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Abstract

Cardiovascular diseases (CVDs) continue to be a significant contributor to global

mortality, imposing a substantial burden and emphasizing the urgent need for

disease control to save lives and prevent disability. With advancements in

technology and scientific research, novel mechanisms underlying CVDs have

been uncovered, leading to the exploration of promising treatment targets aimed

at reducing the global burden of the disease. One of the most intriguing findings

is the relationship between CVDs and gut microbiota, challenging the traditional

understanding of CVDs mechanisms and introducing the concept of the gut‐heart
axis. The gut microbiota, through changes in microbial compositions and

functions, plays a crucial role in influencing local and systemic effects on host

physiology and disease development, with its metabolites acting as key regulators.

In previous studies, we have emphasized the importance of specific metabolites

such as betaine, putrescine, trimethylamine oxide, and N,N,N‐trimethyl‐5‐
aminovaleric acid in the potential treatment of CVDs. Particularly noteworthy

is the gut microbiota‐associated metabolite succinate, which has garnered

significant attention due to its involvement in various pathophysiological

pathways closely related to CVDs pathogenesis, including immunoinflammatory

responses, oxidative stress, and energy metabolism. Furthermore, we have

identified succinate as a potential biomarker, highlighting its therapeutic
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feasibility in managing aortic dissection and aneurysm. This review aims to

comprehensively outline the characteristics of succinate, including its bio-

synthetic process, summarize the current evidence linking it to CVDs causation,

and emphasize the host‐microbial crosstalk involved in modulating CVDs. The

insights presented here offer a novel paradigm for future management and

control of CVDs.
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Highlights

• Cardiovascular diseases (CVDs) continue to be a significant contributor to

global mortality, imposing a substantial burden and emphasizing the urgent

need for disease control to save lives and prevent disability.

• The gut microbiota, through changes in microbial compositions and functions,

plays a crucial role in influencing local and systemic effects on host physiology

and disease development, with its metabolites acting as key regulators.

• Gut microbiota‐associated metabolite succinate involves in various patho-

physiological pathways closely related to CVDs pathogenesis, including

immunoinflammatory responses, oxidative stress, and energy metabolism.

• The burgeoning evidence surrounding the role of succinate in the gut

microbiome carries significant implications for our comprehension of host‐
microbiome interactions and the development of new treatments for CVDs.

INTRODUCTION

Cardiovascular diseases (CVDs) are the leading causes of
mortality and disability, imposing a substantial medical and
economic burden worldwide. According to the latest Global
Burden of Disease 2019 Study, there were over 500 million
diagnosed cases of CVDs, resulting in 18.6 million deaths in
2019 [1]. The increasing risk of CVDs has garnered
significant attention, leading to a shift in management
paradigms from treatment to prevention strategies. Despite
extensive efforts in healthcare, CVDs continue to rise,
particularly in middle‐ and low‐income countries, including
China [1–3]. Hence, there is an urgent need for innovative
approaches to assess and manage CVDs to achieve the
targets set by the World Health Organization for Sustainable
Development Goal 3 [4].

In the past decade, the study of human gut microbiota
has emerged as a rapidly evolving research field, capturing
the sustained interest of microbiologists, biological scientists,
and clinicians [5]. The gastrointestinal system of the host is
inhabited by a vast community of microorganisms, consist-
ing of approximately 100 trillion microbes, with bacteria,
archaea, fungi, and viruses being the predominant members
[6, 7]. These microorganisms exist in a mutually beneficial

relationship with the host and participate in various
physiological interactions, such as nutrient absorption,
digestion, fat metabolism, energy provision, and immuno-
modulation. These interactions collectively contribute to the
maintenance of host homeostasis [8]. Thanks to the progress
in high‐throughput sequencing and metagenomics in the
early 21st century, the enigma surrounding humanmicrobial
communities has been gradually unraveled [9]. Conse-
quently, the investigation into the role of gut microbiota in
disease development, particularly in the context of CVDs,
has become a prominent area of research. To date, a growing
body of evidence has indicated the involvement of gut
microbial variations in the pathogenesis of CVDs [10]. In
comparison to healthy individuals, a significant decrease
in the richness and diversity of gut microbiota was observed
in hypertensive individuals. Furthermore, the hypertensive
population was characterized by the identification of a gut
enterotype predominantly composed of Prevotella [11].
Moreover, the gut microbiota also plays a crucial role in
the development of heart failure [12] and pulmonary
hypertension [13]. Atherosclerosis, a prevalent CVD, has
been extensively studied for its association with gut
microbiota. Multiple studies have provided substantial
evidence linking atherosclerotic CVDs to elevated
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abundances of Enterobacteriaceae and Streptococcus spp.
Abundances [14, 15]. The occurrence of atherosclerosis is
influenced by molecular patterns derived from the gut
microbiota [16]. Toll‐like receptors, a type of pattern
recognition receptors, play a role in atherogenesis, and the
commensal gut microbiota has been identified as a key
activating factor for these pattern recognition receptors [17].
Microbial‐associated molecular patterns have been identified
as significant contributors to the development of athero-
sclerosis. The utilization of germ‐free mouse models of
atherosclerosis has allowed researchers to establish a causal
relationship between gut microbiota and atherosclerosis.
These models have aided in investigating the impact of gut
microbiota on atherothrombosis [18], understanding the
effects of microbiota on the size and cellular composition of
atherosclerotic plaques [19], and analyzing how the interac-
tion between gut microbiota and diet influences the
progression of atherosclerosis [20].

As a consequence of changes in the composition and
function of gut microorganisms, the metabolites produced
by the gut microbiota play a crucial role in regulating both
local and systemic effects on host physiology and disease
pathogenesis [21, 22]. The gut microbiota plays a role in the
biosynthesis of various bioactive compounds, including bile
acids [23], short‐chain fatty acids [24], amino acids [25], and
trimethylamine/trimethylamine N‐oxide (TMAO) [26]
(Figure 1). Importantly, the involvement of gut

microbiota‐derived metabolites in CVDs has been exten-
sively investigated [8, 27], underscoring their potential as
therapeutic targets for CVDs intervention. In our previous
research, we have demonstrated the effects of putrescine
[28] and various metabolites in the TMAO pathway,
including TMAO [29–31], betaine [32], and N,N,N‐
trimethyl‐5‐aminovaleric acid [33, 34], on CVDs.

In recent times, there has been growing attention
toward investigating the role of succinate, a gut
microbiota‐associated metabolite, due to its involve-
ment in various pathophysiological pathways closely
associated with the pathogenesis of CVDs including
hypertension [35], atherosclerosis [36], and cardio-
myocyte hypertrophy [37]. Furthermore, we have
identified succinate as a potential biomarker and
demonstrated its therapeutic feasibility in the treat-
ment of aortic aneurysm and dissection (AAD) [38].
In this review, we provide a comprehensive outline of
the characteristics of succinate, summarize the exist-
ing evidence regarding its involvement in the devel-
opment of CVDs, and emphasize the interplay
between the host and gut microbiota in modulating
CVDs. The valuable role of succinate in the metabolic
interaction between the host and gut microbiota,
along with extensive information on its relevance to
CVDs, is thoroughly elucidated in this review. These
insights pave the way for a novel paradigm in the

FIGURE 1 Gut microbiota‐associated metabolites. Gut microbiota contributes to the production of bioactive compounds, including
short‐chain fatty acids, bile acids, amino acids, and TMAO‐associated metabolites such as TMAO, trimethyllysine, and N,N,N‐trimethyl‐5‐
aminovaleric acid. Post dietary consumption, gut microbiota aids in generating metabolite precursors. Once these precursors enter the
circulation, hepatic enzymes facilitate further metabolism, ultimately leading to the release of metabolites such as bile acid and TMAO into
the circulatory system. Succinate is produced by certain gut bacteria as a metabolic byproduct. The presence of dietary fiber in the diet
promotes the growth and activity of these bacteria, which in turn leads to increased production of short‐chain fatty acids (SCFAs), including
succinate. Succinate plays a crucial role in oxidative stress, inflammatory responses, energy metabolism and other cellular processes. ROS,
reactive oxygen species; TMAO, trimethylamine N‐oxide.
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treatment and management of CVDs, ultimately
contributing to the reduction of the significant burden
imposed by these diseases.

SUCCINATE BIOSYNTHESIS
BY HUMAN CELLS AND GUT
MICROBIOTA

Succinate, a C4‐dicarboxylic acid, is synthesized by
both human cells and gut microbiota (Figure 2).
Figure 3 illustrates the various pathways involved in
the production of succinate.

BIOSYNTHETIC PATHWAY IN
HUMAN CELLS

The tricarboxylic acid (TCA) cycle, which serves
as the eventual metabolic pathway for amino acids,
sugars, and lipids, plays a crucial role in body
metabolism. Within host cells, succinate is produced
in mitochondria and serves as a substrate for
mitochondrial oxidative phosphorylation. In the
presence of an aerobic environment, pyruvic acid
undergoes oxidative decarboxylation catalyzed by the
pyruvate dehydrogenase complex, resulting in the
production of acetyl coenzyme A (CoA). Subsequent

FIGURE 2 Succinate production and transportation in the human body. Succinate is synthesized by both human cells and gut
microbiota. The charged nature of succinate enables its transport across plasma membranes, facilitated by the SLC13 family of
Na+‐dependent transport proteins. Notably, the potent suppression of SLC13A2 occurs through the interaction with the SLC26A6
transporter. Furthermore, succinate plays a crucial role in extracellular signaling by stimulating the G protein‐coupled succinate receptor
(SUCNR1), which is abundant in various tissues and cells. The uptake of succinate by macrophages can enhance and perpetuate
inflammation, while its detection by tuft cells in the small intestine initiates type 2 immunity.
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adequate oxidation of acetyl CoA in mitochondria
leads to the biosynthesis of succinate, accompanied
by the liberation of energy. Under the function
of succinate dehydrogenase, succinate is further
dehydrogenated and metabolized to fumarate. Con-
versely, in cells relying on aerobic glycolysis or under
hypoxic conditions, alternative metabolic pathways,
including the gamma‐aminobutyric acid (GABA)
shunt, the reductive branch of the TCA cycle
involving reverse succinate dehydrogenase activity,
and glutamine‐dependent anaplerosis, are activated.
These pathways result in the accumulation of succi-
nate in mitochondria [39].

BIOSYNTHETIC PATHWAY IN GUT
MICROBIOTA

In addition to being produced through the TCA cycle in
human cells, succinate is also considered a bacterial
metabolite found in the intestinal lumen and feces.

Studies have demonstrated that germ‐free mice exhibit
no detectable levels of succinate in their feces, high-
lighting the significant role of gut microorganisms in
succinate biosynthesis [40]. Within microbial carbohy-
drate fermentation, succinate is predominantly generated
via the partial branch of the TCA cycle, which is present
in nearly all microbes. Similar to its production in human
cells, the reductive branch of the TCA cycle, which
converts oxaloacetate to succinate, serves as a pathway
for succinate formation under anaerobic conditions [41].
However, unlike human cells, the glyoxylate shunt
pathway is also considered as a vital biosynthetic route
for succinate in gut microbiota [42]. In summary, acetyl‐
CoA is converted to succinate, and under anoxic
conditions, the glyoxylate shunt pathway becomes more
active, leading to increased succinate production [41].

The identification of specific gut microbiota involved
in succinate production and consumption provides valu-
able insights into the effects of this metabolite on disease
physiology and pathogenic mechanisms. Notably, Bacter-
oidaceae, Parabacteroides, Veillonella, and Prevotella,

FIGURE 3 Biosynthetic pathways of succinate production in human cells and gut microbiota. (A) Succinate is commonly generated
through a partial branch of the TCA cycle in microbial carbohydrate fermentation. The TCA cycle is present in nearly all microorganisms.
Additionally, succinate can be produced through the glyoxylate shunt pathway and the 3‐hydroxypropionate pathway. (B) Succinate is an
essential intermediate in the TCA cycle, which occurs in the mitochondria of host cells through a series of enzyme‐mediated reactions. In
cells relying on anaerobic glycolysis or experiencing hypoxic conditions, alternative metabolic pathways are activated, leading to the
accumulation of mitochondrial succinate. These pathways include the reductive branch of the TCA cycle through reverse succinate
dehydrogenase activity, the GABA shunt, and glutamine‐dependent anaplerosis. acc, acetyl‐CoA carboxylase; ackA, acetate kinase; acnAB,
aconitase; adhE, alcohol dehydrogenase; FAO, fatty acid oxidation; fdh, formate dehydrogenase; FH, fumarate hydratase; frdABCD,
succinate dehydrogenase; fumABC, fumarate hydratase; GABA, γ‐aminobutyric acid; GABA‐T, GABA transaminase; GAD, glutamate
decarboxylase; gltA, citrate synthetase; GLUD, glutamate dehydrogenase; icd, isocitrate dehydrogenase; IDH, Isocitrate dehydrogenase;
ldhA, lactic dehydrogenase; KGDHC, ketoglutarate dehydrogenase complex; mcr, malonyl‐CoA reductase; MDH2, malate dehydrogenase
isoform 2 (mitochondrial); mdh, malate dehydrogenase; mmcEM, methylmalonyl‐CoA epimerase and mutase; PEP, Phosphoenolpyruvic
acid; pcc, propionyl‐CoA carboxylase; pcs, propionyl‐CoA synthase; pfl, pyruvate formate lyase; pta, phosphotransacetylase; pyk, pyruvate
kinase; SDH, succinate dehydrogenase; SUCL, succinate‐CoA ligase; sucABCD, succinyl‐CoA synthetase; SSA, succinate semialdehyde;
SSADH, succinate semialdehyde dehydrogenase; UQ, Ubiquinone; UQH2, Ubiquinol; α‐KG, alpha‐ketoglutarate.
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including Paraprevotella xylaniphila, Paraprevotella clara,
and Prevotella ruminicola, are among the major succinate
producers [41, 43]. Bacteroides, the most prevalent
members of the human flora, are anaerobic, gram‐
negative bacteria with a rod shape and do not form
spores. They coexist with humans and contribute to food
digestion, energy production, and nutrient supply, includ-
ing carbohydrate fermentation, utilization of nitrogenous
substances, as well as bile acid and steroid bioconversion
[44, 45]. Many gut bacterial strains possess glycolytic
capabilities, enabling them to derive energy and carbon
through the hydrolysis of carbohydrates. Succinate, acetic
acid, and isovaleric acid are major byproducts of their
anaerobic respiration. Additionally, certain Ruminococcus
strains, such as Ruminococcus flavefaciens and Rumino-
coccus albus, also contribute to succinate biosynthesis.
Conversely, succinate consumers include Odoribacterium,
Clostridium, and Phascolarctobacterium, including Phasco-
larctobacterium succinatutens [46]. Table 1 provides an
overview of the relative intestinal microbiota involved in
succinate biosynthesis or metabolism.

MULTIFACETED FUNCTIONS OF
SUCCINATE AS A SIGNALING
TRANSMITTER IN DISEASES

Gut microbiota‐derived metabolites have garnered sig-
nificant interest among researchers due to their pivotal
regulatory functions. Succinate, a prominent signaling
molecule, plays a role in numerous physiological
activities and disease pathogenesis [62], leading to
extensive investigations into its underlying mechanisms.
With the continually advancing knowledge of gut
microbiota, the role of succinate in CVDs has been
increasingly recognized over the past decade. The present
study examines the effects of succinate on CVDs and
elucidates the associated mechanisms (Figure 4).

AORTIC ANEURYSM AND AORTIC
DISSECTION

Aortic aneurysm, often referred to as the “silent killer,” is
characterized by the deterioration of the arterial wall and
the dilation of the aorta, commonly accompanied by
aortic dissection and acute aortic complications. The
occurrence of aortic dissection can be attributed to
several factors, including hypertension, advanced age,
male gender, and smoking [63, 64]. AAD is a life‐
threatening condition characterized by its sudden onset
and high mortality rate. A significant number of aortic
aneurysms occur without prior symptoms, leading to

aortic rupture and subsequent sudden death. According
to the Global Burden of Disease Study, the global death
toll attributed to aortic aneurysms was 172,427 in 2019,
representing an 82.1% increase compared to the figure in
1990 [65]. However, in the face of this highly fatal
disease, there are currently limited effective therapies
available to prevent or halt the progression of AAD
[63, 66].

Remarkably, our research has made significant contri-
butions to the management and treatment of AAD,
introducing a completely novel paradigm. This study
represents the first application of nontargeted metabolo-
mics to characterize the metabolic landscape in AAD
cases, leading to the identification of the crucial role of
succinate in the disease [38]. In summary, the levels of
succinate were found to be elevated in AAD cases
compared to those in healthy individuals. This trend
persisted when comparing them to cases of acute
myocardial infarction (AMI) and pulmonary embolism
(PE), indicating the potential use of succinate as a
biomarker for AAD diagnosis and for distinguishing it
from chest pain in AMI and PE patients. Moreover, the
addition of succinate worsened AAD formation in mice,
leading to increased mortality rate, higher AAD incidence,
and enlarged aortic diameter, primarily through the
excessive production of reactive oxygen species (ROS).
We also provided evidence suggesting that the p38a–cyclic
adenosine monophosphate‐responsive element‐binding
protein 1–oxoglutarate dehydrogenase axis regulates
succinate generation in macrophages and that p38a
deficiency suppressed AAD development, further demon-
strating the potential therapeutic effects of succinate in
AAD. The significant value and potential of succinate in
the future management of aortic aneurysm and aortic
dissection are highly promising, underscoring the need for
further research to fully elucidate the role of this
metabolite in the disease.

ATHEROSCLEROSIS

As a primary underlying pathology in various cardio-
vascular diseases, particularly coronary artery diseases,
atherosclerosis initiates with the formation of lipid
streaks on the vascular intima and progresses to the
development of atheromatous plaques. The progression
of atherosclerosis is primarily driven by inflammation
and oxidation. Inflammatory cytokines associated with
pro‐atherosclerosis processes trigger endothelial cell
dysfunction, thereby initiating the advancement of
atherosclerosi [67]. Following this, activated endothelial
cells release growth factors and pro‐inflammatory
chemokines, which lead to the transformation of
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vascular smooth muscle cells and promote the develop-
ment of atherosclerotic lesions and fibrous plaques [68].
Activated endothelial cells play a critical role in
recruiting inflammatory cells, such as macrophages
and dendritic cells, which adhere to the endothelial cells

and subsequently invade the intima. The interaction
between these cells contributes to the progression of
atherosclerotic damage and the rupture of plaques,
potentially leading to myocardial infarction and
mortality [69].

TABLE 1 Summary of important gut microbiota producing or consuming succinate.

Phylum Family Genus Species Reference

Producing succinate

Bacteroides Bacteroidaceae Bacteroides Bacteroides vulgatus [47]

Bacteroides fragilis [48]

B. thetaiotaomicron [49]

Prevotellaceae Prevotella Paraprevotella clara [50]

Paraprevotella xylaniphila [50, 51]

Prevotella ruminicola [52]

Prevotella copri [43, 46]

Tannerellaceae Parabacteroides Parabacteroides distasonis [53]

Firmicutes Ruminococcaceae Ruminococcus Ruminococcus flavefaciens [39]

Ruminococcus albus [48]

Lachnospiraceae Blautia Blautia wexlerae [47]

Ruminococcaceae Desulfovibrio Faecalibacterium prausnitzii [54]

Lactobacillaceae Lactobacillus Lactobacillus plantarum [55]

Veillonellaceae Veillonella Veillonella Parvula [46]

Selenomonadaceae Mitsuokella Mitsuokella multiacidus [49]

Actinobacteria Bifidobacteriaceae Bifidobacterium Bifidobacterium adolescentis [56]

Bifidobacterium animalis [56]

Bifidobacterium bifidum [56]

Bifidobacterium breve [56]

Bifidobacterium longum [56]

Propionibacteriaceae Propionibacterium Propionibacterium acidipropionici [57]

Propionibacterium shermanii [48]

Consuming succinate

Firmicutes Clostridaceae Clostridium Clostridium kluyveri [58]

Clostridium C. difficile [49]

Acidaminococcaceae Phascolarctobacterium Phascolarctobacterium faecium [59]

Phascolarctobacterium Phascolarctobacterium succinatutens [60]

Veillonellaceae Dialister Dialister propionicifaciens [60]

Dialister succinatiphilus [60]

Veillonella Veillonella parvula [60]

Ruminococcaceae Ruminococcus Ruminococcus bromii [39]

Bacteroides Odoribacteraceae Odoribacter Odoribacter spp. [49]

Bacteroidaceae Bacteroides Bacteroides thetaiotaomicron [61]
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FIGURE 4 Effect of succinate on CVDs. Current research suggests the pleiotropic functions of succinate in vascular endothelial injury,
VSMC growth and invasion, ischemia–reperfusion injury, macrophage polarization, aortic aneurysm and dissection, regulation of the renin‐
angiotensin system, and cardiomyocyte hypertrophy, among others. Briefly, succinate can induce ROS in macrophages, promoting aortic
aneurysm and dissection. It can also exacerbate endothelial cell dysfunction by upregulating ROS levels, which impairs the vasodilative
effect of nitric oxide, activates RAS, and enhances thrombosis (shown in the blue rectangle at the bottom left). Accumulated succinate can
stimulate SMC growth and invasion through RAS activation, HIF‐1α accumulation, and NF‐kB pathway promotion (shown in the yellow
rectangle at the bottom right). In addition, succinate stimulates dendritic cells and macrophages to produce pro‐inflammatory cytokines,
aggregating atherosclerosis. The interaction between succinate and SUCNR1 can disrupt the negative feedback loop of angiotensin II,
contributing to hypertension and promoting cardiac hypertrophy via PKA pathway activation, Ca2+ transient, and cardiomyocyte apoptosis.
Finally, accumulated succinate can drive ROS production at complex I, inducing ischemia‐reperfusion injury. Ang‐II, angiotensin II; AT1R,
angiotensin II type‐1 receptor; COX‐2, cyclooxygenase‐2; DC, dendritic cell; EC, endothelial cell; EDGF, epidermal growth factor; eNOS,
endothelial nitric oxide synthases; ERK1/2, extracellular signal‐regulated kinase 1/2; GP, glycoprotein; HIF‐1α, hypoxia‐inducible factor
1‐alpha; IFN, interferon; IL, interleukin; JGA, juxtaglomerular apparatus; MD, macula densa; NF‐kB, nuclear factor kappa beta; NLRP3,
Nod‐like receptor 3; NO, nitrogen monoxide; PDGF‐BB, platelet‐derived growth factor‐BB; PGE2, prostaglandin E2; PHD, prolyl
hydroxylase domain; PKA, protein kinase A; RAS, renin–angiotensin system; ROS, reactive oxygen species; SDH, succinate dehydrogenase;
SMAD, drosophila mothers against decapentaplegic protein; SUCNR1, succinate receptor 1; TCA, tricarboxylic acid; TNF, tumor necrosis
factor; VSMC, vascular smooth muscle cell; α‐KG, alpha‐ketoglutarate.
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EXCESS SUCCINATE ACCUMULATION
IN ATHEROSCLEROSIS

A growing body of evidence has demonstrated
that succinate levels are significantly increased in the
context of hyperlipidemia, and excessive succinate plays a
critical role in several pathological processes associated
with atherosclerosis [70]. The upregulation of succinate in
atherosclerosis can be attributed to high levels of fat,
glucose, and lipopolysaccharide, which compromise the
activity of succinate dehydrogenase and lead to the
accumulation of succinate as a reaction substrate [71].
Furthermore, there is an increased conversion of gluta-
mine to succinate through the “γ‐aminobutyric acid
shunt” pathway [72], and more isocitrate is metabolized
into succinate via the glyoxylate shunt pathway [73].

PATHOGENESIS OF SUCCINATE IN
DIFFERENT CELLS INVOLVED
IN THE PROGRESSION
OF ATHEROSCLEROSIS

The accumulation of succinate plays a role in the
progression of atherosclerosis by influencing various cell
types, including endothelial cells, smooth muscle cells,
macrophages, and lymphocytes [74].

Endothelial cells

Succinate has been shown to significantly exacerbate
endothelial cell dysfunction [74]. One way it achieves
this is by promoting the upregulation of ROS within
mitochondria. This occurs through the translocation of
cytosolic Drp1 to the outer mitochondrial membrane
[74]. Additionally, succinate in its oxidized form is
capable of increasing ROS production via a process
called reverse electron transfer. This process impairs the
vasodilatory effects of nitric oxide on the endothelium,
thereby encouraging endothelial dysfunction [75]. A
heightened level of ROS can also disrupt nitric oxide
synthesis, further exacerbating endothelial dysfunction.
Apart from its effect on ROS, succinate has also been
observed to stimulate the renin‐angiotensin system
(RAS) via its interaction with the succinate receptor 1
[SUCNR1, also known as G protein‐coupled receptor‐91
(GPR91)]. This interaction leads to an increased level of
angiotensin II, promoting vasoconstriction and suppress-
ing nitric oxide production, which in turn contributes to
endothelial dysfunction [76, 77]. Moreover, an interplay
between succinate and GPR91 on platelets augments the
production of thromboxane A2, which in turn triggers

platelet activation. This activation plays a crucial role in
initiating and progressing atherosclerosis [77]. Platelet
adhesion to the endothelium can damage endothelial
cells, instigating a pro‐inflammatory response and
potentially leading to thrombotic events. Another note-
worthy metabolite is TMAO, which has been linked to
increased platelet reactivity. This condition fosters
thrombus formation through a mechanism that involves
an elevated release of Ca2+ from intracellular stores,
thereby associating TMAO with atherosclerosis [27, 78].
Given the impacts of both succinate and TMAO on
atherosclerosis risk, a more thorough investigation of
their combined effects is indeed warranted.

Smooth muscle cells

The accumulation of succinate has been found to
instigate the growth and invasion of smooth muscle cells
(SMCs) into the intima, a phenomenon observed in
atherosclerosis [79]. The pathological progression of
SMCs can be attributed to three primary pathways.
Firstly, succinate can stimulate the activation of the RAS,
leading to the release of angiotensin II. This compound
then spurs fibrosis, SMC growth, and hypertrophy
through the SMAD pathways. Furthermore, angiotensin
II can enhance the generation of pro‐inflammatory
factors and growth factors, thereby prompting SMCs to
transition from a contraction state to a synthetic state.
Once transformed, SMCs produce pro‐inflammatory
cytokines and components of the extracellular matrix
(ECM), processes which collectively exacerbate athero-
sclerosis. The second pathway involves elevated succi-
nate contributing to the accumulation and transcription
of hypoxia‐induced factor‐1α (HIF‐1α) via the oxidation
of Fe2+ [79]. The increase in HIF‐1α stimulates SMC
growth by promoting various growth factors and
mitochondrial division. The third pathway is character-
ized by succinate activating the nuclear factor kappa beta
(NF‐κB) signaling pathway via agonists of NF‐κB ligands.
This activation escalates the synthesis of cytoskeletal
proteins in SMCs and drives their phenotypic differenti-
ation, proliferation, and migration through the NF‐κB/
mammalian target of rapamycin pathways.

Immune cells

Succinate can also incite the polarization of pro‐
inflammatory phenotype macrophages, thereby augmenting
atherosclerosis [80]. Increased succinate levels lead to a rise
in HIF‐1α, which subsequently triggers the production of
interleukin (IL)−1β [81]. Additionally, succinate‐derived
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ROS and the interaction between succinate and GPR91
facilitate the generation of pro‐inflammatory factors such as
IL‐1β, IL‐18, TNF‐α, and TNFβ, which induce the polariza-
tion of pro‐inflammatory phenotype macrophages [82].
Dendritic cells also participate in atherosclerosis patho-
genesis [83]. Succinate can provoke these cells to produce
pro‐inflammatory cytokines by activating GPR91, which is
expressed on the surface of dendritic cells. The cytokines
TNF‐α and IFN‐γ, produced by dendritic cells, can advance
atherosclerosis and sustain pro‐inflammatory phenotype
macrophages [84].

Recent evidence suggests that the role of lymphocytes,
including B and T cells, is crucial to the pathogenesis of
atherosclerosis [85–87]. B cells possess unique functions in
response to injury, stress, and infection, including inter-
cellular contact, cytokine generation, and antigen presenta-
tion. These cells are associated with local and systemic
immunity, which promotes the progression of atherosclerosis
[88]. Specifically, in the context of dyslipidemia, activated
endothelial cells that cover atherosclerotic plaques enable
various immunoglobulins produced by B cells to penetrate
plaque areas, thereby performing distinct functions. In the
late stages of plaque formation, tertiary lymphatic structures,
such as the outer membrane of the artery develop, where
plasma cells can also produce immunoglobulins in situ.
Moreover, B cells are capable of producing a range of factors,
including pro‐atherosclerotic TNF and anti‐atherosclerotic
IL‐10, which further the progression of the disease [85]. In
recent years, a variety of T‐cell subtypes have been identified
as participants in atherosclerotic disease progression, playing
diverse roles. These include pro‐inflammatory CD8 T cells,
pluripotent CD4 T cells, and anti‐inflammatory regulatory T
cells [86, 89]. The most recent findings indicate that several T
cell peripheral immune checkpoints are compromised in the
immune microenvironment within atherosclerotic plaques,
which could be a key factor propelling the progression of
atherosclerotic disease [90]. Over the past decades, mounting
evidence has suggested a connection between immune cells
and the pathogenic mechanisms of atherosclerosis. However,
the relationship between succinate and lymphocytes in
atherosclerosis remains unexplored. The potential correla-
tion between succinate and atherosclerosis pathogenesis
through the regulation of B and T cell functions presents an
intriguing avenue for future research.

POTENTIAL TREATMENT
PERSPECTIVES OF SUCCINATE
IN ATHEROSCLEROSIS

Therapeutic strategies targeting the succinate‐induced
atherosclerosis pathway have been shown to offer
cardiovascular protection. The inhibition of NF‐κB can

mitigate the hydrolysis of matrix metalloproteinase‐9 and
restrain the migration of smooth muscle cells, thereby
offering protection against plaque rupture. Additionally,
cinnamaldehyde, which is capable of suppressing the
production of succinate‐induced HIF‐1α and IL‐1β, can
also attenuate the inflammatory response induced by
succinate in atherosclerosis [91]. These findings under-
score the promising potential for the clinical translation
of succinate‐based therapies in atherosclerotic CVDs.

RENIN ANGIOTENSIN SYSTEM
AND HYPERTENSION

Succinate has the ability to activate GPR91, also known
as SUCNR1, which is typically found within the vascular
lumen of the kidney, predominantly in the afferent
arterioles and glomerular vasculature [92, 93].
Activation of GPR91 can augment the production of
cyclooxygenase‐2 [94], culminating in the synthesis and
secretion of prostaglandin E2. This then interacts with
the EP2/EP4 receptors located in granular cells [94],
which stimulates the production of renin by the granular
cells in the juxtaglomerular apparatus. This interaction
leads to dilation of the afferent arteriole. The association
between succinate and GPR91 bypasses the negative
feedback loop of angiotensin II, potentially leading to
hypertension. Typically, the release of renin is controlled
by the angiotensin II‐mediated negative feedback loop.
The interaction of angiotensin II and its receptor inhibits
the release of renin through the calcium protein kinase C
pathway [95]. However, under hypertensive pathological
conditions, the GPR91 signal and GPR91‐induced renin
release contribute to the formation of angiotensin II,
which can trigger the synthesis of (pro)renin in the
tubule [96]. The communication between (pro)renin and
its receptor, coupled with activated GPR91, enhances the
phosphorylation of extracellular signal‐regulated kinase
1/2 (ERK1/2), aiding in the proliferation of tubular cells
and tubulointerstitial fibrosis [97].

CARDIAC HYPERTROPHY

Succinate has the capacity to induce cardiomyocyte
hypertrophy by directly activating GPR91 in cardiomyocytes,
a receptor broadly distributed throughout the body [98]. In
the kidney, GPR91 is expressed within the renal vascular
lumen, tubules, and Henle's loop [92–94]. In contrast,
ventricular GPR91 is primarily located within the T tubules
and sarcolemma membrane of cardiomyocytes within the
heart [99]. The engagement of succinate and GPR91 in
cardiomyocytes activates two independent intracellular
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signaling pathways leading to hypertrophy. One involves the
stimulation of the MAP/ERK kinase, resulting in the
phosphorylation of ERK1/2. The phosphorylated ERK1/2
within the nucleus can initiate gene transcription associated
with cardiac hypertrophy. The second pathway involves the
activation of phospholipase C, which produces diacylglycerol
and inositol‐3‐phosphate. The binding of inositol 3,4,5‐
triphosphate to its receptor promotes the release of Ca2+

into the cytosol. This release triggers calcium/calmodulin‐
dependent protein kinase IIδ activation, which phosphoryl-
ates histone deacetylase 5, moving it to the nucleus and
subsequently facilitating the transcription of hypertrophic
genes [98, 100].

In addition to activating GPR91 in cardiomyocytes,
succinate also contributes to cardiac hypertrophy by
activating GPR91 in the kidney, which then activates the
RAS and increases mean arterial blood pressure [101].
Studies in rodents have shown that losartan, a RAS
antagonist, can mitigate the succinate‐induced increase in
mean arterial blood pressure. However, it does not reverse
succinate‐induced cardiac hypertrophy. This suggests that
while succinate can activate RAS, this activation is merely
one of several pathways through which succinate induces
cardiac hypertrophy [99]. Further rodent experiments have
shown that succinate‐induced cardiomyogenic hypertrophy
is GPR91‐dependent; cardiac hypertrophy does not occur
following exposure to succinate once GPR91 has been
knocked out [99].

REPERFUSION INJURY
IMPAIRMENT

The heart plays a crucial role in circulating blood
throughout the body and has a high dependence on
oxygen. When the supply of oxygen becomes insufficient,
as in the case of ischemia, myocardial metabolism can be
profoundly impacted. This insufficiency in cardiac
perfusion leads to a deficit in ATP and an accumulation
of several metabolites, including lactate and succinate
[102–104].

A considerable increase in succinate levels under
ischemic conditions has been documented in various
animal models, such as hypoxic rabbit papillary muscles
[102] and isolated rat hearts [105]. This elevation is,
therefore, a fundamental characteristic of ischemia and
can serve as the electron source for ROS generation
during reperfusion. Unlike normal conditions where
succinate is produced via the citric acid cycle by the
oxidation of fatty acid‐ and glucose‐derived carbon,
during reperfusion injury, succinate is also synthesized
through the mitochondrial reaction of amino acids [106].
The abnormal buildup of succinate under ischemia can

primarily be attributed to two pathways. Firstly, due to
the increased NADH/NAD+ ratio caused by ischemia,
the normal conversion of α‐ketoglutarate into succinate
via succinyl‐CoA is significantly impaired. This has been
confirmed in animal models that exhibit a failure of α‐
ketoglutarate to convert into succinyl‐CoA under ische-
mic and hypoxic conditions [107]. Secondly, the reverse
action of complex II, also known as reverse electron
transport, contributes to the production of ischemic
succinate during ischemic reperfusion injury. This is
where succinate receives an electron from the reduced
coenzyme Q, enabling complex I to pump protons
independent of oxygen [108]. These two pathways of
ischemic succinate generation have been verified in both
in vitro and in vivo animal experiments [109].

The accumulated ischemic succinate prompts the
production of ROS at complex I during reperfusion. In
addition to ROS production, succinate also induces an
excessive release of intracellular calcium. Accumulated
succinate can activate protein kinase A, leading to an
increased release of intracellular calcium transients with
higher peak height and frequency, thereby impairing
cardiomyocyte contraction. Due to the enhanced activa-
tion of protein kinase A, the excessive intracellular
calcium release, and ROS, cardiomyocyte apoptosis is
significantly elevated [100].

Given the pivotal role of succinate in ischemic
reperfusion injury, therapies targeting the succinate
generation pathway present potential treatment options
[110]. According to in vivo experiments, the administra-
tion of 5‐Aminoimidazole‐4‐carboxamide ribonucleotide
and aminooxyacetate—which inhibit the conversion of
α‐ketoglutarate to succinate and the acceptance of an
electron from coenzyme Q by succinate, respectively—
could reduce the production of ischemic succinate [109].
Moreover, dimethyl malonate, a complex II inhibitor, can
reduce succinate levels and ROS generation during
ischemia, subsequently reducing infarct size. The
infusion of dimethyl malonate in isolated rat hearts has
also been shown to protect against ischemic reperfusion
injury [111, 112]. These findings indicate potential
therapeutic applications for counteracting the detrimen-
tal effects of succinate overproduction, though further
clinical evaluations are warranted. In summary, the
effects of succinate on CVDs are displayed in Figure 4.

CONCLUSIONS AND
PERSPECTIVES

Succinate plays a role not only in the physiological TCA
cycle but also drives numerous pathophysiological
processes, such as the activation of RAS, overproduction
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of ROS, mediation of pro‐inflammatory macrophages,
interaction with GPR91, and involvement in energy
metabolism. Both the TCA biosynthesis pathway and gut
microbiota metabolism participate in the production and
regulation of serum succinate levels. The multifaceted
activities of succinate contribute to the onset and
progression of various cardiovascular diseases, including
amplified aortic aneurysm, aortic dissection, athero-
sclerosis, RAS activity, hypertension, cardiac hypertro-
phy, and impairment due to reperfusion injury. Antago-
nists of succinate signaling pathways can effectively
mitigate cardiovascular diseases and offer protection
against succinate‐induced ROS overload and inflamma-
tory responses, thereby emerging as promising therapeu-
tic targets. Given that gut microbiota‐derived metabolites
are important in many diseases, treatments targeting gut
microbiota have garnered significant interest.

Although fecal microbiota transplantation was ini-
tially proposed as a treatment strategy for various
diseases, the results have been less satisfactory due to
population heterogeneity, highlighting the need for more
precise treatment targets within gut microbiota. Pres-
ently, several gut microbiota‐related metabolic pathways
are considered potential therapeutic targets to combat
cardiovascular diseases. Concentrating on gut microbial
enzymes to diminish the production of “adverse”
metabolites or to promote beneficial microbial bio-
synthesis pathways is deemed to be a promising
therapeutic approach for disease control. Treatments
focusing on succinate and its associated metabolic
pathway present a novel and precise therapeutic poten-
tial, considering succinate's role in the initiation and
progression of several cardiovascular diseases, as well as
signal transmission. Capsule forms of succinate pathway
inhibitors could enhance clinical administration com-
pared to traditional fecal microbiota transplantation.

In spite of the expanding literature on succinate
and the gut microbiome, many questions remain
unanswered. For instance, prior research has illuminated
the advantageous effects of succinate, particularly its
promotion of thermogenesis in brown and beige adipose
tissue as a counter to metabolic diseases [113]. Studies
have demonstrated that succinate administration can
enhance glucose and insulin tolerance in mice, reflecting
its positive impact on glycemic control [43]. Moreover,
succinate's role in ameliorating intestinal inflammation
has been highlighted [114]. This raises inquiries regard-
ing the comprehensive understanding of this metabolite.
The exploration of whether these conflicting effects
result from dosage effects, compensatory effects, or organ
specificity of succinate is warranted for further scrutiny.
At present, the regulation of succinate production in the
gut remains uncertain, including whether its effects on

the microbiome fluctuate based on the type of dietary
fiber consumed. Both gut microbiota and human
mitochondria contribute to plasma succinate levels, yet
the proportion of succinate originating from human cells
and from gut microbes, along with their interaction with
pathogenesis, remains to be established. Additionally,
there is a need for more research to comprehend the
long‐term effects of succinate supplementation on host
metabolism and immune function. It is crucial to
acknowledge that a significant portion of the research
on succinate and the gut microbiome has been carried
out in animal models. Hence, further research is
necessary to verify these findings in human studies.

The burgeoning evidence surrounding the role of
succinate in the gut microbiome carries significant
implications for our comprehension of host‐microbiome
interactions and the development of new treatments for
CVDs. Further investigations are essential for thoroughly
understanding the underlying mechanisms and applying
these findings in clinical practice.
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