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Abstract

Mass cadmium (Cd) poisoning is a serious health problem in many parts of the

world. We propose that dietary intervention can be a practical solution to this

problem. This study aimed to identify effective dietary products from traditional

Chinese herbs that can detoxify Cd. Five candidate herbal foods with detoxifying

potential were selected and subjected to mouse toxicological tests. The chemical

composition and dose–response effects of licorice on mouse hepatocytes were de-

termined. Licorice was selected for further tests to examine its effects on growth,

tissue Cd accumulation, and gut and liver fitness of mice. The expression of hepatic

metallothionein (Mt) genes was quantified in vitro in hepatocytes and in vivo in

liver tissues of mice. The results showed that licorice dietary intervention was

effective in reducing blood Cd by >50% within 1month. Cd was also substantially

reduced in the heart and lung tissues, but increased 2.1‐fold in the liver. The liver of

Cd poisoned mice improved with licorice intervention. Licorice treatment sig-

nificantly induced Cd accumulation and expression of theMt1 gene in hepatic cells

both in vitro and in vivo. Licorice intake substantially altered gut microbial

structure and enriched Parabacteroides distasonis. Omics results showed that

licorice improved gut metabolism, particularly the metabolic pathways for glycyr-

rhizin, bile acids, and amino acids. Dietary licorice effectively reduced mouse blood

Cd and had a profound impact on liver and gut fitness. We conclude that herbal

licorice can be used as a dietary intervention for mass Cd poisoning.
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Highlights

• We propose that dietary intervention can be a solution to mass Cd

poisoning.

• Dietary licorice effectively reduced mouse blood Cd by >50% within a

month.

• Licorice intake induced Cd accumulation and Mt1 expression in mice liver.

• Licorice intake modulated mice gut microbiota and metabolism.

• Overall dietary licorice substantially improved mice fitness under Cd stress.

INTRODUCTION

Excess exposure to heavy metals is inevitable in many
parts of the modern world [1]. Metal exposure can be
associated with environmental pollution of air, soil,
plants, and water. In China, official reports indicate that
19.4% of the total surveyed sites nationwide was con-
taminated, with cadmium (Cd) accounting for 7% of the
pollution [2]. Like soil pollution, heavy metal pollution of
the grains in the market was found to be around 14%
between 2005 and 2012 [3]. Heavy metal exposure to the
population is also of concern in other densely populated
countries. In Bangladesh, groundwater arsenic pollution
associated with high geological background levels led to
the largest mass poisoning in the world [4]. In hotspots of
heavy metal pollution, such as mining areas, mass poi-
soning by chronic or acute heavy metal exposure has
been reported for decades.

Recent large‐scale surveys reported that blood Cd/
lead poisoning occurred at a concerning rate among
children aged 0–6 years in Chinese cities, while in typical
mining areas, blood Cd poisoning can be much more
serious (Table S1). Pollution control is necessary for re-
ducing Cd exposure; cost‐efficient and effective measures
are urgently needed to reduce the impact of Cd on the
health of the population, particularly for the residents of
mining areas and waste water‐irrigated areas.

Dietary interventions are the most practical approach
for large‐scale health interventions [5]. In recent years,
dietary interventions have been used for the prevention
or treatment of Alzheimer's disease [6], endometriosis
[6], weight gain in childhood, acute lymphoblastic leu-
kemia [7], cardiovascular disease [8], depression [9], and
type 2 diabetes [10]. For example, tea extracts have been
preventing Alzheimer's disease by inhibiting acet-
ylcholinesterase activity [11]. More recently, mannose
was found to be a potential dietary treatment for acute

urinary tract infections in women [12] and osteoarthritis
[13], immunopathology [14], and tumors [15] in mice.

We propose that traditional Chinese dietary herbs
may be used for population‐level health interventions
associated with mass Cd poisoning. Relative to modern
pharmaceuticals, dietary herbs have low toxicity and side
effects, and they are inexpensive and easily accessible.
For example, licorice is the most widely used Chinese
herb, and it works with other medicines to regulate the
immune system [16]. Natural products in licorice are
mainly used for the treatment of chronic viral hepatitis; it
is also widely used for its sweet flavor as a food additive,
and it has been approved for use in cosmetics by the
United States Food and Drug Administration [17–19].
One major problem pertaining to the use of such herbs is
that Chinese medicine describes herbal pharmaceuticals
with a separate syntax specific to the traditional Chinese
medicine theory, which cannot be easily translated into
modern medical language.

The primary goal of this study was to test the short‐
term effects of common Chinese dietary herbs on mouse
blood Cd detoxification. Licorice water extract showed a
significant positive effect. Therefore, the composition of
licorice was determined and its effects on Cd toxicity
were examined in terms of Cd tissue concentrations,
histopathology, liver functions, and gut microbial di-
versity and metabolism.

RESULTS

Screening for the effects of dietary herbs
on acute Cd poison in mice

We tested licorice (LE group), onion (OE group), fennel (FE
group), ginger (GE group), and pepper (PE group) by ad-
ministering them to mice with acute Cd poison (Figure 1).
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During the 1‐month dietary intervention, each mouse ate
110.97–131.68 g of food, and the body weight increased
from 21.03 to 25.78 g, with a weight gain of −0.20 to 3.24 g
(Figure S1). No significant (P>0.05, analysis of variance
[ANOVA]) difference in food intake or body weight gain
was observed between the six groups. There was a decrease
in the average level of whole blood Cd content in licorice,
onion, fennel, and ginger groups, which was greatest at
54.4% (P<0.05, t test) for licorice compared with the con-
trol (48.41 ng/mL, Figure 1). These results demonstrated
that the dietary licorice was effective in alleviating acute Cd
poison in mice.

Detoxification effect of dietary licorice on
acute Cd poising in mice

To further assess the detoxification effect of dietary
licorice intervention, a mouse experiment was conducted
according to the procedure shown in Figure 2A. A
similar pattern of body weight gain was seen among the
four treatment groups within 4 weeks of feeding
(Figure 2B), with a weight gain range of 3.46%–7.39% on
the 28th day (Figure 2C). The body weight of mice ex-
posed to Cd was slightly increased, and there was no
significant difference between the two Cd‐free treatments
(P> 0.05, ANOVA, Figure 2C). Cd exposure significantly
increased the food intake by mice compared with the
Cd‐free treatments (P< 0.05, ANOVA), at a rate of
7.30%–13.32%, whereas no significant change in food
uptake was observed in the dietary licorice treatments
compared with the control (Figure 2D).

The study results showed that dietary licorice inter-
vention significantly reduced whole blood Cd con-
centration at Day 28, with a reduction of 52.8% (P< 0.05,
t test, Figure 2E). Meanwhile, licorice intervention sig-
nificantly reduced Cd concentration in the heart and
lung by 66.7% and 40.0% (P< 0.05, t test), respectively,
while it increased the Cd concentration in the liver and
kidney (Figure 2E). The Cd concentration in the liver of
the Cd + LE treatment group increased 2.1‐fold com-
pared with Cd treatment. The Cd content in the spleen
was below the detection limit (data not shown).

Liver histopathology morphologic observation re-
vealed a small amount of edema and no obvious necrosis
or inflammatory reaction in the control and LE treat-
ments (Figure 2F). Many hepatocytes had deep nuclear
pyknoses, weak cytoplasm staining, and cytoplasmic
cavities in the Cd group (Figure 2F). Liver tissue in the
Cd + LE group revealed uniform cytoplasm staining and
a small amount of edema, but no significant nuclear
pyknosis or deep staining in hepatocytes (Figure 2F). In
the kidneys, no significant difference was observed
among the four groups (Figure 2F). Overall, in-
traperitoneal injection (i.p.) Cd poisoning led to obvious
histopathologic morphologic damage, and LE interven-
tion substantially alleviated these changes.

Further tests were conducted to measure the enzyme
activity of aspartate aminotransferase (AST), alanine
aminotransferase (ALT), and Γ‐glutamyltranspeptidase
(Γ‐GT) in liver tissue, as well as the contents of total
bilirubin (TBIL), albumin (ALB), and total bile acid
(TBA). Dietary licorice intervention significantly de-
creased the AST and TBA levels in Cd‐poisoned mice

FIGURE 1 Experimental diagram of the screening of functional dietary herbs for cadmium (Cd) detoxification. Mice were randomly
separated into six groups and subjected to intraperitoneal injection of cadmium solution. One‐month dietary interventions were performed
by feeding the cadmium‐poisoned mice with herb extract‐supplemented food (FE, fennel extract; GE, ginger extract; LE, licorice extract;
OE, onion extract; PE, pepper extract). Blood Cd concentration (mean ± standard deviation (SD), n= 3, *P< 0.05, t test) was measured to
evaluate Cd detoxification by dietary interventions
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(P< 0.05, ANOVA), but it did not change the levels of
ALT, Γ‐GT, TBIL, and ALB (Figure S2). Acute Cd poising
significantly increased the level of TBA compared with
the control group, while no significant difference was
observed on the levels of AST, ALT, Γ‐GT, TBIL, and
ALB (P> 0.05, ANOVA, Figure S2).

Chemical composition of licorice water
extract

Licorice contains more than 20 triterpenes and 300 fla-
vonoids [19]. The high‐performance liquid chromato-
graphy (HPLC) analysis of licorice extract powder used
in this study detected peaks of liquiritin apioside
(HMDB0037491, Peak 1, at about 18–19min), neoli-
curoside (HMDB0040728, Peak 3, at about 32–33min),
isoliquiritin (HMDB0037318, Peak 4, at about
33–34min), and neoisoliquiritin (HMDB0037317, Peak 5,
at about 35–36min) (Figure 3A). The quantity of the two

main ingredients, glycyrrhizin (HMDB0029843) and
liquiritin (HMDB0029520), was 17.7 g/100 g and 5.2 g/
100 g, respectively (Figure S3).

Hepatocyte survival tests against acute Cd
toxicity and licorice intervention

The dose–response effect of acute Cd poisoning and licorice
on hepatic cell viability was examined using the mouse he-
patic cell line AML12, under laboratory conditions. The
minimum concentration showing the toxic effect of the
licorice extract powder on hepatic cell viability was around
12,800 μg/mL. Treatment with 25–6400 μg/mL of the licorice
extract led to an increase in cell viability of 10.42%–24.15%
(Figure 3B). Likewise, the effects of Cd (CdCl2) toxicity on
cell viability showed that cell viability began to decrease
(91.43% of the control) at a Cd concentration of 12.5 μM
(1.41 μg/mL) (Figure S4). On the basis of these results,
a concentration of 0.4 μM of Cd was used to pretreat hepatic

(A) (B) (C) (D)

(E) (F)

FIGURE 2 In vivo cadmium detoxification effects of dietary licorice. Mice were randomly separated into four groups (control, LE,
Cd, and Cd + LE) and subjected to different treatments following the schematic experimental design and timeline (A). NF, normal food;
NS, normal saline; i.p., intraperitoneal injection. (B–D) Body weight change (mean ± SD), body weight gain, and total food intake
(mean ± SD) were measured to evaluate survival situation after treatments (n= 8, different letters indicate P< 0.05, ANOVA).
(E) The cadmium concentration in the blood, heart, lung, liver, and kidney was determined (mean ± SD, n= 6, *P< 0.05, t test).
(F) Histopathological assessments of the liver and kidney were conducted, and representative images are shown. Scale bar represents
100 μm. ANOVA, analysis of variance; LE, licorice extract
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cells for 12 h to mimic acute Cd poising, followed by 400 μg/
mL treatment of licorice extract for 24 h in a fresh medium.
A significant reduction in Cd concentration in the medium
was observed (P<0.05, t test), indicating that licorice extract
enhanced Cd immobilization into hepatocytes (Figure 3C).
In contrast, Cd concentration in hepatocytes significantly
increased with licorice extract treatment (P<0.05, t test,
Figure 3D). Overall, the in vitro cell line experiment showed
results consistent with those of the in vivo experiment.

Metallothionein gene (Mt) expression

The accumulation levels of Mt genes mRNA in hepatocyte
cells and liver tissues under Cd stress were determined from
the mouse experiment described above. Both the main in-
gredients glycyrrhizin and its intestinal metabolite enoxolone
enriched the mRNA of Mt1, but not of Mt2; enoxolone

treatment significantly increased (P<0.05, ANOVA) the
mRNA level of Mt1 by 34.1% in hepatocyte cells (Figures 3E
and S4). Likewise, the mRNA level of Mt1 increased by
7.8‐fold by dietary licorice in liver tissue relative to the
control, while no significant effect was detected in the Cd
and LE treatment groups (Figure 3F).

Effect of dietary licorice on gut microbiota

The dietary invention may initially impact gut microbial
processes, and microbial metabolism is a key process in the
pharmaceutical effect of licorice. To evaluate the response of
mouse gut microbial processes to dietary licorice interven-
tion, fresh feces were collected for shotgun metagenomic
sequencing and metabolomics analysis.

The shotgun metagenomic sequencing generated
1.06 × 109 optimized clean reads after removing host

(A) (B)

(C) (D) (E) (F)

FIGURE 3 Fingerprint analysis of licorice extract and in vivo test of licorice and cadmium toxicity to hepatocyte. (A) HPLC fingerprints show
the main chemical components of the licorice extract. (B) Cell viability test using mouse cell line AML12 against a concentration gradient of licorice
extract. Cadmium‐exposed AML12 cells were treated with licorice extract for 24 h, and cadmium content (mean± SD, n=3, *P<0.05, t test)
of (C) medium and (D) cells were determined. (E) Cadmium‐exposed AML12 cells were treated with glycyrrhizin and enoxolone for 12 h, and the
expression level of the Mt1 gene (n=3) was determined using qPCR analysis. (F) Expression level of the Mt1 gene in liver tissue (n=6) was
determined using qPCR analysis after 4weeks of dietary licorice intervention. HPLC, high‐performance liquid chromatography; LE, licorice extract;
qPCR, quantitative polymerase chain reaction
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genomic DNA. A total of 1.60 × 1011 bp optimized data
were achieved, and 2.51 × 106 contigs with a mean N50 of
4,265 bp were obtained (Tables S2 and S3). Gene anno-
tation allowed the identification of 5.01 × 106 open
reading frames (ORFs) in 12 samples, and the non-
redundant gene set consisted of 7.54 × 105 genes, with a
mean length of 696 bp (Table S4). On the basis of the
taxonomic annotation of nonredundant genes, 6,602
bacterial species from 106 phyla were identified in this
study (Table S5).

Alpha diversity analysis showed that gut bacterial
diversity was significantly reduced by dietary licorice
intake, but not acute Cd i.p. exposure (Figure 4A and
Tables S5 and S6). Principal coordinates analysis (PCoA)
revealed that dietary licorice separated the gut

microbiota into two clusters: Cd and the control cluster;
and LE and Cd + LE cluster (Figure 4B). At the phylum
level, dietary licorice intake enriched Bacteroidetes and
reduced the abundance of Firmicutes; at the genus level,
dietary licorice intake mainly increased the abundance of
Parabacteroides, Prevotella, and unclassified Bacteroi-
dales, and reduced the abundance of Clostridium, and
unclassified Lachnospiraceae and Firmicutes (Figure S5).

Linear discriminant analysis (LDA) Effect Size results
showed that the outstanding gut microbes (LDA
score > 3.0) in the Cd + LE treatment included Porphyr-
omonadaceae, Parabacteroides, and two unclassified
Bacteroidales, while the typical gut microbes in Cd
treatment were Oscillospiraceae and Oscillibacter
(Figure 4C). These results were similar to those obtained

(A) (B) (C)

(D) (E)

(F)

FIGURE 4 Dietary licorice altered gut microbial composition and function in cadmium‐poisoned mice. (A) Alpha diversity of the gut
microbiota in the four treatments as determined using the Shannon index. (B) Principal component analysis of gut metagenomic species
profiles among the four treatments. (C) Differentially abundant gut microbial genus between the Cd and Cd + LE treatments through Linear
Discriminant Analysis (LDA) Effect Size determination with LDA value > 3.0. (D) Principal differentially abundant gut microbial species
between the Cd and Cd + LE treatments through screening the overlaps among microbiota annotated to species, top 500 abundant microbes,
and differentially abundant gut microorganisms between the Cd and Cd + LE treatments; abundance of the 18 selected species in the Cd and
Cd + LE treatment groups was visualized using a heatmap. (E) LDA for KEGG metabolic pathways in the Cd and Cd + LE treatment groups.
(F) Differentially abundant carbohydrate‐active enzyme (CAZy) genes between the Cd and Cd + LE treatment groups annotated by the
CAZy database. KEGG, Kyoto Encyclopedia of Genes and Genomes; LE, licorice extract
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when the control was compared with LE treatment
(Figure S6). Cd treatment did not lead to a substantial
change in gut microbial composition as compared with
the control (Figure S7). A total of 18 key well‐annotated
species were selected in the overlap species set
(Figure 4D). Dietary licorice primarily enriched Para-
bacteroides species, among which Parabacteroides
distasonis was the most abundant (Figure 4D).

LDA for Kyoto Encyclopedia of Genes and Genomes
(KEGG) metabolic pathways showed that dietary licorice
principally enriched 11 KEGG metabolic pathways
(P< 0.05), including porphyrin metabolism, amino
acid metabolism (arginine‐, proline‐, cysteine‐, and
methionine‐related pathways), antibiotic metabolism
(neomycin‐, kanamycin‐, gentamicin‐, and streptomycin‐
related pathways), and bile acid metabolism (Figure 4E).
The distinct KEGG metabolic pathways of Cd treatment
were methane metabolism, selenocompound metabo-
lism, nitrotoluene degradation, polyketide sugar unit
biosynthesis, and biosynthesis of vancomycin group
antibiotics (Figure 4E).

The differentially abundant carbohydrate‐active en-
zyme (CAZy) genes annotated by the CAZy database
were further analyzed. The class most regulated by
dietary licorice was glycoside hydrolases (GH), in which
GH92, GH73, and GH78 showed a significant increase in
abundance (Figure 4F). GH15 and GH30, which include
glucosidase and glucuronidase, showed a 3.43‐ and 3.72‐
fold increase in abundance, respectively. There were
10 families, 9 families, 8 families, 5 families, and 1 family
showing significantly differential abundance in the
polysaccharide lyases (PL), carbohydrate‐binding mod-
ules (CBM), glycosyl transferases (GT), carbohydrate
esterases (CE), and auxiliary activities (AA) families,
respectively (Figure S8).

Effect of dietary licorice on gut
metabolites

Metagenomic analysis showed that the gut microbial
community and its metabolic function were changed
dramatically, driven by dietary licorice. To investigate
whether those changes influenced intestinal metabolism,
fresh feces were subjected to metabolomics analysis.

Liquid chromatography–mass spectrometry (LC‐MS)
label‐free metabolomics analysis identified 12,430 posi-
tive ions and 11,750 negative ions, among which 636
were identified based on their molecular weight and 547
were annotated by human metabolome database
(HMDB; Table S7). Partial least‐squares discriminant
analysis (PLS‐DA) to both positive and negative ion
showed that dietary licorice intervention had significant

impacts on metabolites in mouse feces, compared with
licorice‐free treatments; in contrast, slight metabolite
composition changes were observed in the feces of mice
exposed to Cd compared with the Cd‐free treatments
(Figure 5A,B), which was consistent with the PCoA re-
sult of the gut metagenome. Further, a total of 235 sig-
nificantly differential metabolites were obtained between
the Cd and Cd + LE treatments, among which 176 were
successfully annotated by HMDB (Figure 5C). Terpe-
noids, including monoterpenes, diterpenes, and tri-
terpenes (32), accounted for the largest proportion of the
235 differential metabolites (Figure 5C). Additionally,
flavonoids and quinones were also observed in the 235
differential metabolites (Figure 5C). The categories of
amino acids (14), fatty acids (13), lineolic acids (10),
terpene lactones (6), glycerophosphoethanolamines (6),
bile acids and derivatives (6), and eicosanoids (6) were
also among the top differential metabolites (Figure 5C).

Furthermore, the above‐mentioned 18 key differential
gut microbial species correlated with the top 50 abundant
differential metabolites. Among the 50 metabolites, several
significant correlations (P<0.05) were detected (Figure 5D).
In general, two clusters of metabolites showed significant
correlations with almost all 18 selected microbial species, but
with a contrasting pattern of negative/positive correlations.
One cluster included five licorice‐derived triterpenes
(Corosin, Theasapogenol E, ENOXOLONE, Propapyriogenin
A2, and Ganoderic acid beta) and three ethanolamine
phosphates (PE [16:0/0:0], LysoPE [16:0/0:0], and PE [14:0/
0:0]) (Figure 5D). Another cluster included corchorifatty acid
D, 9,10,13‐TriHOME, rollinecin A, 2‐indolecarboxylic acid,
D‐pipecolic acid, cinnzeylanol, 3‐hydroxydodecanedioic acid,
suberic acid, and 7α‐hydroxydehydroepiandrosterone
(7α‐OH‐DHEA) (Figure 5D). L‐tyrosine, which is a poten-
tial biomarker for long‐term exposure to environmental Cd
[20,21], showed significantly negative correlations with
almost all the 11 enriched microbial species.

DISCUSSION

Cadmium‐detoxifying effects of dietary
licorice

The dietary herbs selected in this study are commonly
used as foods or flavors in China and have been used
as herbal medicines since ancient times. Licorice,
onion, and ginger are generally used for “Jie Du,”
which literately means “detoxification” (“Pharmaco-
poeia of the People's Republic of China” and “Chinese
Materia Medica”). Only licorice showed significant
Cd‐detoxifying effects in mice within 1 month
(Figure 1). From a viewpoint of modern medicine,
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“Jie Du” is a broad concept that covers detoxification
of toxic substances, such as venom and phytotoxins,
as well as alleviation of a variety of inflammatory
diseases, such as sore throat, fever, and oral ulcers.
Our results indicate that traditional “Jie Du” herbs
are not equally effective in alleviating mouse Cd
toxicity, and we thus suggest that the traditional
concept of “Jie Du” cannot be simply used for metal
detoxification in modern medicine. A number of
studies have demonstrated that licorice showed
pharmacological effects in various hepatic diseases
[18,22–26] and heavy metal poisoning [27]. However,
this is the first study to investigate its effects on Cd
elimination from multiple tissues of experimental
mice. Cd bioaccumulation in tissues of mice is dose‐
dependent, and excess Cd exposure may lead to rapid
overload in these tissues [28,29]. In this study, we

used i.p. Cd exposure for rapid generation of Cd‐
poisoned mouse models, which is an efficient ap-
proach for toxicological studies [30]. The Cd dose was
selected based on literature research and pilot ex-
periment, which was comparable to the ones used in
previous studies and was able to cause moderate
toxicity, with no obvious tissue adhesion in the liver
or significant reduction in body weight or food intake
(results not shown). In mammals, blood flow and
circulation centers in the substance interchange and
nutrient delivery play an important role in Cd trans-
port and redistribution among different tissues [28].
Several studies have verified the strong positive cor-
relation between blood Cd content and body Cd bur-
den [31–33]. Thus, blood Cd content is a reasonable
indicator of the level of Cd toxicity. Using blood Cd as
an indicator, dietary licorice was the only one among

(A) (B) (C)

(D)

FIGURE 5 Metabolite variation between Cd and Cd + LE groups, and the correlation between gut metabolites and microbes that
discriminated the Cd + LE group from the Cd group. Partial least‐squares discriminant analysis (PLS‐DA) of positive (A) and negative
(B) ion metabolites. (C) Differentially abundant metabolites between the Cd group and the Cd + LE group. (D) Correlation between the
18 key differentially abundant microbial species and top 50 differentially abundant metabolites in the Cd and Cd + LE groups. Positive
correlation is displayed in red, while negative is marked with blue color. *P< 0.05, **P< 0.01, and ***P< 0.001. LE, licorice extract
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the five tested herbs that significantly reduced blood
Cd content within 1 month (Figure 1).

We found that dietary licorice promoted Cd im-
mobilization in the liver, which may be responsible
for Cd elimination in the blood, heart, and lung. Studies
over the past decades have reported that the main Cd
reservoirs in the body are the liver and kidney; the ma-
jority of Cd ions were first captured by MTs to form Cd‐
MT complexes in hepatocytes [28]. A small amount of
Cd‐MT can be released into the blood from the liver, and
slowly to the kidneys, where Cd is eliminated mainly in
the urine [28]. Therefore, Cd accumulation in the liver
and kidney is indispensable in mouse Cd detoxification
in vivo. Our mouse experiments showed that dietary li-
corice increased Cd accumulation in the liver and kidney
(Figure 2), and our in vitro results demonstrated that
licorice extract maintained Cd immobilization in hepa-
tocytes (Figure 3). In parallel, the Mt1 gene was sub-
stantially induced by licorice extract, particularly
enoxolone (Figure 3). The significant effect of enoxolone
on Mt gene induction in the mouse liver is consistent
with previous findings that the pharmaceutical effect of
licorice relies on its metabolism by gut microbes from
glycyrrhizin to enoxolone [34,35]. Evidence from histo-
pathological imaging supports the idea that the dose of
licorice extract used in this study did not cause sub-
stantial extra damage to the liver under i.p. Cd poisoning
(Figure 2), although moderate negative impacts of licor-
ice on health have been reported in recent years [36]. In
fact, licorice extract mitigated the Cd‐induced changes of
ATS and TBA indices (Figure S2), without affecting the
food intake and body weight of mice (Figure 2). Taken
together, these results suggest beneficial effects of dietary
licorice on mouse fitness after Cd exposure.

Dietary licorice modulates mouse gut
microbiota

The pharmacological components of licorice include tri-
terpenes, flavonoids, as well as various polysaccharides
[19]. HPLC analysis showed that the commonly known
components of licorice were detected in the aqueous
extract used in the current study (Figure 3), and glycyr-
rhizin had the highest abundance. Glycyrrhizin is known
to have pharmacological effects mainly after being con-
verted by gut microflora to enoxolone [34,35], which was
identified with high abundance in the fecal metabolome
(Figure 5). In recent years, gut microbiota was found to
play important roles in the host metabolism of herbal
components [37], including the microbial deglycosyla-
tion of saponins [38]. Indeed, we observed significant
increases in the abundance of several GH families in the

metagenomic assemblages, including GH15 and GH30
(Figure S2), which may contribute to the deglycosylation
of glycyrrhizin. Significant changes in the abundance of
other CAZy families were also observed (Figure S8).
Furthermore, the abundance of key enriched gut bacteria
was positively correlated with five triterpenoids derived
from licorice (Figure 5D). This suggests that mouse gut
microbiota may have a substantial impact on the meta-
bolism and pharmaceutical effects of dietary licorice.

Consistent with previous studies, dietary licorice
showed profound effects on the gut microbial community
structure and metabolism (Figures 4 and 5). Unexpectedly,
the use of Cd alone did not cause a significant shift in the
gut microbial structure or fecal metabolome (Figures 4, S4,
and S6), whereas obvious toxicological effects were
induced by Cd exposure in terms of liver histopathological
changes. Several studies have suggested that gut micro-
biota is sensitive to Cd exposure through administration
and oral intake [30]. The relatively low dosage of Cd
(0.3mg/kg) may partly account for the little effect on
mouse gut microbial community structure. Nonetheless,
Lactobacillaceae and Lactobacillus, many of which are
generally believed to be associated with health [39–41],
were suppressed by Cd poisoning compared with the
control (Figure S7). In companion with a reduced diversity
induced by dietary licorice (Figure 4A), some prominent
changes in the gut microbial community structure, which
may have beneficial effects on mouse health, were also
observed. These changes included the enrichment of
Bacteroides and Parabacteroides genera [42–45], particu-
larly P. distasonis (Figure 3C). P. distasonis showed a ne-
gative correlation with obesity, nonalcoholic fatty liver
disease, diabetes, inflammatory bowel disease, and mul-
tiple sclerosis [44,46–50]. Another bacterium, Bacteroides
gordonii, was enriched by the dietary licorice and has been
reported to be negatively correlated with obesity and
rheumatoid arthritis [51,52]. Nevertheless, it is still un-
clear whether the microbiome changes induced by licorice
intake are a common health effect of licorice, though the
current results indicate that dietary licorice may ded-
icatedly reduce blood Cd and alleviate physical damages of
Cd to the host.

Dietary licorice fine tunes the mouse
intestinal metabolism

Metabolomics evidence supports the beneficial effects of
dietary licorice on mouse fitness. Fecal metabolites
showed a strong modulation by dietary licorice, but not
i.p. Cd exposure (Figure 5A,B), which was consistent
with the results of the metagenomic analysis. Several
metabolites (e.g., L‐glutamine, L‐tyrosine, and xanthine),
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whose abundance was significantly reduced in the Cd +
LE treatment group (Figure 6A), have been identified as
potential biomarkers for the long‐term exposure of en-
vironmental Cd [20,21]. A significant negative correla-
tion was observed between 7α‐OH‐DHEA, D‐pipecolic
acid, and 3‐hydroxydodecanedioic acid and the key en-
riched gut germs (Figure 5D), which may be associated
with chronic inflammation, chronic liver disease, and
peroxisomal disorders [53–58]. Considering this evi-
dence, we conclude that dietary licorice intervention had
a positive effect on mouse fitness under Cd stress, in
terms of Cd elimination from blood, lung, and heart, as
well as liver functions, liver histopathological alleviation,
gut microbial composition, and fecal metabolite profiles.

The high‐throughput annotation of gut metagenomes
and metabolomes enables the integration of gut micro-
bial metabolic pathways in response to Cd exposure and
dietary licorice intervention. Some prominent metabolic
pathways were detected, including those of bile acids,
amino acid, fatty acids, lineolic acids, glyceropho-
sphoethanolamines, and eicosanoids (Figure 5C).
Notably, 14 bile acids and derivatives were identified in
the metabolomes (Figure 6B), of which four were
found to be responsive to the licorice intervention.
Two conjugated bile acids, tauroursodeoxycholic acid
(TUDCA) and tauro‐β‐muricholic acid (T‐β‐MCA), were
actively metabolized to secondary bile acids, typically
12‐ketodeoxycholic acid (12‐keto‐DCA) and deoxycholic
acid (DCA), possibly via the cholate deconjugation gene
bsh (K01442), in the Cd + LE treatment group. The en-
richment of Parabacteroides and Bacteroides species
(Figure 4C,D), which possess bile acids metabolic activ-
ities [44,59,60], in the Cd + LE group may partly account
for these changes. Unconjugated bile acids were gen-
erally believed to be potent activators of the TGR5 sig-
naling pathway [59]. TGR5 regulates energy metabolism
and induces the differentiation of enteroendocrine cells
[59–62]. TUDCA and T‐β‐MCA, antagonists of the far-
nesoid X receptor (FXR) signaling pathway [63–68],
showed downregulation in abundance, implying the
regulation of the FXR pathway and bile acids synthesis in
the liver. FXR functions as a regulator of bile acid

synthesis and plays a positive role in inflammation and
immunity in the liver and gastrointestinal tract [59–61].
Indeed, the contents of TBAs in the liver were reduced by
the dietary licorice (Figure S2F). We speculate that the
modulation of bile acid metabolism may be an important
effect of the dietary licorice intervention and may have a
profound impact on mouse fitness under Cd stress.

Amino acid metabolism was also affected by licorice
intake (Figure 6C,D). Because no changes in food intake
were observed between the Cd group and the Cd + LE
group (Figure 2D), it is possible that dietary licorice
promoted the fermentation of the amino acids, such as
tyrosine and glutamate, into short‐chain fatty acids. We
detected a variety of enzyme‐coding genes for amino
acid metabolism, particularly arg (K01476) and glnA
(K01915), which were enriched in the Cd + LE group
(Figure 6D). In addition to bile acid and amino acid
metabolism, many other metabolic pathways were also
affected by licorice treatment (Figure S9). The associa-
tions of most pathways with mouse fitness under Cd
stress remain to be explored.

Dietary licorice is effective in improving mouse fit-
ness under Cd stress (Figure 7). Licorice has great po-
tential to be used for dietary intervention for mass Cd
poisoning.

METHODS

Experimental design

We searched classic Chinese herbal books and identified
five dietary herbs, namely, Glycyrrhiza uralensis Fisch.
(Licorice, L), Allium cepa L. (Onion, O), Zingiber offici-
nale Roscoe (Ginger, G), Zanthoxylum bungeanum
Maxim. (Sichuan pepper, P), and Foeniculum vuLgare
Mill. (Fennel, F), which have been used as medicinal
herbs for generic detoxification since ancient times. They
were subjected to animal toxicological tests using la-
boratory mice (Figure 1); positive results were obtained
for licorice. Licorice was further tested via animal tests,
where tissue Cd determination (whole blood, heart, lung,

FIGURE 6 Key metabolites and potential metabolic pathways of gut microbiota associated with the dietary licorice intervention.
(A) A heatmap illustrating the metabolites that discriminated Cd + LE from Cd groups (P< 0.05). Top 10 abundant licorice‐derived
metabolites and gut metabolites are shown. (B–D) Representative metabolites, relative enzyme‐encoding genes, and involved metabolic
pathways. The pathways were constructed based on the KEGG metabolic maps. Metabolites are indicated as red (enriched in the Cd + LE
group), blue (enriched in the Cd group), or black (none detected) balls. Identified microbial enzyme‐encoding genes are represented in boxes
(the dashed one means poor abundance). The dashed arrow indicates the potential metabolic process without detection of relevant enzyme‐
encoding genes. Relative abundance of the involved metabolites (mean ± SD, n= 6, *P< 0.05, **P< 0.01, t test) and genes (mean ± SD,
n= 3, *P< 0.05, **P< 0.01, t test) are shown. 12‐keto‐DCA, 12‐ketodeoxycholic acid; DCA, deoxycholic acid; KEGG, Kyoto Encyclopedia of
Genes and Genomes; LE, licorice extract; TUDCA, tauroursodeoxycholic acid; T‐β‐MCA, tauro‐β‐muricholic acid
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liver, kidney, and spleen), histopathology imaging, liver
function tests, shotgun gut metagenomic sequencing,
and feces metabolomics analysis were performed. Over-
all, the aim of these experiments was to screen and test
whether dietary herbs can alleviate acute Cd toxicity and
enhance gut fitness.

Experimental animals

Male BALB/c mice, weighing approximately 22 g, were
purchased from Hebei Laboratory Animal Centre. The
mice were maintained in separate cages in a clean
animal house at 21 ± 2°C and under a 12‐h day/night
cycle. The study was approved by the Animal Care and
Use Committee of the Hebei Science and Technical
Bureau, China, and performed in accordance with the
guidelines of the Chinese Association for Laboratory
Animal Sciences.

Dietary herbs

Standard laboratory mouse food was purchased from
Hebei Laboratory Animal Centre. Licorice (L), onion (O),
ginger (G), pepper (P), and fennel (F) were purchased
from the local market (Shijiazhuang, China). To prepare
food containing the dietary herbs, licorice roots and
rhizomes, onion bulbs, ginger rhizomes, pepper pericarp,
and fennel nuts were cleaned, ground, and subjected to
distilled water extraction three times. The tripartite

solutions were mixed, filtered, and subjected to powder
spray drying with a concentration density of 1.20. The
foods containing the dietary herbs were made by mixing
the aqueous extract powders (LE, OE, GE, PE, and FE)
with the standard food at a ratio of 1:9 and extrusion
molding.

Screening for effective dietary herbs

Eighteen mice were randomized into six groups for
dietary herb interventions (control, LE, OE, GE, PE, and
FE). All the mice were allowed to adapt to the animal
house with a standard food supply for 3 days before the
injection. At Day 0, mice were intraperitoneally (i.p.)
injected with normal saline (NS) plus Cd (CdCl2; 0.3 mg/
kg) to induce acute Cd poisoning. Mice were provided
free access to water and food (standard or containing
dietary herb). At Day 30, whole blood samples (n= 3)
were obtained from the caudal vein to determine the Cd
content.

Pharmaceutical assessment of the dietary
licorice extract

Twenty‐four mice were prepared as mentioned pre-
viously, and randomly divided into four groups: con-
trol, LE, Cd, and Cd + LE. On Day 0, mice were
treated with NS (100 μL; 0.9% NaCl; i.p.) for control
and LE groups and Cd (CdCl2; 0.3 mg/kg; i.p.) for Cd

FIGURE 7 A schematic diagram illustrating the proposed mechanism of dietary licorice intervention on health under Cd stress. Dietary
licorice intake alters the diversity of the mouse gut microbiome, increases the abundance of Parabacteroides distasonis, and enriches
glycoside hydrolases (GH) genes and bile acid metabolic pathway. Glycyrrhizin is actively converted by gut microflora into enoxolone.
Enoxolone is transferred into the liver and alleviates the liver damage caused by Cd in terms of histopathological analysis and hepatic
function, by sharply inducing Mt1 gene expression. The liver and gut may have interaction via bile acids, which affects the gut microbiome
structure. As a result of Cd accumulation in the liver, Cd accumulation in other tissues was reduced
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and Cd + LE groups. Control and Cd mice had free
access to water and standard food, while LE and
Cd + LE mice had free access to water and licorice‐
containing food. The body weight and food con-
sumption of mice were measured every 3 days. Fresh
feces (n = 6) were harvested on Day 28 for metage-
nomics and metabolomic analysis. Blood samples
(n = 6) were obtained twice from the caudal vein on
Days 21 and 28 for the determination of Cd content.
On Day 30, all of the mice were anesthetized using
sodium pentobarbital (40 mg/kg; i.p.) and subjected to
perfusion with ice‐cold saline solution to remove body
blood. The main organs were harvested for Cd content
determination, histopathological analysis, and other
tests.

Cd content in tissues

Tissue samples were dried, grounded, and digested using
nitric acid and a microwave digester (Multiwave PRO;
Anton‐Paar), according to the manufacturer's instruc-
tions. Cd concentration of the digests was determined by
graphite atomic absorption spectrometry (TAS‐990; Per-
see) with CRM Laver as the standard material
(GWB10023; certified by Institute of Geophysical and
Geochemical Exploration).

Histopathological analysis and hepatic
function

Hematoxylin and eosin staining was used to evaluate
the histopathology of the liver, lung, kidney, heart,
and spleen. Briefly, samples were fixed, dehydrated,
paraffin‐embedded, and sliced into 30‐μm sections.
These sections were stained with hematoxylin and
eosin, followed by dehydration. The tissue morphol-
ogy was observed using a light microscope. Liver
samples were examined to evaluate the effect of Cd
and Glycyrrhiza on live functions. Briefly, liver tis-
sues were well ground with NS solution, and the
supernatant was obtained by centrifuging the
homogenate at 4000g for 10 min. The total protein
concentration in the supernatant samples was de-
termined using Pierce BCA protein assay kit (Thermo
Fisher Scientific). The ALT, AST, and Γ‐GT levels in
the supernatant samples were measured using com-
mercial test kits, according to the manufacture's
protocols (Changchun Huili Biotech Co. Ltd.). The
final indices were calculated by dividing the measured
values by the total protein concentration for each
sample (n = 6).

Fingerprint profile of licorice extract and
quantitative determination of glycyrrhizin
and liquiritin

The licorice aqueous extract powder was thoroughly dis-
solved with 70% ethanol and filtered through 0.22‐μm Mil-
lipore filters. The treated solution was subjected to HPLC
analysis using a Waters 2695–2996 liquid chromatography
system (Waters Corporation). The licorice components were
separated by chromatography using an Ultimate XB‐C18

column (5 μm; 4.6 × 250mm; FX‐014; Welch Materials Inc.)
at 35°C. The mobile phase consisted of (A) acetonitrile and
(B) 0.1% phosphoric acid, with a flow rate of 1.0mL/min. We
injected 10 μL of the sample for 60min. The detection wa-
velengths were 230 and 280 nm. Appropriate quantities of
glycyrrhizin and liquiritin were weighed and dissolved in
70% ethanol. HPLC analysis described previously was per-
formed for the standard solutions with different concentra-
tions. The areas of each peak at 237 nm detection
wavelength were obtained to draw standard curves. The
same HPLC analysis was performed for the test sample, and
contents of glycyrrhizin and liquiritin in the licorice aqueous
extract powder were calculated.

Dose–response tests of mice hepatocytes
in response to Cd and licorice

Mouse hepatocyte AML12 was cultured in Dulbecco's
modified Eagle's medium (DMEM) plus 10% fetal bovine
serum (FBS), and placed in an incubator at 37°C with 5%
CO2 and 99% humidity. For the viability test, AML12 cells
were seeded in 96‐well plates, and incubated with Cd (CdCl2;
0.049, 0.098, 0.0195, 0.391, 0.781, 1.563, 3.125, 6.250, 12.500,
25.000, and 50.000 μM) or licorice extract solution (25, 50,
100, 200, 400, 800, 1600, 3200, 6400, 12,800, and 25,600 μg/
mL) for 24 h. Cell viability (n=8) was measured using a cell
counting kit‐8 assay (Dojindo Laboratories). For the Cd de-
toxification test, AML12 cells were seeded in 6‐well plates,
and incubated with 0.4 μM Cd solution for 12 h; then, the
culture medium was replaced and the Cd‐treated cells were
incubated with 400 μg/mL licorice solution for 24 h. Cells
and culture media (n=3) were harvested for Cd content
determination described above.

Gene expression analysis

Mouse hepatocyte AML12 was cultured as described
above. Cells were incubated with 0.4 μM Cd solution for
12 h; then, the culture medium was replaced and the Cd‐
treated cells were incubated with 57.15 μg/mL licorice
extract (containing 12.5 μM glycyrrhizin), 12.5 μM
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glycyrrhizin, and 12.5 μM enoxolone for 12 h. Cells were
then harvested. Total RNA was extracted from the cells
(n= 3) and mouse liver tissue (n= 6) using an Ultrapure
RNA kit (CWBIO), according to the manufacturer's
protocol. A total of 2 μg RNA was used for reverse tran-
scription using a FastQuant RT Kit (Tiangen Biotech
[Beijing] Co. Ltd.), according to the manufacturer's in-
struction. The quantitative polymerase chain reaction
(PCR) was performed using a Bio‐Rad CFX Connect
Real‐Time PCR Detection System and SYBR Green
SuperReal PreMix Plus (Tiangen Biotech [Beijing]
Co. Ltd.). The thermo condition was set at 95°C for
15 min, followed by 40 cycles at 95°C for 10 s and at 61°C
for 30 s. Mouse beta‐actin gene (GenBank ID: 11461) was
used as the internal reference. Relative gene expression
levels were detected using the ∆∆2 C‐ t method. The primer
sequences were 5′‐CTCCGTAGCTCCAGCTTCAC‐3′ and
5′‐AGGAGCAGCAGCTCTTCTTG‐3′ for Mt1 (GenBank
ID: 17748), 5′‐TGTGCTGGCCATATCCCTTG‐3′ and
5′‐GCGGAGAGTATTGGGTCGAG‐3′ for Mt2 (GenBank
ID: 17750), and 5′‐AGGCCCAGAGCAAGAGAGGTA‐3′
and 5′‐TCTCCATGTCGTCCCAGTTG‐3′ for beta‐actin.

Feces DNA extraction, library
construction, and metagenomic
sequencing

Total genomic DNA of mouse fecal samples was extracted
using a QIAamp PowerFecal DNA Kit (QIAGEN), following
the manufacturer's instructions. The concentration and
purity of extracted DNAwere determined using TBS‐380 and
NanoDrop2000, respectively. DNA quality was checked on
1% agarose gel. DNA extract was fragmented to an average
size of about 400 bp using Covaris M220 (Gene Co. Ltd.) for
paired‐end library construction. A paired‐end library was
constructed using NEXTFLEX Rapid DNA‐Seq (Bio Scien-
tific). Adapters containing the full complement of sequen-
cing primer hybridization sites were ligated to the blunt end
of the fragments. Paired‐end sequencing was performed
using Illumina NovaSeq/Hiseq Xten (Illumina Inc.) at
Majorbio Bio‐Pharm Technology Co. Ltd., using NovaSeq
Reagent Kits/HiSeq X Reagent Kits, according to the man-
ufacturer's instructions. Sequence data associated with this
project have been deposited in the NCBI Short Read Archive
database.

Sequence quality control (QC) and
metagenomic assembly

The data analyses refer to the steps of EasyMetagenome
1.10 pipeline [69]. Paired‐end Illumina reads were

trimmed of adapters, and low‐quality reads (length < 50
bp or quality value < 20 or having N bases) were removed
using fastp [70] (version 0.20.0). Reads were aligned to
the mouse genome using BWA [71] (version 0.7.9a;
http://bio-bwa.sourceforge.net), and any hit associated
with the reads and their mated reads were removed.
Metagenomics data were assembled using MEGAHIT
[72] (version 1.1.2; https://github.com/voutcn/megahit),
which uses succinct de Bruijn graphs. Contigs with
lengths of 300 bp or more were selected for the final as-
sembling result, and the contigs were used for gene
prediction and annotation.

Gene prediction, taxonomy, and functional
annotation

ORFs from each assembled contig were predicted using
MetaGene [73] (http://metagene.cb.k.u-tokyo.ac.jp/). Pre-
dicted ORFs with a length of 100 bp or more were retrieved
and translated into amino acid sequences using the NCBI
translation table (http://www.ncbi.nlm.nih.gov/Taxonomy/
taxonomyhome.html/index.cgi?chapter=tgencodes#SG1).

A nonredundant gene catalog was constructed using
CD‐HIT [74] (version 4.6.1; http://www.bioinformatics.
org/cd-hit/) with 90% sequence identity and 90% cover-
age. After QC, reads were mapped to the nonredundant
gene catalog with 95% identity using SOAPaligner [75]
(version 2.21; http://soap.genomics.org.cn/), and gene
abundance in each sample was evaluated.

Representative sequences of nonredundant gene catalog
were aligned to the NCBI NR database with a cutoff e‐value
of 1e−5 using Diamond [76] (version 0.8.35; http://www.
diamondsearch.org/index.php) for taxonomic annotations.
A cluster of orthologous groups of proteins annotation for
the representative sequences was performed using Diamond
against eggNOG database with a cutoff e‐value of 1e−5.
KEGG annotation was conducted using Diamond against
the KEGG database (http://www.genome.jp/keeg/) with an
e‐value cutoff of 1e−5.

The diversity of the microbial community was calculated
using Explicet software [77]. Alpha diversity was determined
using the minimum library size as the default with 1000‐
bootstrap resampling. Beta diversity was assessed using the
Bray‐Curtis similarity distance metric. R programming was
used to visualize metagenomic and metabolic data.

Fecal metabolite extraction and
UHPLC‐MS/MS analysis

Metabolites were extracted from each feces sample
(50mg) using a 400 μL methanol:water (4:1, v/v) solution,
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with 0.3mg/mL L‐2‐chlorophenylalanin as the internal
standard. The mixture was allowed to settle at −10°C and
treated using high‐throughput tissue crusher Wonbio‐96c
(Shanghai Wanbo Biotechnology Co. Ltd.) at 50 Hz for
6min, followed by ultrasound at 40 kHz for 30min at 5°C.
Samples were placed at −20°C for 30min to precipitate
proteins. After centrifugation at 13,000g and 4°C for
15min, the supernatant was carefully transferred to
sample vials for LC‐MS/MS analysis. Chromatographic
separation of the metabolites was performed using a
Thermo ultra‐high‐performance liquid chromatography
(UHPLC) system equipped with an ACQUITY BEH C18
column (100 × 2.1mm i.d., 1.7 μm; Waters). As part of
system conditioning and the QC process, a pooled
QC sample was prepared by mixing equal volumes of all of
the samples. The QC samples were disposed and tested in
the same manner as the analytic samples. The use of QC
samples helped to represent the whole sample set, which
would be injected at regular intervals (every 10 samples) to
monitor the stability of the analysis. Chromatographic
separation of the metabolites was performed on a Thermo
UHPLC system equipped with an electrospray ionization
(ESI) source operating in either positive or negative
ion mode.

Metabolomics data preprocessing and
annotation

After ultra‐high performance liquid chromatography
time‐of‐flight/mass spectrometry (UPLC‐TOF/MS)
analyses, raw data were imported into the Progenesis
QI 2.3 (Nonlinear Dynamics; Waters) for peak detection
and alignment. The preprocessing results generated a
data matrix consisting of the retention time, mass‐to‐
charge ratio (m/z) values, and peak intensity. Metabolic
features detected that at least 80% of samples in any
setting were retained. After filtering, minimum meta-
bolite values were imputed for specific samples in which
the metabolite levels fell below the lower limit of
quantitation; each metabolic feature was normalized by
sum. The internal standard was used for data QC (re-
producibility); metabolic features with the relative
standard deviation of QC > 30% were discarded. Fol-
lowing the normalization procedures and imputation,
statistical analysis was performed on log‐transformed
data to identify significant differences in metabolite le-
vels between comparable groups. Mass spectra of these
metabolic features were identified using the accurate
mass, MS/MS fragments spectra, and isotope ratio dif-
ference searched from reliable biochemical databases,
such as HMDB (http://www.hmdb.ca/) and Metlin da-
tabase (https://metlin.scripps.edu/). The mass tolerance

between the measured m/z values and the exact mass of
the components of interest was ±10 ppm. For metabo-
lites with MS/MS confirmation, only MS/MS fragments
with scores above 30 were considered to be confidently
identified. Otherwise, metabolites were only given
tentative assignments.

Metabolomics statistical analysis

A multivariate statistical analysis was performed using ropls
(Version 1.6.2; http://bioconductor.org/packages/release/
bioc/html/ropls.html) R package from Bioconductor on
Majorbio Cloud Platform (https://cloud.majorbio.com).
Principal component analysis (PCA) using an unsupervised
method was applied to obtain an overview of the metabolic
data, and general clustering, trends, or outliers were visua-
lized. All the metabolite variables were scaled to unit‐
variances before conducting the PCA. Orthogonal partial
least‐squares discriminate analysis (OPLS‐DA) was used for
statistical analysis to determine global metabolic changes
between comparable groups. All of the metabolite variables
were scaled to Pareto Scaling before conducting the OPLS‐
DA. The model validity was evaluated from model para-
meters R2 and Q2, which provide information regarding the
interpretability and predictability, respectively, of the model
and avoid the risk of overfitting. Variable importance in the
projection (VIP) was calculated for the OPLS‐DA model.
P values were estimated using paired Student's t test on
single‐dimensional statistical analysis. Statistically significant
differences among groups were selected based on VIP
value >1 and P< 0.05. A total of 24,180 differential peaks
were selected, including 12,430 peaks in ESI+ and 11,750
peaks in ESI−. Differential metabolites among the two
groups were summarized and mapped into their bio-
chemical pathways through metabolic enrichment and
pathway analysis based on the KEGG database search
(KEGG, http://www.genome.jp/kegg/). These metabolites
can be classified according to the pathways they are in-
volved in or the functions they performed. Enrichment
analysis was used to analyze a group of metabolites in a
function node based on its appearance. The principle was
that the annotation analysis of a single metabolite devel-
ops into an annotation analysis of a group of metabolites.
The Python package scipy.stats (https://docs.scipy.org/
doc/scipy/) was used to identify statistically significantly
enriched pathways using Fisher's exact test.

Statistics analysis

Statistical analysis was performed using R (https://cran.r-
project.org/). An unpaired two‐tailed t test or Fisher's least
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significant difference test was conducted to determine sig-
nificant differences between different treatments. The data
were visualized using imageGP [78].
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