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Abstract

Metagenomic evidence of great genetic diversity within the nonconserved

regions of the human gut microbial genomes appeals for new methods to

elucidate the species‐level variability at high resolution. However, current

approaches cannot satisfy this methodologically challenge. In this study, we

proposed an efficient binning‐first‐and‐assembly‐later strategy, named Meta-

Trass, to recover high‐quality species‐resolved genomes based on public

reference genomes and the single‐tube long fragment read (stLFR) technology,

which enables cobarcoding. MetaTrass can generate genomes with longer

contiguity, higher completeness, and lower contamination than those

produced by conventional assembly‐first‐and‐binning‐later strategies. From a

simulation study on a mock microbial community, MetaTrass showed the

potential to improve the contiguity of assembly from kb to Mb without

accuracy loss, as compared to other methods based on the next‐generation
sequencing technology. From four human fecal samples, MetaTrass success-

fully retrieved 178 high‐quality genomes, whereas only 58 ones were provided

by the optimal performance of other conventional strategies. Most impor-

tantly, these high‐quality genomes confirmed the high level of genetic

diversity among different samples and unveiled much more. MetaTrass was

designed to work with metagenomic reads sequenced by stLFR technology,

but is also applicable to other types of cobarcoding libraries. With the high

capability of assembling high‐quality genomes of metagenomic data sets,

MetaTrass seeks to facilitate the study of spatial characters and dynamics of

complex microbial communities at enhanced resolution. The open‐source
code of MetaTrass is available at https://github.com/BGI-Qingdao/MetaTrass.
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Highlights

• MetaTrass is the first metagenome assembly tool implemented by the

binning‐first‐assembly‐later strategy and it is freely available at https://

github.com/BGI-Qingdao/MetaTrass.

• MetaTrass integrates the cobarcoding and the reference genome informa-

tion to achieve a high capability of generating high‐quality genomes at the

species level for the human gut microbial communities.

• MetaTrass uses the cobarcoding correlation between short‐length reads to

reduce false‐negatives in conventional taxonomic binning and improve the

contiguity of draft assemblies.

INTRODUCTION

Through sequencing and analyzing the DNA of microbial
communities directly from the environment, metage-
nomics has shown significant promise in advancing the
study of uncultured microbiomes [1, 2]. A high level of
genetic diversity has been unveiled by the growing
number of comprehensive metagenome‐assembled
genomes (MAGs), particularly from human gut micro-
biomes [3, 4]. The progress in metagenomics has shed
new light on the study of spatial distribution and
dynamics of complex microbial communities from the
human gut [5–7].

Functional mining of high‐quality strain‐resolved
genomes revealed a strong correlation between genotypic
differences among strains and their phenotypic differ-
ences [8, 9]. Intra‐species nonhomologous genes can
serve as biomarkers to distinguish pathogenic strains
from their commensal counterparts within a species
[10–12]. The percentage of conserved intra‐species
homologous genes shared among strains could be as
low as 40% [13], and the remaining nonconserved
genome sequences are considered to have a significant
contribution to the phenotypic diversity of microorgan-
isms. Therefore, complete genomes from a microbial
sample at the species level will enable a more compre-
hensive view of intra‐species genome diversity. But it is
still a challenge to generate sufficient high‐quality
genomes from metagenomic data sets.

Most of the current approaches to analyzing micro-
bial communities are designed to work with economical
next‐generation sequencing (NGS or high‐throughput
sequencing [HTS]) reads [14]. Many highly modularized
computational tools have been developed, including
genome assemblers, genome binners, taxonomic binners,

and taxonomic profilers [15–17]. The assembly‐first‐and‐
binning‐later strategies have been commonly used to
generate MAGs. In these conventional strategies, short
reads from a microbial community are first assembled
into longer sequences by metagenomic assemblers with
the consideration of uneven coverage depths of different
microbial species [18–20] and further grouped into
individual genomes by genome binners based on K‐mer
composition and read coverage [21–23]. However, these
conventional strategies often failed to resolve the long
inter‐species repeats during contig reconstruction. There-
fore, the contiguity of the draft genomes recovered from
NGS reads remains not long enough to study large
structural variations in microbial genomes.

Various sequencing technologies with long‐range
information accompanied by specialized computational
tools have been released to overcome the problem of long
repeats. The third‐generation single‐molecule real‐time
sequencing (TGS) technologies developed by Pacific
Biosciences and Oxford Nanopore Technology (ONT)
can produce contiguous reads with lengths up to
hundreds of kilobases, and they show great potential to
generate complete genomes from both cultured and
uncultured microbial communities [24–26]. With the use
of chromatin‐level contact probability information gen-
erated by high‐throughput chromosome conformation
capture (Hi‐C) technology, more high‐quality MAGs with
improved contiguity can be retrieved [27]. For NGS data
sets, the coabundance of species in multiple samples with
the common K‐mer composition is also used to improve
the capability to achieve better assembly quality [28].
However, these approaches have several limitations. The
high sequencing error rate in TGS long reads hampers
the distinction between true biological variations and
sequencing errors. An effective contact map with an Hi‐C
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library can only be established for a draft genome with
long contiguity. Constructing coabundance in multiple
samples ignores the genome characteristics of a single
sample and increases the sequencing cost.

The cobarcoding sequencing library [29–33], an
improved short‐read sequencing technology with long‐
range genomic information, can provide an alternative
way to improve metagenomic analysis. In cobarcoding
library construction, long fragments of DNA molecules
are first distributed into different isolated partitions
and further sheared into shorter subfragments. Then
these subfragments are indexed with a unique barcode
(DNA cobarcoding). Finally, the cobarcoded subfrag-
ments are sequenced by standard short‐read sequenc-
ing platforms. For different cobarcoding libraries, such
as BGI's single tube long fragment reads (stLFR) [32],
10X Genomics' linked‐reads [34], and Illumina's
contiguity preserving transposase sequencing [30],
technical differences in the number of barcodes and
the short‐read coverage of the original long fragment
have a great impact on the downstream analysis
[35–38]. The cobarcoding correlation on the draft
sequences or the assembled graph has been successfully
applied to improve the contiguity of assembled
genomes for both large eukaryotic genomes [39–41]
and metagenomes [31, 42, 43]. However, none of these
conventional strategies can conquer the inherent
problem of long repeats among species with uneven
abundance for complex microbial communities.

In this study, we introduce a pipeline named
Metagenomic Taxonomy Read Assembly of Single
Species (MetaTrass) based on cobarcoding sequencing
data and reference genomes. Unlike conventional strate-
gies, MetaTrass is featured with an integrative binning‐
first‐and‐assembly‐later approach. The cobarcoding
information is mainly used for two purposes. First, it
facilitates the initial taxonomic binning procedure by
clustering reads with the same barcode. Second, it
improves the assemblies by providing long‐range infor-
mation. We applied MetaTrass to stLFR data sets of a
mock microbial community and four human gut
microbial communities to evaluate its capability of
producing high‐quality draft genomes with long contigu-
ity and high taxonomic resolution. The microbiome
composition and genetic diversity in the four human gut
microbial communities were quantitatively analyzed
using the high‐quality draft genomes assembled by
MetaTrass. In addition, the high‐quality draft genomes
assembled by MetaTrass have clear taxonomic informa-
tion determined by the taxonomic binning, thus benefit-
ing the microbial downstream analysis. All results were
benchmarked by comparison with the existing main-
stream tools.

RESULTS

MetaTrass pipeline

In this study, we developed a metagenome assembly
pipeline named MetaTrass that integrates the informa-
tion of reference genomes and DNA cobarcoding
technology. As shown in the flowchart (Figure 1A), the
taxonomic binning of stLFR reads was carried out before
the genome assembling, unlike conventional assembly‐
first‐and‐binning‐later strategies. In taxonomic binning,
the metagenomic stLFR reads were classified into
different taxonomic ranks by Kraken2 [44]. Due to the
inherent limitations of Kraken2, only reads from
conserved species‐specific regions can be successfully
classified into the corresponding species. On the con-
trary, reads from inter‐species repeat and unique
genome‐specific regions could not be effectively classified
(Figure 1B). Here, the species‐specific regions represent
similar or repeat sequences among genomes from the
same species. The inter‐species repeat regions represent
similar or repeat sequences among genomes from
different species. The unique genome‐specific regions
represent dissimilar sequences between genomes from
the same species. The reads from inter‐species repeat
regions are classified into the higher taxonomic ranks of
the target species and those from unique genome‐specific
regions are categorized as unclassified. In total, about
10% of the reads were classified into ranks higher than
the bacterial species level for the four human fecal data
sets and about 9% of the reads were unclassified
(Supporting Information: Table S1). In the step of
cobarcoded read refinement, the cobarcoding correlation
between the reads from species‐specific regions and those
from inter‐species repeat or unique genome‐specific
regions was used to refine the final read set for a target
species (Supporting Information: Figure 1B). The bar-
codes of the species‐specific reads were first extracted as
the candidate barcodes. Then, the final barcodes were
collected by a constraint of data size and the quality of
cobarcoding information. Finally, reads of the target
species were collected based on the final barcodes to be
assembled in the following step. A data size threshold
was set to reduce computational consumption for the
species with extremely high abundance. The data size
threshold was set to 300× by default according to the
parameter sweep results of the sample P_Gut_Meta01
(Supporting Information: Table S2). The quality of
cobarcoding information of a specific barcode was
quantified by the number of reads with a confident
species classification and the proportion of these reads
among the total reads. In cobarcoded read assembly, the
refined reads of each species were independently

METAGENOME ASSEMBLING BY COBARCODING SEQUENCING READS | 3 of 17



assembled by Supernova [39]. As aforementioned, there
is a very small chance that long fragments from different
species could be indexed with the same barcode in the
stLFR libraries (Supporting Information: Figure S1). So,
some false‐positive reads were introduced in the cobar-
coded refinement procedure, and they were assembled to
form contaminant sequences in draft assemblies. In the
step of contamination removal, we eliminated these
contaminant assemblies according to their dissimilarity
to the reference genomes. The thresholds of average
nucleotide identity (ANI) and alignment fraction (AF)
were set to 90% and 50% by default according to the
optimal results of the sample P_Meta_Gut01 (Supporting
Information: Table S3). Overall, the comprehensive
use of cobarcoding information and references in our
approach could reduce the false‐negative effects of
taxonomic binning and the false‐positive effects of
cobarcoded read refinement.

Assembly of the mock microbiome

The binning‐first‐and‐assembly‐later strategy has been
widely adopted to assemble haplotype genomes for
eukaryotes with large genome sizes [36, 45]. However,
it has rarely been used to assemble metagenomes. We

first applied MetaTrass to assemble stLFR read sets of the
mock microbial community. In total, up to 99.4% of the
reads were confidently assigned species‐level taxonomy
given the simplicity of the mock microbial community
with low inter‐species repeats and unique genome‐
specific regions (Supporting Information: Table S4). To
investigate the efficiency of our strategy, we compared it
with the mainstream mixed assembly approaches
(Figure 2A). Besides the MetaTrass analysis, the stLFR
reads were also directly assembled by IDBA‐UD [20],
MEGAHIT [18], Supernova [39], CloudSPAdes [42], and
Athena [31]. Additionally, the optimal mixed assemblies
of ONT and Illumina NGS reads in Nicholls's work [46]
were also included for comparison, and assembled by
WTDBG [47] and by SPAdes [48], respectively. The draft
genome of each species in a mixed assembly was refined
by our contamination removal module.

Overall, our pipeline was superior in the production
of draft genomes with high genome fractions and long
contiguity (Figure 2). Two species, Enterococcus faecalis
and Lactobacillus fermentum, were incompletely as-
sembled by Supernova with genome fractions as low as
17.7% and 8.9%. On the contrary, both species were
properly recovered by MetaTrass, indicating that the
assembly complexity caused by uneven abundances was
reduced by taxonomic binning. When compared to the

(A)

(B)

FIGURE 1 Flowchart and scheme of MetaTrass. (A) Flowchart of the MetaTrass assembling pipeline. (B) Scheme of cobarcoding
correlation and taxonomic distribution of reads from different regions.
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results of TGS reads assembled by WTDBG, the assem-
blies by MetaTrass had high genome fractions, similar to
those by NGS or cobarcoding assemblers designed for
metagenomes. As compared with the NGS assemblers,
the cobarcoding and TGS assemblers produced draft
genomes with better contiguity, among which MetaTrass
showed the best performance. MetaTrass produced seven
draft assemblies with NG50 around 2Mb and obtained

the highest number of assemblies with NGA50 around
2Mb. Further, MetaTrass yielded fewer assembly errors
as compared to the TGS assembler (Supporting Informa-
tion: Figure S2). The average numbers of mismatches
and indels per 100 kb in assemblies of stLFR reads were
60 and 10, respectively, which were smaller than those of
the ONT assemblies. It was worth noting that the
improvement of the assembly of Pseudomonas aeruginosa

FIGURE 2 Scheme and evaluations for different strategies. (A) Difference labels of the assemblies based on different sequencing and
assembling strategies. (B) Genome fraction, NG50, and NGA50 evaluated by QUAST for the assemblies.
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genome by MetaTrass was not large, and this may come
from the fact that this species had the least amount of
valid cobarcoding information (Supporting Information:
Table S5). The valid cobarcoding information about each
species was evaluated by counting the number of valid
long fragments from each species. A valid fragment was
defined as a cluster with more than five paired‐end reads
and a maximum distance between two paired‐end reads
longer than 10 kb, by aligning paired‐end reads to
reference.

Assembly of four human gut microbiomes

To evaluate the robustness of our approach, we applied
MetaTrass to four human fecal samples to study human
gut microbial communities. The comprehensive genome
references of the Unified Human Gastrointestinal
Genomes (UHGG V1.0) were used to classify NGS reads
by Kraken2 [44], and the community compositions were
estimated through the classified reads at different

taxonomic ranks (Supporting Information: Figure S3–S6).
The three healthy samples had a similar microbial
community, in which the major microbiomes were from
the bacterial phylum Firmicutes A. This microbial commu-
nity was different from the patient microbial community
dominated by the bacterial phylum Proteobacteria, which
is demonstrated to be strongly correlated with enteric
diseases caused by dysbiosis in gut microbiota [49]. The
numbers of species with an abundance higher than 10×
were 113, 108, 93, and 158 in samples H_Gut_Meta01,
H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01,
respectively.

The genome fraction of an assembly to the reference
was used to evaluate the completeness of genome
assembly. The genome fraction for all samples widely
ranges from 0% to 90%, and the distributions of
H_Gut_Meta01 and H_Gut_Meta02 were more concen-
trated than those of H_Gut_Meta03 and P_Gut_Meta01
(Figure 3A). More than half of the assemblies with
confident species‐level taxonomy had a genome fraction
higher than 50%. Considering the large genetic diversity

FIGURE 3 QUAST and CheckM evaluations of MetaTrass assemblies for the four human fecal samples. (A) Genome fraction. (B)
Scaffold N50. (C) Box plot of completeness and contamination. (D) Number of high‐ and medium‐quality genomes
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between sample genomes and reference genomes [8], these
results suggested that our pipeline was able to obtain
complete genomic information for the species with an
abundance higher than 10×. The genetic diversity was also
confirmed by the significant differences in genome fraction
and the ratio of assembled length to the reference length
among the four samples (Supporting Information:
Figure S7). The distribution of genome N50 values was
generally dispersed ranging from a few kb to several Mb,
and the medians of H_Gut_Meta02 and H_Gut_Meta03
were higher than those of H_Gut_Meta01 and P_Gut_Me-
ta01 (Figure 3B). Nevertheless, the third quartiles in the
box plots for all the samples were larger than 100 kb,
demonstrating that our pipeline has a strong capability to
generate draft genomes with long contiguity. Note that
from these three healthy samples, plenty of draft genomes
with ultra‐long contiguity (N50 > 1Mb) were obtained,
which provide possibilities to study the large genome
difference in the microbiome.

Considering the intra‐species genetic diversity, we also
evaluated the quality of metagenomic assemblies by
CheckM. The medians of the completeness of all assembled
genomes in the three healthy samples were larger than
92%, while the medians of contamination were smaller
than 2% (Figure 3C). The median completeness of the
patient sample was about 83%, and the median contamina-
tion was about 7% (Supporting Information: Figure S8). A
great number of high‐ and medium‐quality genomes were
recovered by MetaTrass from the four samples (Figure 3D).
Fifty‐two high‐quality and 37 medium‐quality genomes
were produced for H_Gut_Meta01, 55 and 24 for
H_Gut_Meta02, 47 and 16 for H_Gut_Meta03, and 24
and 28 for P_Gut_Meta01, respectively.

Comparison to the assembly‐first‐and‐
binning‐later strategies

To further evaluate our approach's efficiency, we
compared it with conventional assembly‐first‐and‐
binning‐later approaches as listed in the Section
“Methods.” It should be noted that currently, there
are still no genome binning tools to directly exploit the
cobarcoding information. With regard to the number of
genomes with a completeness of >50% (Supporting
Information: Table S6), MetaTrass outperformed all the
other methods on all data sets. Especially for P_Gut_-
Meta01, MetaTrass yielded 117 draft genomes with
completeness higher than 50%, much more than the 66
ones obtained by the optimal combination of Supernova
[39] and Maxbin2.0 [22].

Through the comprehensive analysis of the complete-
ness, contamination, and taxonomic rank of each genome,

we assessed MetaTrass and conventional strategies on the
ability to get high‐ and medium‐quality genomes and
resolution of taxonomic rank (Figure 4). For different
samples, the best combinations to produce optimal results
were different. The combinations of MetaSPAdes [19] and
Maxbin2.0, Supernova and MetaBAT2 [23], MetaSPAdes
and MetaBAT2, and Athena [31] and MetaBAT2 were
optimal for H_Gut_Meta01, H_Gut_Meta02, H_Gut_Me-
ta03, and P_Gut_Meta01, respectively. For the four
samples, the optimal results of the conventional strategies
were still inferior to those of MetaTrass. For the example
of H_Gut_Meta01, the combination of MetaSPAdes and
Maxbin2.0 produced 41 high‐ and medium‐quality
genomes, which was much less than the 90 obtained by
MetaTrass. There were only 3 out of a total of 18 high‐
quality genomes with a taxonomic rank lower than the
bacterial order, but 15 out of 52 for MetaTrass. Compared
with the strategies those only used NGS‐read information,
MetaTrass outcompeted all these approaches by producing
higher quality and finer resolution. These results demon-
strated that the usage of cobarcoding information in
MetaTrass was more efficient and accurate than those in
the conventional approaches.

The human gut microbiome composition attracts
much attention for many reasons, one of them being its
strong correlation with personality traits [50]. To
compare the microbiome composition of high‐quality
genomes obtained with different methods, we uniformly
used GTDB‐Tk [51] to annotate these genomes. The
annotated taxonomic information was listed in Support-
ing Information: Table S7. Taxonomic trees of the
high‐quality genomes obtained by MetaTrass were
constructed based on the taxonomic information, and
the corresponding N50 values were attached in the left
histogram as shown in Figure 5. The high‐quality
genomes obtained by the conventional strategies were
marked in red in the middle of the heatmap (Figure 5) if
the genome of the same species was also assembled by
MetaTrass. The topology of the taxonomic tree of
genomes assembled by MetaTrass gave comprehensive
insights into the microbial composition structure. From
the trees in Figure 5 and Supporting Information:
Figures S9–S11, the numbers of the bacterial order with
high‐quality genomes assembled by MetaTrass were 9,
11, 7, and 7 for H_Gut_Meta01, H_Gut_Meta02,
H_Gut_Meta03, and P_Gut_Meta01, respectively. Nota-
bly, some bacterial orders contained more than five high‐
quality genomes, and this could be used to study the
microbiome structure at the genome‐wide scale in the
same sample. For the sample H_Gut_Meta01 (Figure 5),
there were 27 and 14 high‐quality genomes classified into
the bacterial order Lachnospirales and Oscillospirales,
respectively. These two were exactly the dominating
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bacterial orders according to the taxonomic abundance
distribution. Similar results were obtained for the other
two healthy samples (Supporting Information: Figures S9
and S10), indicating that the microbiome with higher
sequencing coverage could be better assembled in
MetaTrass. In contrast, the bacterial orders with more
than five high‐quality genomes were Enterobacterales
and Actinomycetales for P_Gut_Meta01 (Supporting
Information: Figure S11). The obvious difference
between the healthy and patient samples was consistent
with the microbial composition differences observed in
the taxonomic binning results. MetaTrass successfully
assembled most of the high‐quality genomes of all the
conventional strategies in our tests. Only 25 out of 137
genomes with high‐quality generated by all the conven-
tional strategies were not assembled by MetaTrass
(Figure 5). The heatmaps showed that most of the

conventional strategies could assemble draft genomes for
each bacterial order, but the numbers of genome in the
same bacterial order were relatively small. The maximal
number of genomes in one bacterial order was six and
obtained by the combination of Supernova and Meta-
BAT2 for the bacterial order Lachnospirales. Moreover,
146 of 179 high‐quality genomes had N50 values larger
than 100 kb, demonstrating that MetaTrass had a strong
ability to improve the contiguity of assemblies.

Genetic diversity in different samples

Different types of genomic variations in gut microbiomes
are strongly associated with host health, and the genetic
diversity among different microbiomes has been inten-
sively studied to unravel the genetic origin of phenotypic

FIGURE 4 Comparison of metagenome assembly for different methods. (A) Number of high‐ and medium‐quality genomes assembled
with different methods. (B) Number of high‐quality genomes with high‐ and low‐rank with different methods.
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differences among people of different geographical
origins or health statuses [52, 53]. By aligning draft
genomes to the references, we called variations for high‐
quality genomes for each species in different samples,
including single nucleotide variations (SNV) as well as
small and large indels. For different variations, the
number of SNVs was significantly larger than those of
the small and large indels for the four samples
(Supporting Information: Figure S12). Meanwhile,
median values of variation numbers in the three healthy
samples were similar but obviously larger than those in
the patient sample. The smaller number of variations in
the patient sample was due to the fewer alignments than
those in the healthy samples according to the QUAST
[54] evaluation. However, when we removed the effect of
the total aligned length by calculating the SNV density,
the patient sample showed denser SNV than the healthy
samples (Supporting Information: Figure S12). The
median was about 21 for the patient sample, but around
nine for the healthy samples. This difference could be
related to the individual's physiological state, which was
related to the diseases, territory, and race [4].

Based on the taxonomic information of the high‐
quality genomes, we found 15 species shared by three
samples, among which 14 species appeared in the three
healthy samples and one species Escherichia appeared in

the patient and two healthy samples. By analyzing the
SNV density and intersection of variations between
different samples for each species in three healthy
samples, we further investigated the genetic diversity
between species from different samples. The SNV
densities were different for distinct species even in the
same sample but were similar for the same species in
different samples (Figure 6A). From Figure 6B–D, the
number of unique and shared variations in different
types significantly fluctuated for different species, but
their difference among samples showed great consist-
ency. H_Gut_Meta01 and H_Gut_Meta02 shared the
highest number of variations among all sample pairs.
Furthermore, the ratio of large indels shared by all three
healthy samples to the total was much smaller than those
of SNVs and small indels. These results demonstrated
that large variations were more sample‐specific than
small variations, which is consistent with previous
observations of the association between host health and
structural variations in the human gut microbiome [52].

Computational performance

Runtime and used thread number of each assembler
were recorded for all the human fecal data sets (Table 1).

FIGURE 5 Taxonomic tree of the high‐quality genomes assembled by MetaTrass for H_Gut_Meta01. The taxonomic tree is on the left.
The distribution of the high‐quality genomes assembled by other methods is colored red in the middle heatmap. N50 of each high‐quality
genome is shown in the right histogram.
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Most of the assemblers were tested on a small server of
24 Intel(R) Xeon(R) Silver 4116 CPU @ 2.10 GHz, except
for Athena [31] and Supernova [39], which were tested
on other high‐performance computing clusters due to
their large memory requirements. The thread number set

in each assembler was the same for different samples.
The time consumption of the format conversion from
stLFR reads to 10X linked‐reads was not included,
which was about 500min for a data set with 50 Gb in
a single thread. We found that MetaTrass was less

FIGURE 6 Single nucleotide variation (SNV) density and the number of unique and shared variations for each species appearing in all
three healthy samples. (A) is the SNV density. (B), (C), and (D) are the number of SNVs, small, and large indels, respectively. The species
numerical order in subfigures (B), (C), and (D) corresponds to the appearance order of species from left to right in subfigure A.

TABLE 1 Runtimes and thread number of each assembler for all the human gut data sets

Thread number Runtime (min)

Assembler All samples H_Gut_meta01 H_Gut_Meta02 H_Gut_Meta03 P_Gut_Meta01

IBDA‐UD 6 863 884 911 2657

MEGAHIT 16 179 161 163 611

MetaSPAdes 16 1478 1289 1429 3459

CloudSPAdes 16 1024 1163 1039 2627

Supernova 8 1249 864 1098 6776

Athena 16 13,813 8689 6361 –

MetaTrass 16 5145 2631 3147 8363

Note: The exact runtime of assembling sample P_Gut_Meta01 by Athena was not collected correctly due to several uncontrolled interrupts on the high‐performance
computing cluster.
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time‐consuming than Athena but more time‐consuming
than other assemblers. This may be because both
MetaTrass and Athena contained many subassembling,
which took most of the time among all subprocesses in
MetaTrass (Supporting Information: Table S8). Since the
subassembling was independent, it could be run in
parallel to further speed up by increasing the parallel
number. Under the default parallel number of 8, the
memory peaks used by MetaTrass were more than 50 Gb,
but not more than 100 Gb for the four human fecal
samples (Supporting Information: Table S9).

DISCUSSION

High‐quality genomes at the species level are strongly
demanded to investigate the genetic origins of diseases
associated with the human gut microbiome. However, how
to get a sufficient number of them in one sample is still a
challenge due to the inter‐species repeats and uneven
abundance in metagenome assembly. In this study, we
developed a tool to get high‐quality genomes with fine
taxonomic resolutions by combining the cobarcoding
information with public references. Compared with con-
ventional strategies, our pipeline generated a large number
of high‐quality genomes for the human microbiome
cobarcoding data sets. Meanwhile, plenty of draft genomes
were also assembled with an NG50 value larger than 1Mb,
some of which were even longer than the references for
both the mock and human fecal data sets. For all four
human fecal samples, 178 draft genomes with high
completeness and low contamination were generated by
MetaTrass, but their genome fractions relative to the
references were low. The differences between the sample
genomes assembled by MetaTrass and the reference
genomes demonstrated that the cobarcoding information
could be used to reduce the false‐negative reads in
taxonomic binning. These reads retrieved from inter‐
species repeat and unique genome‐specific regions by
cobarcoded read refinement could significantly improve
the quality of assemblies. For the patient sample, the
number of high‐quality genomes with long contiguity
assembled by MetaTrass was significantly larger than that
generated without cobarcoded read refinement (Supporting
Information: Figure S13).

MetaTrass was originally designed for stLFR, but is also
suitable for other kinds of cobarcoding sequencing reads. We
analyzed the 10× Genomics linked‐reads data set of ATCC
Mock‐20 used in the development of Athena [31], which
contains two bacterial genera with multiple species. As a
result, MetaTrass recovered all these species with high‐
quality genomes, while the conventional strategies only
gained several metagenomes with various degrees of missing,

heterogeneity, and contamination (Supporting Information:
Figure S14). This also demonstrated the capability of
MetaTrass to recover metagenomes at species or strain
resolution. Noted that Supernova [39] was replaced with
CloudSPAdes [42] in the step of cobarcoded read assembly.
Since the number of long fragments with the same barcode
in linked‐reads is greater than that of stLFR reads [32], more
false‐positive reads were introduced into the cobarcoded
refined read sets, leading to the unsuccessful assembling of
several species by Supernova.

The efficiency of our pipeline depends on the cobarcod-
ing information quality and the cobarcoding assembler. The
cobarcoding information quality has strong effects on the
precision and sensitivity of cobarcoded read refinement. By
comparing genome fractions of different read sets including
the TRs defined in the Section “Methods,” the refined reads,
and all reads for species with medium abundance in
P_Gut_Meta01 (Supporting Information: Table S10), we
evaluated the sensitivity of the cobarcoded read refinement.
We observed that the fraction with high depths of the
refined reads was higher than that of the TRs, but still lower
than that of all aligned reads. These results indicated that
there were still some false‐negative reads introduced by the
low coverage or the short length of long fragments. The
cobarcoded read assembly of Supernova consumed most of
the computational time in the tests of the four human fecal
samples and it cannot effectively assemble data sets with a
high ratio of false‐positive reads in the test of linked‐reads.
Thus, improvements on the cobarcoding library and
algorithms of the cobarcoded read refinement and assembly
would improve the performance of MetaTrass.

CONCLUSION

In summary, the application of MetaTrass in human fecal
samples showed great promise in generating high‐quality
genomes for a real complex microbial community at a
fine resolution. With the increasing number of reference
genomes from various microbial communities and
the development of cobarcoding sequencing libraries, the
binning‐first‐and‐assembly‐later strategy in MetaTrass will
be strengthened and facilitate the investigation of the
association between host phenotypes and microbial
genotypes for different microbial communities.

METHODS

Data sets

A mock microbial and four human gut microbial
communities were analyzed to evaluate the efficiency
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of MetaTrass. The mock microbial community (Zymo-
BIOMICS™ Microbial Community DNA Standard. Cata-
log D6305, Lot ZRC190812) consists of eight isolated
bacteria and two fungi with an average abundance of
about 12% and 2%, respectively (Supporting Information:
Table S4). The four human gut microbial communities
were sampled from the feces of three healthy volunteers
and one patient with inflammatory bowel disease. The
stLFR libraries were constructed according to the
standard protocol [32]. The DNA samples were first
sheared into long fragments, and then the long fragments
were captured by magnetic microbeads with a unique
barcode sequence. Finally, each long fragment was
further fragmented and hybridized with a unique
barcode by the Tn5 transposase on the surface of the
microbead. The stLFR libraries of the mock microbial
community and the patient sample were sequenced on
the BGISEQ‐500 platform, and those of healthy samples
were sequenced on the MGISEQ‐2000 platform. The
length of paired‐end reads is 100 bp for all data sets. The
three healthy sample libraries were individually allocated
to a half lane and generated a total of about 50 Gb raw
data on average. The mock and patient library was
individually allocated to a full lane, resulting in about 85
and 100 Gb raw data, respectively. Barcode sequences
were extracted from the end of the reverse read in a pair
and then replaced with numerical symbols in the read
names in the FASTQ file with our public tool
stLFR_barcode_split [55]. SOAPfilter_v2.2 with parame-
ters (‐y ‐F CTGTCTCTTATACACATCTTAGGAAGA
CAAGCACTGACGACATGA ‐R TCTGCTGAGTCGAG
AACGTCTCTGTGAGCCAAGGAGTTGCTCTGG ‐p ‐M
2 ‐f ‐1 ‐Q 10) was used to remove low‐quality raw reads
with adaptors, excessively confusing bases, and high
duplications. Finally, 59.45 Gb of clean data were
retained for the mock microbiome, 34.48 Gb for the first
healthy sample (H_Gut_Meta01), 35.33 Gb for the
second (H_Gut_Meta02), 37.88 Gb for the third
(H_Gut_Meta03), and 97.20 Gb for the patient sample
(P_Gut_Meta01). The clean data of all samples are
available in the CNGB Sequence Archive (CNSA) [56]
(https://db.cngb.org/cnsa/) of the China National Gene-
Bank DataBase (CNGBdb) [57] with accession number
CNP0002163.

Taxonomic binning

We adopted Kraken2 (version 2.0.9‐beta) [44] to classify
stLFR reads into different species. First, customized
Kraken databases were constructed using the reference
genomes of a studied microbial community. Then, the
stLFR reads were classified according to the database.

Both processes of Kraken were run with default
parameters. Specifically, references attached to the
ZYMO product were used to construct the database for
the mock sample. The Kraken2 database of the UHGG
collection was downloaded for the human fecal samples,
which included 4542 representative genomes at the
species level [4].

Cobarcoded read refinement

A taxonomic tree of references was established to reduce the
number of multiple hits of a K‐mer from inter‐species repeat
sequences in Kraken2 [44]. The reads from these repetitive
regions were classified into the lowest common ancient
(LCA) rank higher than its corresponding species. Several
previous studies tried to reallocate these reads to species by
statistical inferences using the coverage depth or cobarcoding
information [58, 59]. In the MetaTrass pipeline, the
cobarcoding correlation between reads classified into a
species and those classified into the LCA ranks higher than
that species was used to reduce the false‐negative reads
assigned to higher taxonomic ranks. Reads with a confident
taxonomic assignment at the species level were treated as
taxonomy reads (TRs) of the corresponding species. We
collected and refined reads for each barcode according to the
number of reads categorized as TRs (Num_T) and the ratio
of these reads to the total reads (Ratio_T). Barcodes attached
to TRs were first extracted as candidates. We ranked
candidates according to Num_T in descending order first
and then by Ratio_T also decreasingly. Finally, reads not
more than 300× were collected to improve computational
efficiency based on the rank of the barcodes. Since sufficient
read coverage is required for assembling a complete genome,
only the species with an abundance higher than 10× were
retained in this step. Reads assigned to these species were
further clustered and filtered with the cobarcoding correla-
tion. The abundance of each species was estimated by the
quotient of the total base number of TRs to that of the
reference. The refined reads of each species were extracted
using Seqtk (version 1.3‐r114‐dirty) [60]. Note that there
were still some false‐positive reads, probably resulting from
the collision of long fragments from different species
captured by the same microbead, even though Ratio_T
was set to minimize the number. Sequences assembled from
these reads would be further filtered out in the way
described in the Section, “Contamination removal.”

Cobarcoded read assembly

Reads of a single species with an abundance higher than
10× were assembled in Supernova (version 2.1.1) [39], a
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high‐performance cobarcoding de novo assembler for
single large eukaryotic genomes. Supernova was
designed for linked‐reads of 10× Genomics (http://
www.10xgenomics.com/), which have different barcodes
and formats from stLFR reads. Thus, we converted the
stLFR reads into linked‐reads FASTQ format before
running Supernova. Additionally, the parameter—
accept‐extreme‐coverage was set to yes to allow for large
coverage depth differences.

Contamination removal

As long fragments from different species could be
captured by the same microbead in the stLFR library at
low odds, reads from different species could putatively be
labeled with the same barcode. As a result, a draft
assembly of reads after cobarcoded read refinement
might contain contaminated sequences from other
species. We cleaned the assembly based on its similarity
to the corresponding reference genome. The AF and ANI
have been commonly adopted to circumscribe species
[3, 4]. MetaTrass also adopted the metrics of AF and ANI.
The ANI was independently calculated for each align-
ment. The AF was defined as the ratio of total alignment
length with sufficiently high ANI to the total contig
length. The alignments with ANI values higher than 90%
were used in the AF calculation, and the contigs with AF
values higher than 50% were retained to form the final
assembly. The initial alignments between contigs and
references were generated by QUAST (version 5.0.2) [54]
with default parameters, except that the identity thresh-
old to obtain valid alignment was set to 90%.

Assembly‐first‐and‐binning‐later
approaches

Conventional standard analysis pipelines of the NGS
metagenomes implement de novo metagenome assembly
first and further bin the contigs into draft genomes. We
compared different existing assembly‐first‐and‐binning‐
later approaches to MetaTrass by analyzing a mock and
four human gut microbial communities. In our tests, the
stLFR cobarcoded reads were assembled by NGS
assemblers, including IDBA‐UD (version 1.1.3) [20],
MEGAHIT (version 1.1.3) [18], and MetaSPAdes (version
3.10.1) [19], or cobarcoding assemblers, including Super-
nova [39], Athena (version 1.3.0) [31], and CloudSPAdes
(version 3.13.1) [42]. Then, all the draft assemblies were
binned by two genome binners, namely, MetaBAT2
(version 2.12.1) [23] and Maxbin2.0 (version 2.2.5) [22].
Since Supernova, CloudSPAdes, and Athena were not

designed for stLFR reads, we made an appropriate
format conversion with the step_2_10X_fake.sh script
in our public tool stlfr2supernova_pipeline [61].
Except for Supernova, all the assemblers were run with
default parameters. To make Supernova able to assemble
data sets with extremely high coverage depths, the
parameter—accept‐extreme‐coverage was set to yes. All
assembly results are available in the CNSA [56] (https://
db.cngb.org/cnsa/) of the CNGBdb [57] with accession
number CNP0002163. MetaBAT2 and Maxbin2.0 were
implemented with default parameters.

Evaluations

Both reference‐based and reference‐free assessments
were used to evaluate the quality of assemblies obtained
using different strategies. For the mock microbial
community, the reference‐based tool QUAST [54] was
used to evaluate the contiguity and accuracy of metage-
nomic assemblies. Minimap2 (2.17‐r974‐dirty) [62] was
used to map assemblies to references and get valid
alignments with the identity threshold of 95%. Then,
statistics such as genome fraction, NG50/NGA50, and the
number of misassemblies were assessed from the
alignments with default parameters. For the human gut
microbial communities, the reference‐free tool CheckM
(version 1.1.2) [63] was implemented with default
parameters to evaluate the completeness and contamina-
tion of each genome. A definite number of marker genes
conserved across almost all bacteria were used as the
basis in CheckM. Following the guidance proposed in
CheckM, we defined high‐quality assemblies (complete-
ness > 90% and contamination < 5%) and medium‐
quality assemblies (completeness > 50% and contamina-
tion < 10%, but not meet both completeness > 90% and
contamination < 5%). In addition, the statistics of each
genome notably N50, genome size, and taxonomic rank
were also obtained by CheckM, and the taxonomic rank
was used to show the resolution of a genome.

Genomic variation estimation and
taxonomic classification

All the high‐quality genomes assembled by MetaTrass
were used to call variations for the four human fecal
samples. We aligned each genome to their corresponding
reference using Minimap2 [62] with parameters
(‐x asm5) to prevent an alignment extending to regions
with diversity >5%. SAMtools (version 1.9) [64] and
PAFtools (2.17‐r982‐dirty) [65] were used to convert the
BAM file of initial unsorted alignments into a PAF file of
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sorted alignments. We identified variations using the
“call” module in PAFtools with parameters (‐L 10000) to
filter out the alignments shorter than 10,000 bp. We
considered single‐nucleotide substitutions as SNVs but
ignored single‐base insertions or deletions. Insertions or
deletions with lengths shorter than 50 bp were defined as
small indels, and the rest were defined as large indels.
Those genomic variations with the same position and
sequence information that belong to the same species in
different samples were determined as shared variations.

We used the “classify_wf” function of GTDB‐Tk
(version 0.3.1) [51] to conduct taxonomic annotation of
the genomes obtained by both MetaTrass and the
conventional strategies with default parameters. Consid-
ering the procedure of the UHGG database construction
[4], genomes were assigned at the species level if the AF
to the close species representative genomes was higher
than 30% and ANI was higher than 95%. Interactive Tree
of Life (iTOL version 4.4.2) [66] was used to visualize
taxonomic trees constructed from the annotated species
information.
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