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Abstract

High‐fat diet (HFD) has been recognized as a primary factor in the risk of

chronic disease. Obesity, diabetes, gastrointestinal diseases, neurodegenerative

diseases, and cardiovascular diseases have long been known as chronic

diseases with high worldwide incidence. In this review, the influences of gut

microbiota and their corresponding bacterial metabolites on the mechanisms

of HFD‐induced chronic diseases are systematically summarized. Gut

microbiota imbalance is also known to increase susceptibility to diseases.

Several studies have proven that HFD has a negative impact on gut microbiota,

also exacerbating the course of many chronic diseases through increased

populations of Erysipelotrichaceae, facultative anaerobic bacteria, and oppor-

tunistic pathogens. Since bile acids, lipopolysaccharide, short‐chain fatty acids,

and trimethylamine N‐oxide have long been known as common features of

bacterial metabolites, we will explore the possibility of synergistic mechanisms

among those metabolites and gut microbiota in the context of HFD‐induced
chronic diseases. Recent literature concerning the mechanistic actions of

HFD‐mediated gut microbiota have been collected from PubMed, Google

Scholar, and Scopus. The aim of this review is to provide new insights into

those mechanisms and to point out the potential biomarkers of HFD‐mediated

gut microbiota.
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Highlights

• Gut microbiota dysbiosis increases the host's susceptibility to diseases.

• Identified characteristic microbes in high‐fat diet (HFD) induced

obesity, diabetes, gastrointestinal diseases, neurodegeneration, and

cardiovascular diseases.
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• Bile acids, lipopolysaccharide, short‐chain fatty acids, and trimethylamine

N‐oxide are the commonalities in HFD‐induced chronic diseases.

• FXR, TGR5, NF‐κB, PPAR‐γ, and PERK signaling were critical for the

interacted mechanisms toward microbiota modulation.

• Provided new insights into mechanisms among microbiota, metabolites, and

immune responses in chronic diseases.

INTRODUCTION

Daily food intake is one of the most effective and common
ways for humans to access nutrition. However, excessive
consumption of saturated fat and trans‐fatty acid from
food may accompany with a series of chronic diseases.
Nowadays, rapid development of food manufacturing
industry has led to the changes of human lifestyle and
dietary patterns, especially for the popularity of high‐fat
diet (HFD) [1, 2]. It is known that the typical American
(‘Western’) diet contains about 36 to 40 percent fat, with
‘tolerable’ high‐fat diets allowing as much as 50 to 60
percent energy from fat [3]. However, a 60% fat diet for
rodents will not necessarily produce results likely to align
well with human studies, where the usual ‘high‐fat diet’
for humans ranges from 52 to 60 % energy from fat [4–6].
It has been suggested that a better correlation will be
achieved using a 45–60% fat diet for rodents [3, 7].
Numerous studies have revealed that HFD possessed a
negative correlation in human health, including weight
gain, organ fat accumulation, gut microbiota dysbiosis,
insulin resistance, colonic injury, oxidative stress, cogni-
tive impairment [8–11]. Chronic diseases are the leading
cause of death with 70% mortality [12]. Fanelli et al. [13]
found that most patients with chronic disease had specific
dietary characteristics, including excessive saturated fat
intake, low total carbohydrate, fiber intake, and excessive
sugar consumption. Raising evidence has demonstrated
that HFD can be treated as the risk factor for chronic
diseases, which should be of high concern [13].

Gut microbiota is the general designation of the
microorganism community in the human gastro-
intestinal tract. It contains more than 1000 bacterial
species with 1013–1014 bacteria [12, 14]. Several studies
have noted a negative correlation between gut microbiota
dysbiosis and host health [15, 16]. Dysbiosis is defined as
a condition characterized by an unbalanced intestinal
microbial community. Numerous research reported that
gut microbiota dysbiosis may deliver a profound negative
impact on the aggravation of chronic diseases, such as
obesity, diabetes, cardiovascular diseases (CVDs), gastro-
intestinal diseases, and central nervous system disorders
[17–20]. Additionally, the composition of gut microbiota

could be influenced by various potential factors, includ-
ing long‐term lifestyle changes, diet, nutrition, pharma-
cological factors, infection, pregnancy, and host genetic
factors [21–27]. Accordingly, the gut microbial commu-
nity plays a pivotal role in the course of chronic diseases
induced by the high‐fat and high‐sugar diet (HF/HSD). It
is imperative to further summarize the data linking
among HFDs, gut microbiota, and chronic diseases.

To date, numerous reviews have focused on the
discussion of the changes of gut microbiota mediated by
HFD based on certain diseases [28–33]. Murphy et al.
[34] indicated that intestinal bacteria was a risk factor for
chronic diseases induced by HFD. Western diet is
generally characterized as HFD with low‐fiber nutrition.
Shi also emphasized that intestinal bacteria were an
important link between the western diet and chronic
diseases [35]. However, the current review remains with
a lack of discussion of the latest research on the changes
in gut dysbiosis induced by HFD and its corresponding
mechanisms in major chronic diseases. Hence, this
manuscript aims to systematically summarize the char-
acterization of gut microbiota in various chronic diseases
and revealed the potential interacted mechanisms in
HFD pattern. The following sections systematically
illustrated the influences of gut microbiota and its
corresponding mechanisms under five popular chronic
diseases, including obesity, diabetes, CVDs, gastro-
intestinal diseases, and neurodegenerative diseases.

Influences of HFD on gut microbiota
toward obesity

Obesity was first defined as a chronic disease by WHO in
1977. In 2016, worldwide incidence of obesity had
already reached 13% [36]. It may be caused by the
excessive intake of energy‐rich foods with high‐fat
constituents [37]. Accumulating evidence also indicated
that the dysbiosis of gut microbiota plays a major role in
the pathogenesis of diet‐induced obesity. Clinical studies
have indicated that the alteration of the Firmicutes/
Bacteroidetes ratio (F/B ratio) might be closely linked to
the occurrence of obesity [38]. Ley et al. [39] also found
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that people with obesity exhibited a relatively lower
abundance of Bacteroidetes. Additionally, HFD model
animal trials are commonly applied for evaluating the
relevance of gut microbiota in diet‐induced obesity
(Table 1) [10]. Notely, Bäckhed et al. [61] revealed that
obesity could not be triggered by HF/HSD in germ‐free
mice compared with normal mice.

Gut microbiota modulation may be the target path-
way involved in the pathogenesis of diet‐induced obesity.
Cani et al. [62] also noted that obesity is closely linked to
the reduction of Bifidobacteria. Turnbaugh et al. [63]
revealed that after consuming HF/HSD, a higher
proportion of the members of the Erysipelotrichi and
Bacilli classes of the Firmicutes was observed compared
with the control group. As an excellent model for the
characterization of the human gut ecosystem, the
humanized gnotobiotic mice would be beneficial as a
proof of principle for “clinical trials.” Daniel et al. [40]
found a decreased proportion of Ruminococcaceae in the
HFD group, which was associated with a significant
decrease in the proportion of carbohydrates, especially
plant polysaccharides in the HFD formula. A nontar-
geted metaproteomic approach indicated that dietary
transformation could change the composition of gut
microbes. It could affect the metabolic pathways, such as
steroid pathways [40]. Meanwhile, another study
revealed that a diet with a low dietary fiber content
could trigger the decrease of the Archaea kingdom, plant
polysaccharides‐degrading Prevotella, and Oscillospira in
HFD rats [41]. Some studies have also noted a negative
correlation between gut microbiota and obesity. Kübeck
et al. [42] indicated that the abundance of Clostridium
was significantly increased in the occurrence of obesity.
It also affects bile acid levels and cholesterol metabolism.
This may relate to the farnesoid X receptor (FXR) signal
transduction pathway of the intestinal microflora [64].
Kang et al. [43] found that high‐fat feeding could lead to
an increased abundance of lipopolysaccharide (LPS)‐
producing family S24‐7. It may cause the elevation of the
bacterial LPS levels in systemic circulation as a feature of
metabolic endotoxemia, and then lead to the aggravation
of obesity with chronic low‐degree inflammation. It
suggested that the increase of LPS‐producing bacteria
may be treated as the potential etiology of obesity in mice
fed with HFD, such as Enterobacteriaceae and Desulfovi-
brionaceae which were belong to Proteobacteria [44].

Short‐chain fatty acids (SCFAs) producing bacteria
were rich in a healthy gut, including Prevotella,
Bacteroides, Ruminococcaceae, and Lachnospiraceae [65,
66]. These SCFAs could benefit humans by maintaining
the intestinal luminal anaerobic environment [44, 67].
Several studies have demonstrated that HFDs and simple
sugars could reduce the abundance of SCFAs producing

bacteria and increase the growth of facultative anaerobic
bacteria. Additionally, Pan et al. indicated that gut
microbiota is closely linked to the metabolism of purine
and uric acids [68]. It is noteworthy that xanthine
oxidase activity is commonly applied for analyzing the
oxidative stress levels of obese people. Hence, oxidative
stress levels could be considered as the critical indicators
and pathways for fat tissue accumulation and hypertro-
phy [69]. Taken together, animal and epidemiological
studies have provided the evidence that diet‐induced
obesity is associated with high levels of blood glucose,
lipid, and metabolic endotoxemia through influencing
the composition of gut microbiota, for example, via
increasing the Firmicutes to Bacteroidetes ratio, LPS‐
producing bacteria, and facultative anaerobic bacteria, or
reducing abundance of SCFAs producing bacteria
(Table 1, Figure 1). As shown in Table 1, the influences
of HFD induced obesity mainly appear in the levels of
Firmicutes and Bacteroidetes phyla. However, most of
the current results were evaluated using 16S ribosomal
RNA (rRNA) sequencing with low accuracy at species
level classification. Therefore, in‐depth studies at the
genetic and functional levels of bacteria based on
metagenome sequencing deems very important for the
investigation of potential mechanisms among diet,
obesity, and gut microbiota at species level. It is
noteworthy that single‐microbe genomics shows unique
insights into further strain‐level variations.

Influences of HFD on gut microbiota
toward diabetes

Diabetes is a serious chronic disease accompanied by
multi‐system complications, including nephropathy, ret-
inopathy, neuropathy, ischemic heart disease, stroke, and
peripheral vascular disease [70]. The International
Diabetes Federation Diabetes Atlas reported that world-
wide diabetes has already reached 463 million in 2019.
Amongst those, more than half of the diabetic patients
were not aware that they had diabetes [71]. In 2020,
WHO indicated that diabetes was already ranked in the
top 10 of mortality worldwide. Type 2 diabetes (T2D) has
been identified as the most prevailing form of diabetes
with over 85% probability [70, 71]. Glovaci et al. [72]
indicated that the main causes of T2D may be attributed
to the deficiency of insulin secretion, which could be
triggered by ethnicity, family history, age, unhealthy diet,
smoking, and obesity.

It is noteworthy that HFD is the main unhealthy
dietary pattern attributed to diabetes. Several studies
have proven that intestinal bacteria play important roles
toward HFD induced diabetes. Cani et al. [45] revealed
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that gut Bifidobacterium spp. exhibited a negative
correlation to endotoxemia in HF mice. Recovery of
Bifidobacterium spp. could be accompanied by improve-
ment of glucose‐induced insulin secretion, glucose
tolerance, and inflammation reduction. This result was
confirmed by Lê et al. [46] reporting that the abundance
of Bifidobacteria significantly decreased in diabetic
patients, suggesting that the abundance of Bifidobacteria
could be served as a microbial biomarker for diabetes
[46]. An epidemiological study also found that diabetic
patients would accompany a high abundance of gram‐
positive anaerobic bacteria in blood [73]. At the same
time, another study showed that >90% of bacteria
belonging to the gram‐negative Proteobacteria phylum
in the blood of patients with type 2 diabetes [74]. The
data indicated that diabetes may affect gut permeability,
further leading to the leakage of bacteria in the blood and
harm to human health. Sato et al. [73] also reported that
the abundance of facultative anaerobic bacteria, such as
total Lactobacillus, in diabetic groups were significantly
increased in fecal samples, which is similar to the
changes observed in obesity. Hence, Lactobacillus of
facultative anaerobic bacteria may be considered as the
potential target for the “Bad” gut microbiota triggered by
HFD induced diabetes or obesity. However, Forslund
et al. reported that the abundance of Lactobacillus is

normal in T2D patients in Sweden or Denmark [75].
Nevertheless, the composition of gut microbiota could
just be a dynamic reference that deserved a further
investigation.

Microbial metabolites derived from an imbalance of
“Good” and “Bad” gut microbiota are also linked to
HFD‐induced diabetes. Wang et al. [76] found that an
imbalance of “Good” and “Bad” gut microbiota led to the
attenuation of the bacterial metabolite SCFAs and
activated HFD‐Gut microbiota‐Butyrate‐Insulin resist-
ance pathway in HFD‐induced diabetes. The similar
results were also noted by Qin et al. and Karlsson et al.
[77, 78]. Liu et al. [47] also found that HFD could
significantly change the composition of gut microbiota
and related metabolic pathways in T2D mice, where the
abundance of S24‐7 family, Rikenellaceae, Parabacter-
oides distasonis (P. distasonis), and Eubacterium dolichum
(E. dolichum) were significantly decreased [47] (Figure 2,
Table 1). Early studies have already confirmed that the
mentioned gut microbiota above possessed health bene-
fits. For example, Weng et al. [79] indicated that P.
distasonis can produce succinic acid and secondary bile
acids, and participate in host metabolism regulation.
Turnbaugh et al. [10] revealed that the E. dolichum can
degrade fructose‐containing carbohydrates to promote
the production of SCFAs, while Rikenellaceae was related

HFD  
(high lipid, less fiber, less 
vitamin, and less mineral)

Gut ecological disorder

Cardiovascular 
diseases

↑ Blood TMAO level

↑ Intestinal permeability

↓ Butyric acid-producing bacteria

↑ Opportunistic pathogen Bile acid metabolism disorder

Gastrointestinal 
diseases

Gut barrier damage

↓ Lactate-producing bacteria

↑ Opportunistic pathogen

Immune cell infiltration

↓ SCFAs-producing bacteria
↑ LPS-producing bacteria ↑ Metabolic endotoxemia

↑ Chronic inflammation

↑ Xanthine oxidase activity

↑ Oxidative stress↑ F/B ratio

Obesity

Neurodegenerative 
diseases

↓ BDNF level in brain and blood↑ Intestinal permeability

↑ LPS-producing bacteria

↑ Opportunistic pathogen

↑ Oxidative stress

↑TMAO level in cerebrospinal fluid

Blood-brain barrier damage

Diabetes

↑ Metabolic endotoxemia↑ Gram-positive bacteria in blood

↑ F/B ratio

↑ Chronic inflammation

↑ Innate immune response

Cholesterol metabolism disorder

↓ SCFAs

Food particles

Gut microbiota 
imbalance

LPS

Gut barrier damage

Bacterial translocation

Bile acids

Innate immune

Neurotransmitters 
and neurotrophic 

factors

Inflammatory cytokines

Cholesterol metabolism

FIGURE 1 Roles of gut microbiota in chronic diseases induced by HFD. BDNF, brain‐derived neurotrophic factor; F/B ratio, ratio of
Firmicutes to Bacteroidetes; HFD, high‐fat diet; LPS, lipopolysaccharide; SCFAs, Short‐chain fatty acids; TMAO, trimethylamine N‐oxide.
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to inflammatory inhibition. These findings all confirmed
that gut microbiota possesses numerous functional
impacts toward human health and plays an important
role in the progress of diabetes.

Diabetes is well known to be closely correlated to the
prevalence of obesity. As shown in Figure 1, the influences
of the composition of gut microbiota and the potential
mechanism of action exhibit highly commonality in
obesity and diabetes. Raising evidence revealed that the
increased F/B ratio, metabolic endotoxemia, and chronic
inflammation are harmful to human health. Meanwhile, it
suggests that SCFAs could have health benefits against
obesity and diabetes. For details, the influences of the
abundance of gut microbiota also exhibit uniformity in
obesity and diabetes shown as Figure 2, such as the
increase of Erysipelotrichaceae and facultative anaerobic
bacteria. Present results suggested that Erysipelotrichaceae
and facultative anaerobic bacteria could be identified as
the “Bad” bacteria triggered the incidences of obesity and
diabetes. However, it requires further confirmation.

Influences of HFD on gut microbiota
toward CVDs

CVDs include coronary heart disease, stroke, heart
failure, and peripheral artery disease [80]. CVDs are the
primary cause of global mortality, accounting for 32% of
global deaths in 2019. More than three‐quarters of
cardiovascular deaths occur in low‐ and middle‐income
countries[81]. In China, 40% deaths are caused by CVDs
[82]. Hypertension, atherosclerotic plaque formation,
myocardial infarction, and heart failure are highly
related to gut microbiota [28, 83].

Polsinelli et al. and Tang et al. [84, 85] reported that
patients with injured intestinal epithelial barrier also
accompany heart failure. Tang et al. reported that heart
failure is also highly related to specific intestinal microbes,
including an increase of Escherichia coli, Klebsiella
pneumoniae, and Streptococcus viridans. It was further
proved that gut microbiota and its metabolites may enter
the blood circulation, and then invade the organs [86]. In
addition, Kim et al. [8] also proved that hypertension will
lead to a significant decrease of abundances of butyric acid‐
producing bacteria Eubacterium rectale. Yin et al. found
that patients with stroke or transient ischemic attack have
significantly reduced the abundance of Bacteroides, Pre-
votella, and Faecalibacterium, but enriched opportunistic
pathogens such as Enterobacter, Megasphaera, Oscillibacter,
and Desulfovibrio [48]. In the impaired metabolic status
and drug treatment, the depletion of unknown Clostridia-
ceae (SGB 4712) has been associated with major metabo-
lites of p‐cresol and higher abundances of Proteobacteria
was found in patients with acute coronary syndrome than
health individuals [49, 87]. Taken together, increasing
evidence suggests that onset and progress of CVDs could
affect the abundance of specific microbes and lead to gut
microbiota dysbiosis. However, the potential mechanisms
of influencing gut microbiota toward CVDs should be
clarified.

Hypertension and hypercholesterolemia are the main
risk factors for CVDs. HFD was treated as the main cause
of hypertension and hypercholesterolemia toward CVDs. It
is largely responsible for hyperlipidaemia, liver steatosis,
and gut microbiota dysbiosis [88]. Zhang et al. [50] proven
that HFD may promote myocardial injury through
increasing intestinal permeability and the elevation of
serum trimethylamine N‐oxide (TMAO) levels. Shi et al.

↓ Prevotella (rats)

↓ Bacteroides (rats)

↓ Oscillospira (rats)

↓ Archaea kingdom (rats)

↓ Lachnospiraceae (mice)

↓ Ruminococcaceae (mice)

↑  F/B ratio (mice)

↑Lactobacillus (human)

↑ Ruminococcaceae (mice)

↑ Erysipelotrichaceae (mice)

↑ Facultative anaerobic bacteria (human)

↓ Akkermansia (human)

↓ Lactobacillus spp. (human)

↓ Eubacterium hallii (human)

↓ Escherichia rectale (human)

↓ Anaerostipes caccae (human)

↑ F/B ratio (mice)

↑ Bacilli (human)

↑ S24-7 family (mice)

↑ Erysipelotrichi (human)

↑ Enterobacteriaceae (rats)

↑ Desulfovibrionaceae (rats)

↑ Facultative anaerobic bacteria (human)

↓ S24-7 family (mice)

↓ Eubacterium (mice)

↓ Rikenellaceae (mice)

↓Bifidobacteria (human)

↓ Bifidobacterium (mice)

↓ Parabacteroides distasonis (mice)

↑  F/B ratio (human)

↑ Allobaculum (mice)

↑ Bilophila wadsworthia (mice)

↑ Escherichia coli-Shigella (mice)

Obesity

Diabetes

Gastrointestinal 
diseases

↓ Prevotella (human)

↓ SGB 4712 (human)

↓ Odoribacter (mice)

↓ Clostridium (mice)

↓ Akkermansia (mice)

↓ Bacteroides (human)

↓ Prevotellaceae (mice)

↓ Muribaculaceae (mice)

↓ Christensenellaceae (mice)

↑ Turicibacter (mice)

↑ Lactobacillus (mice)

↑ Streptococcus (mice)

↑ Oscillibacter (human)

↑ Enterobacter (human)

↑ Megasphaera (human)

↑ Desulfovibrio (human)

↑ Faecalibacterium (human)

Cardiovascular 
diseases

↑ Firmicutes (mice)

↑ Roseburia (mice)

↑ Clostridium (mice)

↑ Prevotella (human)

↑ Acinetobacter (rats)

↑ Coprobacillus (mice)

↑ Anaeroplasma (mice)

↑ Anaeroplasmataceae (mice)

↑ [Clostridium] leptum (human)

↑ Erysipelotrichaceae families (mice)

↓ RC4-4 (mice)

↓ S24-7 families (mice)

↓ Bacteroidetes (mice)

↓ Rikenellaceae (mice)

↓ F. prausnitzii (human)

↓ Peptococcaceae (mice)

↓ Dehalobacterium (mice)

↓ Unclassified S24-7 (mice)

↓ Dehalobacteriaceae (mice)

↓ Bilophila wadsworthia (human)

↓ Unclassified Rikenellaceae (mice)

↓ Unclassified Coriobacteriacea (mice)

Neurodegenerative 
diseases

FIGURE 2 Influence of intestinal microbiota in chronic diseases under HFD model. HFD, high‐fat diet.

MECHANISMS OF HIGH‐FAT DIET | 9 of 23



[51] also noted that HFD can induce atherosclerosis with
endothelial dysfunction caused by TMAO. TMAO is an
oxidation product metabolized by the metabolite trimethy-
lamine of intestinal microbial through liver flavin‐
containing monooxygenase 3 (FMO3) [89]. Studies have
confirmed that TMAO can be identified as an adverse
contributor to CVDs [90–92]. As shown in Figure 1, apart
from intestinal permeability and TMAO levels, bile acids
are also a potential factor involved in the mechanism of gut
microbiota toward CVDs. Multiomics analysis revealed
that Lachnoclostridium and unidentified Enterobacteria-
ceaewere significantly enriched in CVDs. It also found that
they were closely linked with taurocholic acid, participated
in the bile acid metabolism [93]. Primary bile acids can be
transformed into secondary bile acids with the help of gut
microbiota, including taurocholic acid. As a signal mole-
cule, bile acids could bind with FXR and Takeda G protein‐
coupled receptor 5 (TGR5) to further promote immune cell
filtration and regulate lipid metabolism. However, excess
bile acids may contribute to inflammation and cholesterol
metabolism disorder [94]. In Ldlr−/− (Casp1−/−) mice with
pro‐inflammatory microorganisms exposed to HFD, the
systemic inflammation was accompanied with the changed
composition of intestinal flora, decreased SCFAs level, but
non affected TMAO and gut integrity, which eventually
accelerated atherosclerosis [52]. The present findings
established that HFD induced CVDs may lead to gut
microbiota dysbiosis by disrupting the metabolism of bile
acid, TMAO and SCFAs produced by butyric acid
producing bacteria, opportunistic pathogens, Lachnoclos-
tridium, unidentified Enterobacteriaceae, and SCFAs pro-
ducing bacteria (Table 1).

Influences of HFD on gut microbiota
toward gastrointestinal diseases

Gut microbiota mainly reside in gastrointestinal tract,
playing critical roles in gastrointestinal diseases. Richard
and Sokol indicated that a functional disturbance of the
gut ecosystem is highly associated with gastrointestinal
diseases [95]. Ulcerative colitis (UC) and irritable bowel
syndrome (IBS) are common chronic diseases of the
gastrointestinal tract with characterization of the
repeated attacks and long‐term illness [96]. UC is defined
as the progressive or chronic remittent inflammatory
condition known as inflammatory bowel disease (IBD),
mainly distributed in the descending colon, sigmoid
colon or rectum [97]. Bloody diarrhea, abdominal pain,
and rectal urgency are the typical symptoms of UC [98].
Rashvand et al. [99] conducted on newly diagnosed UC
patients (<6 months), found that the number of patients
with high fat intake was significantly higher than control

group. Furthermore, Jowett et al. [100] also pointed out
that the high intake of meat is related to an increased risk
of recurrence of colitis. Ma et al., and Teixeira et al. also
revealed that HFD could effectively aggravate the
progress of UC [101, 102]. Besides, Rashvand et al. has
noted a close correlation between saturated fat and UC,
while high intake of total polyunsaturated fatty acids or
monounsaturated fatty acids was linked with high risk of
UC [99]. Studies from the United States, Spain, Ireland,
and the Czech Republic also showed that UC patients
appeared with a significantly decrease of the abundance
of Akkermansia [55, 103, 104]. However, numerous
research reported the abundance of Escherichia rectale
was dominant decline in UC [54, 105, 106]. Devkota et al.
revealed that milk derived fat could significantly promote
the proliferation of pathogenic bacterium B. wadsworthia
by boosting the change of bile acid composition to
exacerbate the onset of colitis [55]. Furthermore,
Devkota et al. found that under the protection of bile,
B. wadsworthia in the GF IL10−/− mice would establish a
niche containing other pathogenic bacteria or pathogens
[55]. In addition, metabolic products such as H2S and
secondary bile acids can destroy the intestinal barrier
and increase the infiltration of immune cells, leading
to an increase in the prevalence of IBD. Li et al. proved
that UC with HF/HSD will significantly increase the
abundance of Allobaculum and Escherichia coli‐
Shigella [107].

IBS is one of the most common gastrointestinal
diseases, characterized as abdominal pain and transfor-
mation in bowel habits, with a prevalence rate ranging
from 5% to 18% [108]. IBS is mainly divided into
diarrhea type and constipation type, both of which are
related to gut microbiota [33]. The gut microbiota are
affected by environmental factors like diet patterns,
stress infection, antibiotic use, and host factors such as
immune activation and low‐grade inflammation [96].
The changes in intestinal bacteria in patients with
diarrhea‐predominant IBS are mainly related to the
decrease of beneficial bacteria, such as Lactobacillus
spp., Actinobacteria, and Bacteroidetes, while signifi-
cantly increasing the harmful bacteria such as Proteo-
bacteria [56–58]. In contrast, constipation‐predominant
IBS patients have significantly increased Firmicutes and
decreased lactate‐producing bacteria like Eubacterium
hallii and Anaerostipes caccae [109, 110]. Furthermore,
fecal bacteria from IBS patients were colonized in
rodents, leading to the appearance of IBS‐like symp-
toms, indicated that microbes played an undeniable role
in the occurrence and development of IBS [111, 112].
The etiology of IBS may be associated with abnormal
gastrointestinal motility, increased visceral sensitivity,
low‐grade inflammatory reaction, and brain‐gut axis
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caused by intestinal bacteria disorder [113]. Diet is one
of the factors directly affecting intestinal bacteria. A
study of 197 IBS patients showed that the course of the
disease was related to eating high‐fat or fried foods in
more than half of patients [114]. In conclusion, HFD
may promote the development of UC and IBS through
intestinal bacteria (Figure 1, Table 1). However, the
corresponding mechanism of HFD induced UC and IBS
by gut microbiota modulation remains obscure and is
worthy of further exploration.

Influences of HFD on gut microbiota
toward neurodegenerative diseases

Physical functions of the human body will gradually
deteriorate with age. Feigin et al. [115] indicated that
cognitive impairment or dementia with deterioration in
memory, thinking, behavior, and self‐care ability are the
main reasons for the worldwide disability of elderly. Due
to the aging population and environmental factors, the
epidemic is increasing at an alarming rate. There are
about 50 million dementia patients worldwide, and
nearly 10 million new cases increase every year [116].
Alzheimer's disease (AD) with clinical manifestations of
memory loss and cognitive impairment are the most
common form of dementia which is almost incurable
[32, 50].

Microbes may be potential candidates for biotherapy
intervention in AD. Compared with the control,
decreased Faecalibacterium Prausnitzii (F. Prausnitzii)
in feces was associated with lower cognitive score [60].
Further, isolated F. Prausnitzii could improve the
cognitive impairment of AD mice [60]. In addition, a
cohort by Verhaar et al. [59], conducted on 170 AD
dementia patients from the Netherlands, found that the
low abundance of SCFAs producing bacteria was
positively correlated with incidence of dementia biomar-
kers such as positive amyloid and p‐tau status using 16S
rRNA sequencing and machine learning models.

As shown in Table 1, HFD could promote the onset of
AD by impacting the gut microbiome. In mouse models
with a genetic predisposition to AD, there were similari-
ties between HFD feeding and genetically predisposed
AD mice, and this effect was superimposed [9]. Heatmap
showed that the increase in Firmicutes phylum, Anaero-
plasmataceae, Erysipelotrichaceae families, Coprobacillus,
Clostridium, Anaeroplasma and Roseburia genera as well
as the decrease in Bacteroidetes phylum, Peptococcaceae,
Rikenellaceae, Dehalobacteriaceae, S24‐7 families, RC4‐4,
Dehalobacterium, Unclassified Coriobacteriacea, and
Unclassified Rikenellaceae were largely relevant to brain
hypometabolism.

In parallel, the results demonstrated that abnor-
mal specific intestinal bacteria and their metabolites
might occur earlier than the appearance of obvious
cognitive impairment, which could be further studied as
a predictive marker. High‐fat feeding resulted in the
imbalance of intestinal bacteria exhibited an increase in
the number of Acinetobacter‐producing LPS [117]. Wei
et al. demonstrated that the outer membrane containing
LPS injections could cause cognitive impairment, mainly
through increasing barrier permeability, activating glyco-
gen synthase kinase‐3β (GSK3β), tau hyperphosphoryla-
tion, and activating microglia, which will lead to
neuroinflammation [118]. In addition, a long‐term HFD
may destroy the blood‐brain barrier and allow LPS to
reach the brain regions related to AD, such as the
neocortex and hippocampus [119]. In the microglia
membrane, an LPS‐CD14 complex combined with LPS
and CD14 further interacted with toll‐like receptor 4
(TLR‐4). Then, TLR‐4 activated astrocytes and released
inflammatory mediators to induce oxidative stress and
inflammation, finally resulting in the accumulation of
β‐like protein and intraneuronal neurofibrillary tangles
(NFT) in the brain [117]. In addition, the accumulation
of LPS near the nucleus of neurons led to changes in the
expression of genes encoding various proteins, such as
synapsin‐1, which was also one of the possible mecha-
nisms. Pathogens themselves could also cross the
damaged intestinal barrier, shuttle through the systemic
circulation system and trigger inflammation, and might
enter the central nervous system to participate in the
activation of microglia [120]. Neurotransmitters were
closely related to cognitive function. The majority of
neurotransmitters could be produced by gut microbiota,
including gamma‐aminobutyric acid (GABA) (Lactoba-
cillus and Bifidobacterium), serotonin and dopamine
(Escherichia coli), and acetylcholine (Lactobacillus)
[121]. These neurotransmitters regulated the expression
of neurotrophic factors such as brain‐derived neuro-
trophic factor (BDNF) secreted by intestinal smooth
muscle cells [122]. The low expression of BDNF in the
brain and plasma of HFD animals was accompanied by
intestinal bacteria disbalance [122]. A high saturated fat
diet led to the increase of TMAO, a gut microbial
metabolite [123]. High levels of TMAO in the cerebro-
spinal fluids of patients with mild cognitive impairment
and Alzheimer's disease might be related to the
pathology and neurodegeneration of tau [124]. Thus,
TMAO may also promote the development of cognitive
impairment.

Therefore, the elderly should pay special attention to
a healthy diet. HFD increases the risk of cognitive
impairment and even aggravates AD (Figures 1 and 2).
Notably, most existing studies focus on the role of
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intestinal bacteria in cognitive impairment caused by
HFD. However, there are few studies reporting how HFD
promotes disease development through intestinal bacte-
ria via the AD model.

Interacted mechanisms of HFD on gut
microbiota toward chronic diseases

As mentioned above, numerous studies noted that HFD is
closely related to gut microbiota dysbiosis in chronic
diseases. The corresponding impacts on the gut microbiota
toward obesity, diabetes, gastrointestinal diseases, neuro-
degenerative diseases, and CVDs are summarized in
Table 1, Figures 1 and 2. Further interaction mechanisms
toward HFD induced chronic diseases through gut
microbiota modulation underlying bile acids, LPS, SCFAs,
and TMAO were demonstrated as followed.

Bile acid

Bile acids are critical to fat metabolism, existing in the
systems of enterohepatic circulation. Staley et al. and Lin
et al. indicated that specific intestinal bacteria would
interact with bile acids to affect the levels of secondary

bile acids by 7α‐dehydroxylation reaction, such as
Eubacterium, Clostridium, Ruminococcaceae, and Blautia
[125, 126]. Lin et al. [126] have demonstrated that HFD
could significantly increase the expression levels of
deoxycholic acid (DCA), while decreasing the levels of
ursodeoxycholic acid (UDCA). The elevation of DCA
levels can disrupt the membrane structure of plasma and
destroy the membrane integrity [126], whereas the
descending UDCA levels can lead to the intestinal barrier
dysfunction [127, 128]. The increase in DCA levels and
the decrease of UDCA levels will also promote the
growth of pathogens and accompany the production of
hydrogen sulfide which will injure the intestinal wall. As
shown in Figure 3, bile acids may mainly modulate the
lipid metabolism, insulin resistance, and immune cell
infiltration through regulating TGF5 or FXR receptors
mediated signaling [129]. Altogether, high fat intake may
trigger chronic diseases by simulating the secretion of
bile acids through various mechanisms. Lin et al. and
Parséus et al. indicated that cholic acid (CA), cheno-
deoxycholic acid (CDCA), lithocholic acid (LCA), and
DCA are identified as the agonists of FXR receptors,
while UDCA and TβMCA are treated as the antagonists
of FXR [64, 126]. Indeed, several studies also found that
the inhibition of FXR receptor and the activation of
TGR5 mediated signaling are closely linked with the lipid

FIGURE 3 Potential mechanisms of interaction between HFD and chronic diseases via bile acid. Cholesterol can stimulate the secretion
of bile acids, which forms a secondary bile acid with the help of intestinal bacteria through a 7α‐dehydroxylation reaction. Secondary bile
acids like DCA with high hydrophobicity disrupt the plasma membrane structure and destroy the intestinal barrier, while opportunistic
pathogens resistant to bile rapidly multiply. As a signal molecule, bile acids bind FXR and TGR5 to further promote immune‐cell
infiltration, regulate insulin resistance and regulate lipid metabolism. DCA, deoxycholic acid; FXR, farnesoid X receptor; TGR5, Takeda G
protein‐coupled receptor 5; UDCA, ursodeoxycholic acid.
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metabolism regulation, treated as the interacted mecha-
nisms of bile acids in HFD induced chronic diseases
[64, 126, 129].

LPS

LPS is the vital structural component of the membrane of
gram‐negative bacteria. As mentioned above, evidence
indicated that HFD could induce chronic diseases
accompanying with the elevation of bacterial LPS levels
in systemic circulation [43]. Some LPS‐producing bacte-
ria could be the potential etiology of HFD‐induced
chronic diseases, such as Enterobacteriaceae and Desul-
fovibrionaceae [44]. As shown in Figure 4, bacterial LPS
could effectively activate receptors CD14 and TLR4 on
surfaces of immune cells, adipocytes, glial cells [129].
Zakaria et al. and Jeong et al. also proved that LPS could
stimulate the secretion of pro‐inflammatory cytokines

through the activation of nuclear factor kappa‐B (NF‐κB)
pathway, including Tumor necrosis factor alpha (TNF‐α),
Interleukin 6 (IL‐6), and Interleukin 1 beta (IL‐1β)
[117, 130]. Additionally, HFD will increase the intestinal
permeability which will lead to the diffusion of LPS in
the systemic circulation [131]. It also will lead to the
reduction of cognitive ability and the aggravation of
anxiety through blood‐brain barrier disruption by in-
hibiting the expression levels of BDNF and the phospho-
rylation levels of cAMP response element‐binding
protein (CREB) [130, 132]. Additionally, Zakaria et al.
and Jeong et al. also revealed that LPS could affect the
expression of synapsin‐1 protein gene, which is closely
linked to the HFD triggered psychiatric disorders [117,
130]. Current findings established that HFD may trigger
chronic diseases mainly through activation of the TLR4/
NF‐κB pathway or inhibiting the expression levels of
BDNF, CREB, and synapsin‐1 by LPS stimulation.
However, the interacted mechanism among blood‐brain
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FIGURE 4 Potential mechanisms of interaction between HFD and chronic diseases via LPS. LPS, a structural component of the outer
membrane of gram‐negative bacteria, penetrate the intestinal wall and reaches the corresponding tissues such as the blood systemic
circulation and brain. TLR4 is expressed in immune cells, adipocytes, glial cells, and other cells. Hence, LPS causes inflammation via NF‐κB,
thus promoting obesity and brain degeneration. Furthermore, LPS inhibits the expression of BDNF and CREB phosphorylation, and inhibits
the expression level of synapsin‐1 in the brain. BDNF, brain derived neurotrophic factor; CD14, cluster of differentiation 14; CREB, cAMP
response element‐binding protein; IL‐6, interleukin 6; IL‐1β, interleukin 1β; LPS, lipopolysaccharide; NF‐κB, nuclear factor κB; TLR4,
Toll‐like receptor 4; TNF‐α, tumor necrosis factor α.
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barrier, gut‐brain axes, and gut immune barrier remain a
diagnostic challenge to scientists.

SCFAs

Acetate, propionate, and butyrate are the metabolic
products of anaerobic fermentation of dietary fiber by
colon bacteria, which can be used as signal molecules
to further regulate host metabolic homeostasis. Gener-
ally, SCFAs, especially butyrate, increase the expres-
sion of glucagon‐like peptide‐1 (GPL1) and peptide YY
(PYY) by activating G protein‐coupled receptors
(GPRs) and peroxisome proliferator‐activated receptor
gamma (PPAR‐γ). The satiety hormones GPL1 and
PYY further act on the brain‐gut axis to regulate
appetite and energy metabolism [133, 134]. PPAR‐γ
can maintain an intestinal anaerobic environment
(related to β‐oxidation), activate glucose and lipid
metabolism genes, and inhibit inflammatory response,
related to the inhibition of NF‐κB [135]. Moreover,
butyrate acts on colonocytes, promotes β‐oxidation of
mitochondria, and reduces oxygen saturation in the
intestinal cavity [136]. HFD greatly reduces the
content of SCFAs, resulting in energy metabolism
disorder and excessive reproduction of the pathogenic
facultative anaerobic bacteria Escherichia coli [137]
and the production of pro‐inflammatory factors [33]
(Figure 5).

TMAO

Numerous studies have implied that TMAO could be an
independent risk factor for CVDs [138, 139]. Vogt et al.
[124] also noted a positive correlation between high
TMAO levels in the brain and the deterioration of
cognitive impairment and AD. As mentioned above,
HFD can significantly promote the production of choline
and modulate the abundance of specific gut microbes.
Additionally, methylamine‐contained nutrients are com-
monly existed in fat‐rich western diets, such as choline,
lecithin, and L‐carnitine [138]. The fact that long‐term
consumption of western diets will greatly increase the
risk of CVDs and nervous system diseases suggests that
HFD possessed a close link to CVDs perhaps through the
high levels of choline. As shown in Figure 6, diet‐induced
choline could be further metabolized by Clostridia and
Enterobacteriaceae and converted into trimethylamine
(TMA), followed by the concomitant conversion into
TMAO by Flavin‐containing monooxygenase (FMO) in
liver [140–142]. Hence, HFD can effectively modulate
TMAO. It is noteworthy that the expression levels of
FMO also could be affected by the regulation of HFD
mediated bile acids [143]. The increase of TMAO will
further stimulate the secretion of inflammatory cytokines
through the activation of NF‐κB pathway, leading to the
endothelial dysfunction. Apart from that, the increase of
TMAO also will aggravate neurodegeneration through
attenuating the synaptic plasticity by protein kinase
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FIGURE 5 Potential mechanisms of interaction between HFD and chronic diseases through SCFAs. HFD reduces the synthesis of
SCFAs in the host. SCFAs can inhibit an inflammatory reaction, maintain the anaerobic environment of the intestinal cavity, and regulate
appetite, energy metabolism, glucose and lipid metabolism. GPL1, glucagon‐like peptide‐1; GPR, G protein‐coupled receptor; NF‐κB, nuclear
factor κB; PPAR‐γ, peroxisome proliferator‐activated receptor γ; PPY, peptide YY; SCFAs, short‐chain fatty acids.
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RNA‐like ER kinase (PERK) signaling inhibition. Alto-
gether, present results demonstrated that HFD will
induce CVD through the activation NF‐κB pathway or
inhibition of PERK signaling by the increase of TMAO.
However, whether TMAO also plays an important role in
the mechanism of other chronic diseases deserves further
exploration.

CONCLUSION

Chronic diseases are the leading cause of death in the
world. HFD has been noted as the main risk factor for
chronic diseases. It may lead to gut microbiota dysbiosis,
which will impact the aggravation of chronic diseases. In
this review, the influences of HFD on the composition of

gut microbiota and the potential mechanisms toward
corresponding chronic diseases are systematically sum-
marized. First, the review revealed that HFD induced
obesity and diabetes exhibited high commonality and
features on the influence of the composition of gut
microbiota, accompanied by the increase of F/B ratio,
metabolic endotoxemia, and chronic inflammation. It
also suggested that Erysipelotrichaceae, Bifidobacteria and
facultative anaerobic bacteria could be identified as
bacterial markers to trigger incidences of obesity and
diabetes. Enterobacteriaceae and Desulfovibrionaceaemay
be the potential etiology of obesity, while P. distasonis
and E. dolichum are closely related to diabetes. Second,
this review also established that butyric acid producing
bacteria, opportunistic pathogen, Lachnoclostridium,
and unidentified Enterobacteriaceae are identified as the
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FIGURE 6 Potential mechanisms of interaction between HFD and chronic diseases through TMAO. Choline can be metabolized into
TMA by intestinal bacteria, which is further processed into TMAO by FMO in the liver. In addition, the expression of FMO is also affected
by bile. TMAO entering the blood vessels is related to vascular inflammation, endothelial dysfunction, foam cell formation, atherogenic
plaques as well as insulin resistance. TMAO in the brain can affect synaptic plasticity and cause neurodegeneration, and the atherosclerosis
of brain blood vessels is also an important factor of dementia. CREB, cAMP response element‐binding protein; FMO, flavin‐containing
monooxygenase; HFD, high‐fat diet; NF‐κB, nuclear factor κB; NO, nitric oxide; PERK, protein kinase RNA‐like ER kinase; TMA,
trimethylamine; TMAO, trimethylamine N‐oxide.
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characteristic microbes in HFD induced CVDs. Third,
lactate‐producing bacteria and opportunistic pathogens
are treated as the common microbial markers in
HFD‐induced gastrointestinal diseases with details as
shown in Figure 2 and Table 1, including Proteobacteria,
Escherichia coli‐Shigella, and Allobaculum. Fourthly,
LPS‐producing bacteria and opportunistic pathogens
were also identified as the general microbial markers in
HFD induced neurodegenerative diseases, including
E. coli, Desulfovibrio, and unidentified Enterobacteriaceae.

Additionally, this review also discussed that bile
acids, LPS, SCFAs, and TMAO could be the commonal-
ities and features of bacterial metabolites in chronic
diseases. Further interacted mechanisms toward HFD
induced chronic diseases through gut microbiota
modulation underlying bile acids, LPS, SCFAs, and
TMAO were illustrated in Figures 3–6. As shown in
Figures 3–6, accumulating evidence concluded that
HFD may influence the gut microbiota mediated bile
acids and chronic diseases through the inhibition of
FXR receptor and activation of TGR5 mediated signal-
ing. HFD can mainly affect gut microbiota mediated
SCFAs to induce chronic disease through activation of
the NF‐κB pathway and PPAR‐γ inhibition. Numerous
results also established that microbes mediated LPS
could have a positive impact on the promotion of HFD
induced chronic diseases through the activation of the
TLR4/NF‐κB pathway, and inhibition of the expression
levels of BDNF, CREB, and synapsin‐1. TMAO can be
considered as an independent risk factor for CVDs. HFD
may influence CVDs by the modulation of gut micro-
biota interacted TMAO through inhibiting PERK
signaling. However, the impact of TMAO toward other
chronic diseases remains scarce. While current results
are based upon 16S rRNA sequencing with low accuracy
at species level classification, future studies based on
metagenome sequencing to investigate potential mech-
anisms among diet, obesity, and gut microbiota at the
genetic and functional levels of bacteria remain a
prospective challenge to scientists. It is noteworthy that
single‐microbe genomics shows unique insights into
further strain‐level variations.

Interactive mechanisms of gut microbiota modulation
in the human body are very complex, especially given the
impacts of diet on chronic diseases. This review
systematically summarizes the influences of gut micro-
biota and their corresponding bacterial metabolites,
which we hope will provide new insights into mecha-
nisms among microbiota, metabolites, and immune
responses during chronic diseases. The suggestion of
potential biomarkers may improve holistic thinking
about the issues surrounding long‐term care and disease
management.
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