used for CHM fermentation, and modern
microbial fermentation technologies. Moreover, future
microbiome strategies for CHM fermentation using
probiotics and the application of synthetic biology in the
production of CHM bioactive ingredients are discussed.

MECHANISMS OF CHM
FERMENTATION BY PROBIOTICS

Compared with traditional CHM processing methods,
fermentation of CHM with probiotics can improve CHM
bioactivity under mild processing conditions [33]. First,
some CHM natural products are difficult to absorb and
utilize in vivo. In the meanwhile, several hydrolases
produced by probiotics during CHM fermentation can
destroy plant cell walls and promote the release of bioactive
ingredients in CHM [34]. Streptococcus lactis could
efficiently degrade the cellulose, and the fermentation of
Astragalus with S. lactis increased the contents of crude
polysaccharides, total flavonoids, and total saponins in
Astragalus roots, stems, and leaves [35]. Secondly, most
herbal medicines are orally administered to humans, and
CHM components can be transformed by gut microbiota
before absorption [20, 36]. The enzymes secreted by gut
probiotics can hydrolyze and remove glycosyl groups from
CHM natural products, which increases their lipophilicity
and improves the absorption rate in the gastrointestinal
tract. After oral ingestion of liquorice, glycyrrhizin is
converted to glycyrrhizic acid, and subsequently converted
to glycyrrhetinic acid by gut microbiota [37]. In addition,
probiotic fermentation can reduce or degrade the toxicity of
some CHM [38].

Some effective natural products in CHM can be
acted as prebiotics, which promote the proliferation of
beneficial microorganisms in hosts [39]. The intake of yam
significantly changed mice' gut microbiota, and the numbers
of Bifidobacterium and Lactobacillus increased in mice [40].
Astragalus, Angelica, cowherb seed, Codonopsis, Licorice,
and ligustici wallichii could individually stimulate the
proliferation of probiotics, such as Bacillus subtilis, Lactoba-
cillus acidophilus and yeasts, in a dose‐related manner [41].
Both red ginseng and Semen Coicis promoted the growth of
Bifidobacterium and Lactobacillus in vitro, and improved the
gut microbiota and relieved the symptoms of ulcerative
colitis in vivo (Figure 1) [42]. Flos lonicerae has a significant
regulatory effect on gut dysbiosis of mice, which could
promote the recovery of gut microbiota dysbiosis [43]. Thus,

the synergistic effect of CHM fermented with probiotics
might enhance the effectiveness of CHM.

ADVANTAGES OF PROBIOTIC
FERMENTATION OF CHM

Promoting the release of effective
ingredients and improving the
pharmacological activities of CHM

The effective ingredients of CHM are mostly distributed
in the cytoplasm of root, stem, and leaf cells of plant
biomass. The plant cell wall structure is tight, and is
mainly composed of cellulose, hemicellulose, and lignin,
which hinders the release of bioactive natural products
and results in low absorption and utilization of CHM
bioactive natural products [44]. Probiotics can produce a
variety of hydrolytic enzymes, especially lignocellulases,
to degrade plant cell wall and promote the release of
bioactive natural products in CHM [45, 46] (Figure 1A,B).
These released bioactive natural products include flavo-
noids, glycosides, anthraquinones, terpenoids, alkaloids,
and organic acids (Table 1). Moreover, the lignocellulases
can help generate oligosaccharide prebiotics for the
gut microbiota of humans and animals (Figure 1C).
Therefore, probiotic fermentation can improve the
pharmacological activity of CHM [47].

After fermentation of CHM with the probiotics, such as
Lactobacillus casei, Enterococcus faecalis, and Candida
utilis, the contents of soluble total flavonoids, total
alkaloids, crude polysaccharides, and total saponins in the
fermented Chinese herbs of Semen vaccariae and Leonurus
artemisia increased by 55.14%, 127.28%, 55.42%, and
49.21%, respectively, compared with the natural herbs
[62]. After fermented by Lactobacillus pentosus, the
contents of quercetin and kaempferol in the extracts of
Lespedeza cuneata G. Don increased by 242.9% and 266.7%,
respectively, which improved potential antioxidative and
antiaging functions of the herb [63]. After fermentation
with Bifidobactericum breve strain CCRC 14061, the
contents of daidzein and genistein in Puerariae Radix
increased 785% and 1010%, respectively, which can
stimulate hyaluronic acid production in NHEK cells [64].
Fermenting Cordyceps militaris with Pediococcus pentosa-
ceus (GRC‐ON89A) enhanced phagocytic activity of RAW
264.7 cells and primary cultured murine macrophages; the
enhanced immune activity of C. militaris was attributed to
the increased content of β‐glucan, cordycepin, and short‐
chain fatty acids after fermentation [65]. The microbial
fermentation, especially probiotic fermentation, can signifi-
cantly increase the contents of bioactive natural products
and improve the pharmacological effects of CHM (Table 1).
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Reducing toxicities and side effects
of CHM

Some CHM have certain toxicities to humans and animals,
and direct oral intake of them would generate serious toxic
effects [66]. Probiotics can degrade or modify the toxic
components, thus, reduce the toxicities or side effects of
CHM [67, 68]. Conjugated anthraquinones are the main
components leading to severe diarrhea of rhubarb. Fermen-
tation of rhubarb with Kluyveromyces marxianus KM12
could convert conjugated anthraquinone to free anthraqui-
none, and the side effects of severe diarrhea generated by
rhubarb were alleviated [69]. Compared with the original
crude Croton tiglium, fermentation of C. tiglium with
Ganoderma lucidum and Beauveria bassiana could decrease
acute oral toxicity by about four times, and have no
inflammation effect and hemocytolysis [70]. Fermentation
of Tripterygium wilfordii with G. lucidum reduced the

hepatotoxicity of T. wilfordii, which was due to the decrease
of wilforlide after fermentation [71].

Generating new bioactive substances
and enhancing the bioavailability of CHM

Probiotic fermentation transforms CHM ingredients to
new bioactive compounds, and this might bring new
pharmacological characteristics to CHM (Figure 2).
Ginsenosides are the main physiologically bioactive
natural products of ginseng, and ginsenosides Rb1, Rb2,
Rc, Re, and Rg1 constitute more than 80% of the total
ginsenosides in Panax ginseng [72]. Some rare ginseno-
sides, such as F2 and Rd, are demonstrated to have high
bioavailability and bioactivity. However, their contents
in natural P. ginseng are extremely low, and some of
them, such as compound K (CK), are not available until

(A) (B) (C)

FIGURE 1 Lignocellulases and their functions in sealwort, ginseng, and other Chinese herbal medicine (CHM) fermentation. (A) The
lignocellulose might prevent the release of bioactive ingredients of CHM, and lignocellulases derived from probiotics or other microbes can
be used to degrade herb lignocellulose. (B) Lignocellulose hydrolysis releases bioactive ingredients in herbs, and leads to the generation of
oligosaccharides prebiotics. (C) Bioactive ingredients and oligosaccharides are beneficial for the gut microbiota of humans and animals.
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P. ginseng biomass is transformed in human body [72].
The probiotic, Bifidobacterium animalis subsp. lactis LT
19‐2, can effectively convert main ginsenosides Rb2 and
Rb3 in red ginseng extracts to rare ginsenosides of Rd,
Rh1, F2, and Rg3 (Figure 2C) [73]. Probiotic fermenta-
tion of red ginseng increased RAW 264.7 cells macro-
phage activity significantly and activated primary
immune cells, including splenic cells and bone
marrow‐derived macrophages, suggesting that fermen-
tation with B. animalis subsp. lactis LT 19‐2 can
improve the immunomodulatory function of red gin-
seng [73]. The probiotics‐fermented red ginseng signifi-
cantly increased Th1 and Treg cell differentiation,
which could activate macrophages in mice to alleviate
cyclophosphamide‐induced immunosuppression and
2,4,6‐trinitrobenzenesulfonic acid‐induced colitis [74].
The probiotics‐fermented herbal blend can enhance the
immune ability of chicks infected with S. pullorum [19].
In another study, fermentation of P. ginseng extracts
with B. lactis and Lactobacillus rhamnosus HN001
transformed ginsenosides of Rb1, Rc, and Rb2 to Rd
(Figure 2B,C) [75]. The probiotics fermentation or
enzymatic catalysis can generate bioactive rare ginseno-
sides (Figure 2). Fermentation of Dioscorea opposita
Thunb. with Saccharomyces boulardii generates a series
of novel low‐molecular‐weight polysaccharides, and
these polysaccharides are easy to digest and have
improved antioxidant activity and radioprotection
effects [76]. Probiotics enabled the production of novel
bioactive substances during fermentation. Further in-
sights into the functional mechanisms of probiotics‐
fermented CHM would pave the way to rational design
of proper fermentation strategies.

Reducing production costs and
protecting environments

Probiotic CHM fermentation can increase the contents of
effective ingredients and decrease the consumption of
CHM. Many natural CHM resources, such as wild Panax
and Glycyrrhiza resources, decreased in the past few
years [60, 77]. Rare ginsenosides have been used to
produce anticancer drugs, foods, and health care
products [78], and probiotic fermentation could reduce
the consumption of P. ginseng and the production costs of
rare ginsenosides.

During CHM processing, large amounts of CHM
residues were generated, direct abandonment or inciner-
ation of the residues would waste resources and generate
environmental pollutions [79]. Huazhenghuisheng oral
liquid (HOL), a clinical anti‐lung and liver cancer drug, is
produced with 35 kinds of CHM. Fermentation of HOL
residues with Aspergillus cristatus CB10002 could pro-
duce valuable compounds of anthraquinones [80]. The
Lactobacillus plantarum HM218749 was used to ferment
herb residues generated during the production of
Jianweixiaoshi tablets, and the fermentation supernatant
showed strong anti‐H. pylori activity in mice [81]. The
fermented residues of one CHM formula composed of
Pulsatilla, Rhizoma Coptidis, Cortex Phellodendri,
Cortex Fraxini, Rhizoma Atractylodis, Rhizoma Artacty-
lodis macrocephalae, and Granati Pericarpium, could
improve the antioxidant capacity and immunity in
weaned piglets, showing the fermented residues have
potentials to be used as substitutes for antibiotics in
piglets' feeding [82]. Probiotic fermentation can help
reduce CHM consumption and provide a green recycling

(A) (B) (C)

FIGURE 2 Biotransformation of ginsenosides to active rare ginsenosides using efficient enzymes or probiotics. (A) The herbs of Panax
ginseng are sterilized for probiotic fermentation, and the enzymes and probiotics are the main driving forces for CHM fermentation. (B)
Probiotic performance during ginseng fermentation can be optimized to improve bioactive ingredient yield. (C) Ginsenosides can be
transformed to the bioactive rare ginsenosides during CHM fermentation. CHM, Chinese herbal medicines.

6 of 19 | ZHANG ET AL.



strategy of herb residues, which would save natural CHM
sources, reduce production costs, and protect environments.

PROBIOTICS COMMONLY USED
IN CHM FERMENTATION

A total of 35 species or subspecies microbes have been
approved in China as edible probiotics [17], and some of
them have been used to ferment CHM (Table 2).
Lactobacillus is the most used probiotic genus in CHM

fermentation. Lactobacillus has been used to ferment
P. ginseng [21], Rhizoma A. macrocephalae [83], Anoec-
tochilus formosanus Hayata [84], L. cuneata G. Don [63],
Danshen [85], and some herb formulas, including
Soshiho‐tang [86], Jaeumganghwa‐tang [87], and
Hwangryun‐haedok‐tang [88]. Bifidobacterium species
have been used to ferment Radix Puerariae [64] and A.
formosanus Hayata [84]. Bacillus species have been used
to ferment Danshen [85], ginseng seed [89], and Rhizoma
A. macrocephalae (Table 2) [90]. Some fungi, especially
medicinal fungi, have been applied in CHM or herb

TABLE 2 List of probiotics, medicinal fungi, and a few industrial fungi used for Chinese herbal medicine fermentation.

Category Genus Species Herbs/Herb formulas used for fermentation References

Bacteria Lactobacillus L. plantarum Red ginseng; Jianweixiaoshi tablets; Soshiho‐tang;
Rhizoma Artactylodis macrocephalae

[57, 81, 83, 86]

L. acidophilus Anoectochilus formosanus Hayata; Jaeumganghwa‐tang [84, 87]

L. casei A. formosanus Hayata; Hwangryun‐haedok‐tang [84, 88]

L. paracasei Red ginseng [98]

L. pentosus Lespedeza cuneata G. Don [63]

L. rhamnosus Panax ginseng; Salvia miltiorrhiza Bunge [75, 85]

L. gasseri Ginseng seed [89]

L. fermentum P. ginseng [21]

Bifidobacterium B. breve Radix Puerariae [64]

B. longum A. formosanus Hayata; Red ginseng [84, 98]

B. lactis P. ginseng [75]

B. animalis subsp.
lactis

Red ginseng [73]

Bacillus B. subtilis S. miltiorrhiza Bunge; Ginseng seed; Deer antler; White
ginseng roots

[85, 89, 99, 100]

B. licheniformis Rhizoma A. macrocephalae [90]

Alcaligenes A. spiechaudii Rhodiola rosea; Lonicera japonica [101]

Lactococcus L. lactis P. ginseng [98]

Streptococcus S. thermophiles Cyclopia intermedia [102]

Leuconostoc L. mesenteroides R. coptidis [103]

Pediococcus P. pentosaceus Ginseng seed [89]

Fungi Saccharomyces S. cerevisiae Glycyrrhiza uralensis Fisch; Gegen Qinlian decoction [91, 92]

S. boulardii Dioscorea opposita Thunb [76]

Kluyveromyces K. marxianus Rhubarb [69]

Trichoderma T. reesei White ginseng roots [100]

Ganoderma G. lucidum Croton tiglium; Tripterygium wilfordii; Artemisia
capillaris leaves

[70, 71, 93]

Trametes T. robiniophila Murr Radix isatidis [104]

Grifola G. frondosa Rhizoma gastrodiae [105]

Coprinus C. comatus Sophora flavescens [106]
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formulas fermentation. Saccharomyces have been used to
ferment Glycyrrhiza uralensis Fisch [91] and Gegen
Qinlian decoction [92]; and G. lucidum has been used to
ferment Artemisia capillaris leaves [93] (Table 2). Cur-
rently, most CHM fermentation is still limited to a single‐
strain fermentation of single Chinese herb, and few
studies on fermentation of CHM with multiple probiotics
or synthetic microbiota were reported [19, 94, 95]. As
diverse probiotics or probiotic combinations are available
in nature, screening novel probiotic strains or building
synthetic probiotic microbiota might improve CHM
fermentation [96, 97].

PROBIOTIC FERMENTATION
TECHNIQUES FOR CHM

Traditional CHM fermentation technique is solid‐state
fermentation, which uses wild‐type microorganisms in
the environments to complete the fermentation process
without accurate control of ambient temperature and
humidity. The fermentation endpoint of solid‐state
fermentation is often determined by individual experi-
ence. Therefore, the efficacy, safety, and stability of
traditional fermented CHM are not stable, and this might
due to insufficient strain purity, uncontrollable fermen-
tation conditions, and lack of standardized fermentation
process and appropriate monitoring indicators. Com-
pared with traditional fermentation technique, modern
fermentation technology integrates microbial ecology,

fermentation engineering, and bioengineering, leading to
new CHM fermentation techniques [15]. On the basis
of fermentation forms, modern fermentation techniques
can be divided into solid fermentation, liquid fermenta-
tion, and bidirectional fermentation with medicinal fungi
(Figure 3).

Solid fermentation

Solid fermentation uses one or several probiotic strains to
ferment CHM biomass under low‐moisture or almost no
free‐water conditions [17]. The solid fermentation system
is naturally open, and sterilization of the substrates is not
necessary (Figure 3). Moreover, solid fermentation
generates small amounts of wastewater [107]. The cost
of solid fermentation is low, and the procedure is
relatively simple [108]. Solid fermentation has the
advantages of high conversion rate and high yield. The
solid fermentation converts 20%–30% CHM substrates to
novel products, while the transformation efficiency of
liquid fermentation is only about 5% [86]. However, solid
fermentation has some limitations, including frequent
contamination by miscellaneous bacteria due to the open
fermentation system, slow fermentation rate, lack of
scientific standards for fermentation endpoint and
quality control, and low automation level [109].

In addition to the traditional starter‐making technol-
ogy, a variety of novel solid probiotic fermentation
systems for CHM have been developed [110]. After solid

FIGURE 3 Different probiotic CHM fermentation strategies and their characterization. The liquid, solid, and bidirectional fermentation
were used for CHM fermentation. After extraction and purification, the final products of CHM fermentation could be used as drugs, fodders,
and foods. CHM, Chinese herbal medicines.

8 of 19 | ZHANG ET AL.



fermentation of ginseng seeds with Bacillus, Lactobacil-
lus, and Pediococcus strains, respectively, the contents of
total sugars, acidic polysaccharides, and phenolic com-
pounds were higher than that of the nonfermented
control [89]. Moreover, the antioxidant activity of
ginseng seeds improved after probiotic solid fermentation
[89]. Solid fermentation of Astragalus membranaceus
with L. plantarum and Enterococcus faecium greatly
improves the production of health‐promoting biological
compounds, including polysaccharides, total saponins,
and flavonoids [52].

Liquid fermentation

Liquid fermentation, also known as liquid‐submerged
fermentation, is derived from the antibiotics production
process [111]. Liquid fermentation technique inoculates
the activated microorganisms into the medium composed
with CHM extracts and proper microbial nutrients
(Figure 3). The fermentation process was implemented
under suitable temperature and pH value. Compared
with solid fermentation, liquid fermentation has the
advantages of high product stability, quantified produc-
tion conditions, and high automation level. Moreover,
liquid fermentation can be efficiently applied in large‐
scale CHM fermentation [15]. Liquid fermentation
requires strict sterilization environments, and the fer-
mentation process is high energy consumption; more-
over, the equipment is complex [15]. Thus, it is necessary
to optimize the liquid fermentation process, especially
fermentation devices and conditions, to improve active
ingredient conversion rate and reduce pollution.

Some probiotic liquid fermentation strategies for
CHM were applied. For example, liquid fermentation of
hydroponic ginseng with Lactococcus lactis KC24
increased the antioxidant activity of ginseng [98]. Red
ginseng fermented with L. paracasei and Bifidobacterium
longum could efficiently alleviate ovalbumin‐induced
inflammation in mice [58]. The hematopoietic activity
of deer antler increased after the liquid fermentation
with B. subtilis [99].

Bidirectional fermentation with medicinal
fungi

Bidirectional fermentation with medicinal fungi includes
liquid fermentation and solid fermentation; the former is
the combination of basic culture medium, CHM extracts,
and fungi in closed environment, while the latter is the
combination of CHM and fungi in open environments.
Bidirectional solid fermentation was established in the

1980s [112]. It is a new Chinese herbal fermentation
technique that CHM substrates are fermented by
medicinal fungi (Figure 3). During bidirectional fermen-
tation, CHM substrates provide the nutrients for medici-
nal fungi growth, and the fungal fermentation increases
the bioactive natural product composition of the CHM
substrates [17]. Bidirectional fermentation could produce
a large number of new bioactive fermentation metabo-
lites. Insight into the fermentation process and fungal
enzymatic systems would give clues to the bidirectional
fermentation mechanisms [113].

Fresh ginseng fermented with G. lucidum mycelium
in solid‐state culture could enhance its immunomodula-
tory activity [59]. The solid‐state bidirectional fermenta-
tion of A. capillaris leaves with G. lucidum enhanced the
anti‐inflammatory effects in a mice model with atopic
dermatitis [93]. Products of Trametes robiniophila Murr
fermented with Radix isatidis strongly inhibited the cell
proliferation of breast cancer cells [104]. Compared with
the control, when Ginkgo biloba leaves were fermented
with G. lucidum by bidirectional liquid fermentation, the
yield of polysaccharides, triterpenes, and total flavonoids
increased by 2.38, 1.96, and 2.10 times, respectively,
which leads to higher antioxidation activity of the
fermentation products [114]. However, the bidirectional
fermentation rate is slow, and the application of the
cutting‐edge genetic engineering tools is limited [115].

PROBIOTIC FERMENTATION
MODES FOR CHM
FERMENTATION

Single probiotic strain fermentation

Single probiotic strain fermentation is the most com-
monly used fermentation mode, and the probiotic
fermentation modifies the structure of specific sub-
strates by enzymatic catalysis [116, 117]. The strains of
Lactobacillus, Bifidobacterium, Bacillus, and some
medicinal fungi are often used for single‐strain CHM
fermentation. The metabolites of P. ginseng fermented
with Lactobacillus fermentum can treat antibiotic‐
associated diarrhea symptoms and colon inflammation
[21]. Moreover, the fermentation metabolites could
transfer the gut microbiota disturbances to healthy
state in rat [21]. Fermentation of Artemisia princeps
Pampanini with L. plantarum SN13T increased the
amounts of bioactive compounds of catechol and seco‐
tanapartholide C [50]. The fermentation of red ginseng
with B. animalis subsp. lactis LT 19‐2 isolated from the
feces of infants could enhance immunomodulatory
function of red ginseng [73]. Fermentation of Cynanchi
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atrati Radix with Lactobacillus increased the anti‐melanin
activity [118]. As single probiotic strain fermentation can
increase the performance of CHM, more probiotics might
be applied in future CHM fermentation.

Multispecies fermentation

Compared with single‐strain fermentation, multispecies
fermentation can provide diverse and redundant enzy-
matic systems. Multispecies fermentation has potential
to improve the utilization rate and increase bio-
transformation efficiency of CHM [17]. Synthetic micro-
biota with bacteria, fungi, or bacteria‐fungi has been used
for CHM fermentation. Salvia miltiorrhiza Bunge (Dan-
shen) fermented by L. rhamnosus (F‐B4‐1) and B. subtilis
Natto (F‐A7‐1) relieved dextran sulfate sodium‐induced
ulcerative colitis in mice more effectively than raw
Danshen [85]. Fermented white ginseng roots with B.
subtilis and Trichoderma reesei enhanced the bio-
transformation yield from ginsenosides to rare ginseno-
sides, for these two species have nonsynchronous cell
growth and different metabolic pathways [100]. The
coimmobilized edible Aspergillus niger and yeast pro-
duced 11‐fold resveratrol from polydatin in Polygonum
cuspidatum roots than that of the untreated sample [53].
At present, few multispecies fermentations of CHM are
available, which might due to the complex control and
modulation of multispecies fermentation. In the future,
optimization of multispecies fermentation process and
recovery of the underlying mechanisms are of great value
to CHM fermentation.

APPLICATION OF MICROBIOME
AND SYNTHETIC BIOLOGY
STRATEGIES FOR EFFICIENT
PROBIOTIC FERMENTATION
OF CHM

CHM fermentation has the advantages of increasing
pharmacological activity, reducing toxicity, and produc-
ing new bioactive ingredients. Understanding the under-
lying mechanisms of CHM fermentation lays the
foundation for the optimization of probiotic fermentation
[119]. High‐quality and safe fermentation strains are the
basis and keystone for CHM fermentation [120]. Cur-
rently, most probiotic strains used for CHM fermentation
derived from fermented dairy products and the animal
fecal microbiota [121, 122]. The probiotic types are very
limited, which are mainly assigned to Lactobacillus,
Bifidobacterium, Bacillus, and yeasts [123]. With the
development of synthetic microbiology technologies,

efficient and affordable high‐throughput sequencing
technologies help recover probiotics in diverse environ-
ments (Figure 4A,B) [124–126]. The microbiome strate-
gies have been applied to reveal the microbial variations
during the manufacturing process of Fu brick tea, the
spontaneous fermentation periods of light‐flavor Baijiu,
and the fermentation of Huafeng Dan Yaomu [127–129].
Though most microorganisms are uncultured, the new
developed culturomics provide tools to isolate and screen
proper probiotics for CHM fermentation (Figure 4C)
[130–132].

The efficient hydrolase and other CHM biomass
hydrolysis enzymes, especially lignocellulases, transform
CHM substrates to bioactive natural products and
generate/produce prebiotics from lignocellulose (Figures
1C and 4D,E). Thus, recovery and characterization of
efficient enzymes for CHM fermentation are essential. For
example, ginsenosides are believed to be the primary
beneficial components of ginseng, but its oral bio-
availability is low. Ginsenoside transformed by human
gut microbiota could increase biological activity and
bioavailability in vivo [133]. The biotransformation
mechanism of human gut microbiota is hydrolysis of
sugar moieties of ginsenosides by β‐glucosidase derived
from gut microbiota to produce rare ginsenosides
(Figure 2C) [133]. An A. niger XD101 strain could
transform Rb1 to easily absorbed ginsenoside CK by its
extracellular β‐glucosidase [134]. In addition, a variety of
probiotics with high β‐glucosidase activity have been
screened for P. ginseng fermentation, including B. lactis
Bi‐07 [75], L. rhamnosus HN001 [75], and Lentilactoba-
cillus buchneri URN103L [134]. Baicalin (baicalein 7‐O‐β‐
D‐glucuronide) is one of the major flavonoids in Scutellaria
baicalensis. Baicalein, the aglycone of baicalin, is easier to
be absorbed and more effective than baicalin, but the
content of baicalein in S. baicalensis is relatively low.
Lactobacillus brevis subsp. coagulans can convert baicalin
to baicalein using its β‐glucuronidase [135]. More than
90,000 genes/gene fragments encoding for carbohydrate‐
active enzymes were recovered from diverse cellulolytic
microorganisms [136]. Further enzymatic characterization
identified some xylanase and pectinolytic enzymes
[137, 138], suggesting that efficient hydrolase for CHM
fermentation could be recovered from natural environ-
ments using microbiome strategies.

Synthetic biology provides valuable tools for the
optimization of enzymes and strains with efficient CHM
fermentation ability. The protein engineering and meta-
bolic engineering based on machine learning can
improve hydrolase activities and other performances,
which would provide efficient engineered enzymes/
microbes for CHM fermentation (Figure 4C) [139]. The
CHM bioactive natural product yield can be improved by
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optimization of synthetic fermentation microbiota and
fermentation parameters (Figure 4D). Fermentation with
B. subtilis and T. reesei promoted biotransformation
efficiency of ginsenosides in white ginseng roots, and
the inoculation proportion of B. subtilis and T. reesei at
1:4 resulted in the highest rare ginsenoside yield [100].
Pretreatment of P. cuspidatum root with immobilized
β‐glucosidases could improve the conversion of polydatin
to resveratrol at proper fermentation environment [140].
Designing and building synthetic microbiota with wild‐
type probiotics, and optimizing fermentation parameters,
including pH value, temperature, and incubation time,

could improve the yield of bioactive natural products
generated by CHM fermentation [141] (Figure 4D).
Production of terpenoids, lipids and other plant natural
products by engineered yeasts has been achieved
[142–145], and synthetic biology could design and
reprogram of microorganisms to de novo produce various
bioactive natural products [139, 146–150]. In the future,
production of CHM bioactive natural products by
synthetic biology technology might be an alternative
strategy for probiotic CHM fermentation, and the
products can be further applied in foods, animal feed,
and other industries [151].

(C)

(D)

(A)

(E)

FIGURE 4 Application of microbiome and synthetic biology strategies for efficient probiotic CHM fermentation. (A) Environmental
microbiota, and human and animal gut microbiota are potential microbial sources for CHM fermentation. (B) Environmental microbiota
and gut microbiota can be analyzed by microbiome strategies, and screened for probiotics. (C) Efficient probiotics can be isolated, analyzed,
and screened for CHM fermentation. Moreover, the machine learning and metabolic engineering technologies can provide further efficient
enzymes or microbes for CHM fermentation. (D) Fermentation process can be optimized, which can lead to the production of bioactive
ingredients with high yield. (E) The obtained CHM fermentation products can be applied in foods, animal feeds, drugs, or other industries.
The active ingredients would produce beneficial effects for humans and animals. CHM, Chinese herbal medicines.
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FUTURE PERSPECTIVES

The contents of many bioactive ingredients in CHM are low,
and some CHM components are toxic. Probiotic fermenta-
tion of CHM can generate easily absorbed bioactive
compounds and reduce toxicities. Therefore, discovering
efficient and safe probiotic strains and developing novel
fermentation strategies for CHM fermentation are of great
interest. Insights into the generation pathway of active
ingredients could accelerate to screen efficient enzymes and
probiotics for CHM fermentation. Optimization of fermen-
tation equipments and parameters are necessary to obtain
high titer, rate, and yield of CHM bioactive products.
Although probiotics are safe for the human body, the
products of probiotic fermentation should accept a compre-
hensive and scientific safety evaluation. Thus, CHM
fermentation standards should be drafted and optimized
before application. Probiotic fermentation of CHM would
not only offer opportunities to recover underlying mecha-
nisms for bioactive natural product generation, but also
provide healthy products for humans and animals. In the
future, the development of synthetic biology would lead to
the production of CHM bioactive natural products with
efficient microbial cell factories.
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