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Abstract

Heatmap is a widely used statistical visualization method on matrix‐like data
to reveal similar patterns shared by subsets of rows and columns. In the R

programming language, there are many packages that make heatmaps.

Among them, the ComplexHeatmap package provides the richest toolset for

constructing highly customizable heatmaps. ComplexHeatmap can easily

establish connections between multisource information by automatically

concatenating and adjusting a list of heatmaps as well as complex

annotations, which makes it widely applied in data analysis in many fields,

especially in bioinformatics, to find hidden structures in the data. In this

article, we give a comprehensive introduction to the current state of

ComplexHeatmap, including its modular design, its rich functionalities, and

its broad applications.
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Highlights

• Complex heatmap is a powerful visualization method for revealing

associations between multiple sources of information.

• We have developed an R package named ComplexHeatmap that provides

comprehensive functionalities for heatmap visualization. It has been widely

used in the bioinformatics community.

• We give a comprehensive introduction to the current state of Complex-

Heatmap in this article.

INTRODUCTION

Heatmap is a popular method for visualizing matrix‐like
data by taking colors as the aesthetic elements. There are
two major categories of heatmap visualization: spatial
heatmap and grid heatmaps [1]. The first category
visualizes spatially distributed patterns, such as the
global temperature distribution across the world, or the

click activities on a web page from users. The so‐called
choropleth map also utilizes heatmaps to visualize
certain characteristics in geographic areas within a
region. The second category is purely a rectangular
layout of colored grids, where the two dimensions
correspond to two types of variables. In most cases, rows
and columns of a heatmap are reordered by certain
methods so that subsets of rows and columns showing
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similar patterns are grouped closely on the heatmap. The
reordering is mostly applied by hierarchical clustering,
thus the grid heatmap is also called the cluster heatmap.
In this article, we only discuss the grid heatmap.

Heatmap visualization can be traced back to the 19th
century when it was used to visualize various social
statistics in different districts in Paris [2]. However, as a
statistical visualization method, it has only been widely
used when it was applied in bioinformatics since the
1990s. Since the very early paper on heatmap visualiza-
tion on gene expression datasets was published in 1998
[3], heatmap has been a standard tool for visualizing
omics‐level data, for example, gene expression or DNA
methylation datasets that are represented as matrices.
Nowadays, heatmap is applied in genomics for more
specific studies, for example, to visualize genome‐level
regulation on three‐dimensional (3D) scales [4], DNA
methylation signals in the binned genome [5], or
enrichment of a certain type of genomic signals around
a specific genomic feature [6]. Rectangular layout is
the most used for heatmap visualization; moreover, there
are also other layouts, such as the circular layout [7], the
spiral layout [8], and the Hilbert curve layout [9]. They
are useful in specific scenarios.

R is a popular programming language for data analysis
and visualization. In R, there are a number of packages
that make heatmaps. The function heatmap() from
the stats package is the most fundamental one, but with
very limited functionality. The function heatmap.2()
from the gplots package is an enhanced version of
heatmap() which supports more graphics on heat-
maps, such as color legends with value distributions and
trace lines showing the difference of values to the column
or row medians. The function geom_tile() from the
ggplot2 package [10] also provides a simple implemen-
tation of heatmaps. There are also packages that
provide more flexible controls on heatmaps, such as
the function pheatmap() from the pheatmap
package, and the function aheatmap() from the
NMF package [11].

As data emerge fast in sizes and dimensions
nowadays, especially in the field of genomics, an efficient
visualization for integrative analysis or multi‐omics
analysis is urgently needed to associate multiple types
of data for easily revealing relationships between
multiple objects. From the aspect of heatmap visualiza-
tion, it reflects two points. The first one is the support of
heatmap annotations, which contain extra information to
associate with the main heatmap. For example, in a
typical heatmap visualization on gene expression data
where rows are genes and columns are patients, it is
common that patients have clinical metadata available,
such as age, gender, or whether the patient has certain

DNA mutations. With annotations attached to the
heatmap, it is easy to identify, for example, whether a
group of genes showing high expression correlates to a
certain age interval, or whether they have specific types
of DNA mutations. heatmap() and heatmap.2()
only support a single heatmap‐like annotation for one
numeric or character vector. pheatmap() and
aheamtap() allow multiple heatmap‐like annotations
for corresponding more information to the heatmap. The
superheat [12] and heatmap3 [13] packages support more
types of graphics for annotations, such as points or lines
that are able to make more accurate visual representa-
tions of the data. The second point of visualizing multiple
sources of information is to directly apply “complex
heatmap visualization” by simultaneously linking multi-
ple heatmaps to make it straightforward to compare
patterns shared between heatmaps. For example, in our
previous study [6], we applied complex heatmap visual-
ization on data of gene expression, DNA methylation,
and various histone modifications to reveal general
transcriptional regulation patterns among multiple
human tissues. To implement both complex annotation
and heatmap visualization, we have developed an
advanced heatmap package named ComplexHeatmap
[14]. It supports not only the basic annotation graphics
as in other packages, but also a variety of extra complex
annotation graphics such as violin plot or horizon chart,
and it even allows users to self‐define their own
annotation graphics. ComplexHeatmap provides a simple
syntax to link multiple heatmaps and annotations where
rows or columns of all heatmaps are adjusted simulta-
neously. The simplicity of its user interface and
comprehensiveness of its functionalities make Complex-
Heatmap widely used in the bioinformatics community
to reveal interesting patterns from data that are
potentially biologically meaningful.

The ComplexHeatmap project was started in 2015 and
the corresponding paper was published in 2016 [14].
Since then, it has become a popular tool in the
bioinformatics field. It has been downloaded more than
500k times and 104 other CRAN/Bioconductor packages
have direct dependencies on it (data collected on June 22,
2022). ComplexHeatmap has been applied to build
comprehensive visualization in a wide range of biology
studies, such as on cancers [15], COVID‐19 [16], single
cells [17], immunology [18], as well as in other fields,
such as oceanology [19] and ecology [20]. Continually in
the past 6 years, ComplexHeatmap has been actively
maintained with many new features added. We have also
reformatted the documentation as a comprehensive book
(https://jokergoo.github.io/ComplexHeatmap‐reference/
book/). In this article, we will give a comprehensive
introduction on the current state of ComplexHeatmap,

2 of 15 | GU

https://jokergoo.github.io/ComplexHeatmap-reference/book/
https://jokergoo.github.io/ComplexHeatmap-reference/book/


including its modular design, its rich functionalities, and
its broad applications.

RESULTS AND DISCUSSION

Modular design

ComplexHeatmap is designed in a modular and object‐
oriented way. There are three major classes defined in
ComplexHeatmap: the Heatmap class that defines a
complete heatmap with multiple components, the
HeatmapAnnotation class that defines a list of annota-
tions with specific graphics, and the HeatmapList
class that manages a list of heatmaps and heatmap
annotations.

The heatmap is the basic unit of complex heatmap
visualization. A single heatmap is composed of the
heatmap body and various heatmap components
(Figure 1A). The heatmap body is a two‐dimensional
arrangement of grids where each grid corresponds to a
specific value in the input matrix. The heatmap compo-
nents contain titles, dendrograms, labels for matrix rows
and columns, and heatmap annotations. These compo-
nents can be optionally put on the four sides of the
heatmap body and each component is managed by a
specific method that is defined for the Heatmap object.
Additionally, the heatmap body can be split into rows
and columns, for example, by categorical variables, into
slices. Dendrograms, heatmap labels, and annotations
are then reordered or split accordingly.

Heatmap annotations contain additional information
that associates with rows or columns of the heatmap.

ComplexHeatmap provides rich support for setting
different annotations and defining new annotation
graphics. The annotations can be put on the four sides
of the heatmap as its components, and they can also be
arranged independently to be concatenated to the
heatmaps. A HeatmapAnnotation object contains a list
of single annotations, which are defined by the Single-
Annotation class (Figure 1B). Every single annotation
contains a specific type of graphic, which is further
defined by the AnnotationFunction class. The Annota-
tionFunction class provides a flexible way to define new
annotation graphics, which can be automatically reor-
dered and split according to the main heatmap.

The main feature of ComplexHeatmap is it supports
concatenating a list of heatmaps and annotations
horizontally or vertically to visualize associations
between different data sources. The HeatmapList class
is a container of a list of heatmaps and annotations
(Figure 1C) and it automatically adjusts the correspon-
dence of rows or columns in multiple heatmaps and
annotations.

Single heatmap

ComplexHeatmap provides rich functionalities for con-
figuring single heatmaps. The constructor function
Heatmap() makes a single heatmap and it returns
an object in the Heatmap class. The only mandatory
argument in Heatmap() is a matrix, either in numeric
or character. Heatmap() provides a large number of
additional arguments for customizing heatmaps. Besides
the common functionalities also available in other

(A) (B) (C)

FIGURE 1 Modular design of the ComplexHeatmap package. (A) Single heatmap with various heatmap components. (B) Heatmap
annotation with a list of single annotations. (C) Heatmap list with global titles and legends.
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heatmap packages, Heatmap() has these unique
features listed in the following subsections.

Flexible controls of clustering and reordering

In routine data analysis procedures, the matrix for
heatmap visualization is normally accompanied by
hierarchical clustering, so that features with similar
patterns are grouped closely and they can be easily
identified from the colors on heatmap. In Heatmap(),
the hierarchical clustering can be specified in various
ways: (1) by a predefined distance method, such as
“euclidean” or “Pearson,” (2) by a distance function that
calculates the pairwise distance between two vectors or
directly from a matrix, (3) by a clustering function that
takes a matrix as input and returns a dendrogram object,
and (4) by a clustering object, for example, a hclust or a
dendrogram object, or an object that can be coerced to a
dendrogram object by a proper as.dendrogram()
function. The last method is especially useful because it
makes it possible to use dendrograms generated or edited
by other packages. For example, with the dendextend
package [21], dendrogram branches can be rendered with
different colors to highlight sub‐dendrograms, or specific
symbols can be added to dendrogram nodes, and then the
rendered dendrograms can be seamlessly integrated with
Heatmap() (Figure 2A).

A dendrogram is normally represented as a binary
tree where the order of two branches is assigned
arbitrarily on a node. Rotating the two branches on a
node does not change its mathematical representation,
but it affects the global ordering of dendrogram leaves.
Thus, a proper way to rotate dendrogram branches, or in
other words, to reorder the dendrogram, helps to move
matrix rows or columns with similar patterns closer to
each other in the heatmap to improve the visualization.
By default, Heatmap() uses reorder.dendro-
gram() to reorder the dendrogram based on the mean
of the submatrix for the dendrogram branches. For
example, on every node in a dendrogram, one branch
with a smaller mean value is always put on the left of the
node. Heatmap() also accepts dendrogram objects,
thus other dendrogram reordering methods can be easily
integrated by first generating dendrogram objects for
rows or columns, then applying a specific dendrogram
reordering method, such as from the dendsort package
[22], and finally sending them to Heatmap().

Note hierarchical clustering is just a special way to
reorder rows and columns of a heatmap. Other methods
that calculate row and column orders of a matrix can also
be integrated. Heatmap() allows users to set numeric
or character indices to reorder heatmaps. Examples of

popular packages for ordering matrices are seriation [23]
and biclust [24].

Split heatmap

Heatmap splitting is an efficient way of highlighting
group‐wise patterns. Due to the hierarchical clustering
procedure, when a new leaf or a sub‐dendrogram is
added to the dendrogram, the calculation is only based
on the items that have already been in the dendrogram,
while not on all the items in the matrix. This weakens the
visualization power in some datasets if they only have
intermediate levels of group‐wise differences. A pre‐
splitting on heatmaps can greatly improve the distin-
guishability of group‐wise patterns. ComplexHeatmap
provides various ways for splitting heatmap into
“slices” into both rows and columns (Figure 2A,B): (1)
Set a number of groups for k‐means clustering, where it
also supports repeatedly running k‐means clustering to
obtain a consensus k‐means clustering results to reduce
the effect of randomness; (2) Set a categorical variable
that contains predefined grouping information. The
variable can be a vector or a data frame, then
the heatmap is split by all combinations of levels in the
categorical variable; (3) If the hierarchical clustering is
already applied, the splitting can be specified as a single
number so that cutree() is internally applied to cut
the dendrogram. For the first two splitting methods, if
clustering is turned on, hierarchical clustering is first
performed within every heatmap slice, then a second
clustering is applied over heatmap slices based on their
means to show the slice‐level hierarchical relations.

As an example, the heatmap in Figure 2C includes
genes that have significant differential expression in a
glioblastoma cohort [25] with four subgroups (as the top
annotation). The four subgroups are predicted by
consensus clustering where the classification is very
stable [26]. The stable classification is also supported by a
t‐SNE analysis where the four subgroups are well
separated (Supporting Information: Figure 1). However,
if the hierarchical clustering is directly applied by
pooling all samples, the four subgroups are not well
separated as expected, whereas some samples in sub-
groups 3 (blue) and 4 (purple) are mixed. In Figure 2D,
with the same matrix, columns are first split by the
classification, then the hierarchical clustering is applied
within each column slice separately. As a comparison,
it indeed improves the visualization of group‐wise
patterns. Also, in Figure 2D, rows are additionally split
by k‐means clustering. Now it is very straightforward to
observe the expression patterns of subgroup‐specific
signature genes.
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Render heatmap body as raster images

Whenwe produce so‐called “high‐quality figures,” normally
the figures are saved as vector graphics in the formats of, for
example, pdf or svg. The vector graphics store the details of
every single graphic element, thus if a heatmap made from
a huge matrix is saved as vector graphics, the file size would
be very big and the complete image would take a long time

to be rendered by image viewers. Due to the limited size
and resolution of the graphics device, neighboring grids
from the heatmap are actually merged into single pixels for
large heatmaps. Thus, it is not necessary to keep all the
details of the huge heatmap and proper methods should be
applied to efficiently reduce the original image.

Rasterization is a method to convert an image into a
matrix of colors in red‐green‐blue (RGB) values. Let us

(A) (B)

(C) (D)

FIGURE 2 Demonstration of single heatmaps. (A) Heatmap with both row and column annotations. The columns on the heatmap are
split by a three‐group k‐means clustering and rows are split by combinations of a categorical variable and a two‐group k‐means clustering.
(B) Heatmap with customizations on the heatmap body. Data in Figure (A) and (B) are randomly generated. (C) Heatmap without and (D)
with column splitting. The matrix for Figure (C) and (D) is the same.
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assume a matrix for heatmap has nr rows and nc
columns. When it is drawn on a certain graphics device,
for example, an on‐screen device, the corresponding
heatmap body uses pr and pc pixels for the rows and
columns, respectively. When nr> pr and/or nc> pc,
multiple values in the matrix are mapped to single pixels
where nr and/or nc can be reduced to be equal to pr and/
or pc. ComplexHeatmap provides three methods to reduce
the graphics in the heatmap body by rasterization: (1)
First the heatmap body is written as a temporary png
image with pr× pc resolution, then the temporary image
is read as a raster object and filled back to the heatmap
body. In this way, the image reduction is performed on
the png device. (2) The original matrix is first reduced to
the size of pr × pc so that one single value in the reduced
matrix can correspond to a distinct pixel. The reduction
on the matrix can be applied with a specific method, such
as taking the mean or a random value from the
submatrices. (3) A temporary image with resolution
nr × nc is first generated, then the magick package is used
to reduce the image to the size pr × pc, finally, the
reduced image is read as a raster object and filled into
the heatmap body. The magick package provides a large
number of methods for resizing the image and they are
all supported in ComplexHeatmap. In “Section 2.8
Heatmap as raster image” of the ComplexHeatmap book,
there are detailed visual comparisons of different image
reduction methods.

Customize heatmap

By default, heatmap bodies are composed of a two‐
dimensional organization of colored grids or cells. Complex-
Heatmap allows users to customize heatmap bodies by
adding new layers of graphics. Arguments cell_fun and
layer_fun in Heatmap() can be used to add self‐
defined graphics to heatmap cells when heatmap is drawing
(Figure 2A). The two arguments are basically the same
except layer_fun is a vectorized version of cell_-
fun, which makes the drawing faster if the heatmap body
is large. More generally, decorate_*() family func-
tions, for example, decorate_annotation(), add
graphics to any heatmap component after the heatmap has
been drawn. Every heatmap component has its own
plotting region (or viewport) and they are still recorded
after the heatmap is drawn. decorate_*() can go back
to a specific viewport and add self‐defined graphics there
afterward.

As will be introduced in later sections, the 3D
heatmap, the oncoPrint, and the UpSet plot are internally
implemented with layer_fun; the density heatmap

and enriched heatmap are partially enhanced by
implementing decorate_heatmap_body().

Flexible controls of colors and legends

In a heatmap, colors are the major aesthetic elements
mapping to data. ComplexHeatmap allows exact mapping
between colors and values in the matrix by a color
mapping function by specifying breaks and correspond-
ing colors, then remaining colors are linearly interpo-
lated in the corresponding intervals in a specific color
space. For example, users can define a color mapping
function that is symmetric to zero, which is useful for
identifying the expression of up‐regulated and down‐
regulated genes, or users can define the same color
mapping functions for different heatmaps to make colors
comparable between them. It also allows flexible
configurations on heatmap legends, such as multi‐color
scheme legends and legends with self‐defined graphics.
We kindly refer readers to “Chapter 5. Legends” in the
ComplexHeatmap book for more demonstrations.

Heatmap annotations

Heatmap annotations are important components of a
heatmap. It not only shows additional information associated
with heatmap rows and columns, but also allows visualizing
with more types of graphics. ComplexHeatmap provides
flexible support for built‐in annotations as well as new self‐
defined annotation graphics. In Figure 3A, we demonstrate
part of annotation graphics that are by default supported in
ComplexHeatmap (from left to right):

1. Heatmap‐like annotation. It is called “simple anno-
tation” in ComplexHeatmap. It visualizes a vector or
a matrix, either in numeric or character.

2. Image annotation. It supports images in various
formats, for example, png, svg, pdf, or jpg.

3. Points annotation. It supports a single numeric
vector or a numeric matrix.

4. Lines annotation. It supports a single numeric vector
or a numeric matrix.

5. Smoothed lines annotation. The smoothing is applied
by the loess method.

6. Bar plot annotation. It supports stacked bar plots.
7. Percent annotation. It contains both text and bars.
8. Boxplot annotation.
9. Text annotation. It supports constructing customized

text with the gridtext package.
10. Histogram annotation.
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11. Violin annotation. It visualizes a list of distributions.
Alternatively, the distributions can be visualized by
normal density plots or heatmaps.

12. Joy plot annotation. The peaks can be extended into
neighbors' plotting regions.

13. Horizon chart annotation. A horizon chart is a
visualization method that vertically splits an area
chart with uniform size, then the bands are layered
on top of each other [27].

All built‐in annotation graphics are implemented by
annotation functions named with anno_ prefix, for
example, anno_points() for points annotation.
Besides the above‐listed annotations, ComplexHeatmap
supports more complex ones. For example, there is a
“mark annotation” by anno_mark(), which draws
labels for a subset of rows or columns where the labels
are shifted from their original positions to get rid of
overlapping, and lines are drawn to connect labels to
their original rows or columns (Figure 3B). There is also

a “link annotation” by anno_link(), which links
plotting regions to subsets of a heatmap. The link
annotation provides a general solution to associate more
self‐defined graphics to correspond to heatmap rows or
columns. In Figure 3C, three ggplot2 plots are created
that visualize distributions of values in the three column
groups but only in the selected subsets of rows. In
Figure 3D, a list of words is associated with each row
group where the font sizes correspond to the importance
of the words. This has been specifically implemented
with the function anno_textbox(), and it has been
used to summarize the biological functions of genes in
the simplifyEnrichment package [28].

The constructor function HeatmapAnnota-
tion() accepts multiple annotations specified as
name‐value pairs. Simple annotations are specified as
vectors, matrices, or a data frame. Other annotations
should be specified via functions anno_*().
An example with four annotations is demonstrated
as follows.

(A)

(B) (C) (D)

FIGURE 3 Demonstration of various heatmap annotation graphics. (A) Different annotation graphics are supported in
ComplexHeatmap. (B) The mark annotation. (C) The link annotation. (D) The textbox annotation. Data in all four figures are randomly
generated.
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ha = HeatmapAnnotation(

foo = runif(10),

bar = sample(letters[1:4], 10, replace
= TRUE),

pt = anno_points(runif(10)),

txt = anno_text(month.name[1:10]))

Row annotations should be set with one additional
argument which= "row" or with the helper function
rowAnnotation(). ComplexHeatmap already pro-
vides a large number of annotation graphics, nevertheless,
ComplexHeatmap provides an interface for creating self‐
defined annotation graphics. We kindly refer readers to
“Section 3.20 Implement new annotation functions” in the
ComplexHeatmap book for more details.

A list of heatmaps

The promising feature of ComplexHeatmap is that it
supports concatenating multiple heatmaps and annota-
tions so that it is possible to visualize associations
between various sources of information. ComplexHeat-
map provides a simple syntax for concatenating heat-
maps with the operator +. The expression returns a
HeatmapList object and directly printing the Heatmap-
List object draws the heatmap. An example usage is as
follows:

Heatmap(…)+

Heatmap(…)+

rowAnnotation(…)

We previously introduced annotations as components
of a single heatmap. Here row annotations can also be
independently concatenated to the heatmap list, as
demonstrated in the code above. Alternatively, which is
less used, the heatmap lists can be vertically concate-
nated with the operator %v%.

Heatmap(…)%v%

Heatmap(…)%v%

HeatmapAnnotation(…)

The number of heatmaps and annotations to be
concatenated can be arbitrary. The ordering and
splitting of all heatmaps are adjusted by the main
heatmap, which is by default the first numeric
heatmap, or the other heatmap in the list that is
specified by the user.

Visualize associations between DNA
methylation and gene expression

Figure 4A demonstrates a complex heatmap visualiza-
tion on a dataset randomly generated but based on
patterns found in unpublished work. It visualizes
associations between DNA methylation, gene expres-
sion, enhancers, and gene‐related information. In
heatmaps, each row corresponds to a differentially
methylated region (DMR, which is a genomic region
showing significantly different methylation between
tumor and control samples) or other attributes associ-
ated with the corresponding DMR. In Figure 4A, there
are the following heatmaps and annotations from left
to right:

1. A heatmap of methylation in DMRs.
2. A one‐column heatmap showing the direction of

differential methylation. “Hyper” means the
methylation is higher in tumor samples and
“hypo” means the methylation is lower in tumor
samples.

3. A heatmap of gene expression. They are the nearest
genes to the DMRs.

4. A one‐column heatmap of p‐values from the Pearson
correlation test on methylation in DMRs and expres-
sion of associated genes.

5. A one‐column heatmap of the type of genes, for
example, protein‐coding genes or lincRNAs?

6. A one‐column heatmap of the locations of DMRs, for
example, in promoters or in intergenic regions?

7. A points annotation of the genomic distances between
DMRs to transcription start sites (TSSs) of the
associated genes.

8. A heatmap of the overlap between enhancers and
DMRs. The value measures the fraction of a DMR
covered by enhancers.

In Figure 4A, the heatmap list is split by the
combination of directions of differential methylation
and a two‐group k‐means clustering. The grouping by
k‐means is to distinguish the high‐methylation and
low‐methylation groups on rows. The complex heat-
maps reveal that highly methylated DMRs are enriched
in intergenic and intragenic regions, and they rarely
overlap with enhancers (row groups “2,hypo” and
“2,hyper”), while in contrast, lowly methylated DMRs
are enriched in promoters and enhancers (row groups
“1,hypo” and “1,hyper”). This might imply that
enhancers associated with low methylation and meth-
ylation changes in enhancers might affect their
transcriptional activities on related genes.
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Visualize global summary statistics in
multi‐omics studies

Multi‐omics studies integrate data from genomics, tran-
scriptomics, or epigenomics to look for novel associations in
biological systems from different levels. Thus, it is
important to properly and effectively visualize the potential
connections between these different data types. Figure 4B
demonstrates one such typical landscape summary visual-
ization where a list of different statistics based on single
data types or combinations of multiple data types are
aggregated by a list of heatmaps and annotation graphics.
Figure 4B is based on a glioblastoma cohort study [29],
which studies the epigenomic difference between four
subtypes (indexed as 1 to 4 in Figure 4B) with DNA

methylation, gene expression, and histone modification
data. The study generates four sets of DMRs where each
one compares methylation in one subtype against normal
samples. Figure 4B visualizes various genomic attributes of
DMRs with a list of heatmaps and annotations, additionally
split by the direction of methylation change. From left to
right in Figure 4B there are:

1. A heatmap of the mean methylation in DMRs in
tumor samples and in normal samples.

2. A bar plot annotation of the number of DMRs in each
category.

3. A stacked bar plot annotation of the fractions of
DMRs that show significant correlations to the
expression of the nearest genes.

(A)

(B)

FIGURE 4 Demonstration of complex heatmap list visualization. (A) Visualization of the association between DNA methylation, gene
expression, and related genomic features. For simplicity of the figure, it only includes DMRs showing negative correlations to associated
genes. (B) Comprehensive visualization of the global summary statistics of an epigenomics study. DMRs, differentially methylated regions.
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4. A stacked bar plot annotation of the distances of
DMRs to the TSSs of the nearest genes.

5. A stacked bar plot annotation of the fractions of
DMRs that overlap to genes or intergenic regions.

6. A stacked bar plot annotation of the fractions of DMRs
that overlap to CpG islands (CGIs) or CGI shores.

7. A heatmap of the enrichment of DMRs to a list of
genomic features. A positive value means over‐
representation. The enrichment test is applied by
randomly shuffling DMRs in the genome by taking
the Jaccard coefficient as the statistic. z‐scores
(observed–expected)/(standard deviation) is used for
the heatmap.

8. A stacked bar plot of the fractions of DMRs that
overlap to chromatin states.

9. A heatmap of the enrichment of DMRs to the
chromatin states. Similarly, z‐scores are used for the
heatmap.

In the heatmap list in Figure 4B, it is straightforward
to observe the different features of subgroup‐specific
DMRs. For example, hyper‐DMRs have more negative
correlations between methylation and gene expression,
and hypo‐DMRs are located more in the intergenic
regions and inactive chromatin states. To conclude, such
visualization provides a powerful bird's‐eye view of the
global attributes in a complex study.

High‐level plots

The flexibility of ComplexHeatmap allows users to
implement new high‐level graphics on data with
matrix‐like structures. ComplexHeatmap has already
implemented several high‐level graphics functions and
they are introduced in the following subsections. Note all
these functions are basically specific customizations on
heatmaps. They are essentially in the Heatmap class and
they can be concatenated to general heatmaps and
annotations to form complex visualizations.

Density heatmap

To visualize data distributions in a matrix or a list, normally
boxplots or violin plots are used. However, when the
number of distributions becomes large, boxes or violins
would not be efficient visualization methods. The function
densityHeatmap() uses colors to map the density
values and it is able to visualize a large number of
distributions (Figure 5A). In densityHeatmap(), the
similarity between distributions can be measured with the
Kolmogorov–Smirnov distance.

Three‐dimensional heatmap

Three‐dimensional (3D) visualization is in general not
recommended for representing data [30], but it might be
helpful for specific scenarios. ComplexHeatmap supports
converting a normal heatmap to a 3D heatmap by
converting heatmap grids to 3D bars, which are drawn as
projections onto the two‐dimensional plate. 3D heatmaps
are drawn with the function Heatmap3D() and it
accepts the same set of arguments as Heatmap(). The
density distributions in Figure 5A can also be visualized
as a list of bar plots where bars are represented in 3D
(Figure 5B). It is recommended to map both colors and
bar heights to data in 3D heatmap visualization.

oncoPrint

The function oncoPrint() visualizes multiple geno-
mic alteration events, for example, single‐base mutations
(SNVs), fragment insertion or deletions (Indels), or copy
number variations (CNVs), in a list of genes and in
multiple patients. oncoPrint() provides a general
solution where graphics for specific genome alterations
can be self‐defined (Figure 5C). By default, genes are
ordered by their total numbers of alterations, and
patients are reordered to show mutual exclusivity in
the cohort. As oncoPrint() returns a Heatmap
object, it can be concatenated to heatmaps of other
genomic datasets, for example, gene expression, to show
more complicated genomic associations.

UpSet plot

The UpSet plot [31] provides a more efficient way to
visualize intersections in a large number of sets
compared to the traditional approach, that is, the Venn
Diagram. The function UpSet() in ComplexHeatmap
provides an enhanced implementation of the original
tool [32]. Additionally, UpSet() is capable of working
on intersections of genomic regions from multiple lists,
which helps to reveal, for example, tissue‐specific
chromatin modifications (Figure 5D).

Genome‐level plots

Genome‐level heatmaps are frequently used in genomics
studies, for example, for visualizing the global copy
number variation profiles [33]. The key to making
genome‐level heatmaps is to bin the genome and to
normalize various genomic signals to the genome bins to
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FIGURE 5 Demonstration of high‐level plots implemented in ComplexHeatmap. (A) The density heatmap. Values in the first 10 columns are
generated from the normal distribution and values in the second 10 columns are generated from the uniform distribution. (B) 3D frequency
heatmap. The input matrix is the same as in Figure (A). (C) The oncoPrint. The lung adenocarcinoma carcinoma dataset from cBioPortal is used.
Only a subset of genes and patients are used due to the limited figure size. (D) The UpSet plot. The H3K4me3 ChIP‐seq peaks from six human
tissues are from the Roadmap project. (E) Genome‐level multiple‐track plot. The data are randomly generated.
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form matrices, then normal heatmap visualization can
be applied to them. In Figure 5E, we demonstrated a
genome‐level visualization with two heatmaps and
multiple additional tracks, which are created as heatmap
annotations.

Integrated into other packages

EnrichedHeatmap

An enriched heatmap specifically visualizes the
enrichment of a certain type of genomic signal on a
list of genomic features of interest [34]. For example,

how chromatin modifications are enriched around
gene TSSs or how DNA is lowly methylated around
CGIs. The EnrichedHeatmap package [6] is built upon
ComplexHeatmap and it provides a general solution for
such spatial relations of two types of genomic features.
It also implements a special annotation function
anno_enriched() that summarizes the average
enrichment over all genomic features. Being unique to
other similar tools, it is able to normalize categorical
genomic signals such as chromatin segmentations.
More importantly, the enriched heatmap is also a
Heatmap object, thus it inherits all the features from
the Heatmap class, such as heatmap splitting and
concatenating to more heatmaps.

FIGURE 6 A list of enriched heatmaps and normal heatmaps. From the left to right are the heatmaps of chromatin states, DNA
methylation, and gene expression. Data are from the Roadmap project.
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Figure 6 demonstrates a complex visualization of the
distribution of chromatin states and DNA methylation
around gene TSSs, as well as the expression of associated
genes. The data are from the Roadmap project [35].
Heatmaps are split into three groups where TSSs are in
active states, bivalent states, and inactive states. Through
the heatmaps, it can be easily observed that active TSSs
are associated with low methylation and the correspond-
ing genes are highly expressed. Bivalent TSSs, although
are also lowly methylated, have a lower expression for
the genes. In comparison, inactive TSSs are almost fully
methylated and the expression of corresponding genes is
normally silenced.

InteractiveComplexHeatmap

ComplexHeatmap only generates static plots. The com-
panion package InteractiveComplexHeatmap [36] can
seamlessly convert a static heatmap to an interactive
Shiny application where users can interact with the
heatmap, for example, by clicking and brushing over
heatmaps. This is useful when specific patterns are
observed on heatmaps, and detailed information about
them can be easily extracted by directly interacting with
the heatmaps. The conversion from static heatmaps to
interactive ones can be easily done with the function
htShiny(), which is called with no argument after
the static heatmap is generated. This functionality works
for all kinds of heatmaps, as long as they are generated by
ComplexHeatmap. Moreover, InteractiveComplexHeat-
map provides flexible solutions for customizing the user
interface of the interactive heatmap applications as well
as for defining the responses to users' actions on
heatmaps.

CONCLUSION

Complex heatmap visualization is a powerful way to
associate multiple sources of information. In this article,
we systematically demonstrated the rich functionalities
of the ComplexHeatmap package. We believe Complex-
Heatmap will continually be a useful tool for bio-
informatics and the general data science field for
revealing hidden structures in the data.
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