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Abstract

Primary Sjögren’s disease (pSD, also referred to as Sjögren’s syndrome) is an autoimmune disease 

that primarily occurs in women. In addition to exocrine gland dysfunction, pSD patients exhibit B 

cell hyperactivity. B cell-intrinsic TLR7 activation is integral to the pathogenesis of SLE, a disease 

that shares similarities with pSD. The role of TLR7-mediated B cell activation in pSD, however, 

remains poorly understood. We hypothesized that age-associated B cells (ABCs) were expanded 

in pSD and that TLR7-stimulated ABC subsets exhibited pathogenic features characteristic of 

disease. Our data revealed that ABC expansion and TLR7 expression were enhanced in a pSD 

mouse model in a Myd88-dependent manner. Splenocytes from pSD mice showed enhanced 

sensitivity to TLR7 agonism as compared to those derived from controls. Sort-purified marginal 

zone (MZ) B cells and ABCs from pSD mice showed enhanced inflammatory cytokine secretion 

and were enriched for anti-nuclear autoantibodies following TLR7 agonism. Finally, IgG from 

pSD patient sera showed elevated anti-nuclear autoantibodies, many of which were secreted 

preferentially by TLR7-stimulated murine MZ B cells and ABCs. Thus, these data indicate pSD 

B cells are hyper-responsive to TLR7 agonism and TLR7-activated B cells contribute to pSD 

through cytokine and autoantibody production. Thus, therapeutics that target TLR7 signaling 

cascades in B cells may have utility in pSD patients.
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B cell TLR7 expression and ABCs are increased in a pSD model and TLR7-stimulated ABCs 

derived from pSD females show pathogenic potential.
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1. Introduction

Primary Sjögren’s disease (pSD, also referred to as Sjögren’s syndrome) is a 

chronic systemic autoimmune disease with a strong female predilection1. pSD is 

primarily characterized by the loss of exocrine function and immune hyperactivity2. 

Many pSD patients suffer from diverse disease manifestations, including salivary 

hypofunction, decreased tear production, interstitial lung disease and nephritis2. 

Abnormalities in peripheral blood are also observed, such as hypergammaglobulinemia and 

hypocomplementemia2–4. Currently, the etiology of pSD remains poorly understood, and as 

a result, treatments are only palliative in nature.

Prior studies performed by our group demonstrated that Myd88-mediated signaling cascades 

are crucial for specific pSD disease manifestations5–7. Myd88 is a ubiquitously-expressed 

cytosolic adaptor that controls both innate and adaptive immune cells8–11. Myd88 is crucial 

for activation of numerous IL-1R family members and TLRs, including TLR7. Several lines 

of evidence demonstrate B cell-intrinsic TLR7 mediates autoimmunity, and this is well 

characterized in Systemic Lupus Erythematosus (SLE), an autoimmune disease that shares 

similarities with pSD12–14. Previous work by our group and others suggests that TLR7 

activation also mediates key aspects of pSD in both mouse models and pSD patients15–23.

There is considerable evidence that B cells are integral to pSD pathogenesis. Indeed, 

patients display elevated autoantibodies and have heightened risk of B cell lymphoma24, 

25. Data suggest loss of tolerance in the B cell compartment is an early disease event, 

as autoantibodies are reported years to decades before the onset of other pSD disease 

manifestations26, 27. GWAS studies also implicate B cells in the pathogenesis of pSD, as 

SNPs in genes that encode signaling intermediates associated with B cell activation are 

altered in pSD patients as compared to healthy controls28, 29. In fact, a recent elegant study 

identified a molecular subset of pSD patients that showed evidence of B cell hyperactivity in 

the periphery30.

While B cells clearly contribute to pSD, the specific B cell subsets that mediate pathology 

in the context of pSD remain incompletely understood. Studies in lupus models and patients 

with SLE demonstrate a key role for age-associated B cells (ABCs) in disease31, 32. ABCs 

promote germinal center expansion, drive autoantibody production, and mediate kidney and 

lung damage in lupus33, 34. Importantly, ABC accumulation in lupus is mediated by TLR7 

activation34–36. While there are a few studies that describe expansion of a subset analogous 

to murine ABCs in pSD patients37, 38, the role of ABCs in pSD remains largely unexplored. 

Recent work from our group revealed that treatment of pre-disease pSD mice with the TLR7 

agonist, Imiquimod (Imq), accelerates disease and drives expansion of splenic ABCs18. 
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Moreover, transcriptomic studies demonstrate that a subset of B cells that shares phenotypic 

similarities with murine ABCs is expanded in salivary tissue derived from pSD patients39, 

40. In the current study, we hypothesized that ABCs with pathogenic potential are expanded 

in pSD mice that develop disease spontaneously as compared to healthy controls. Moreover, 

we predict that this pathogenicity relies, at least in part, on ABC-intrinsic TLR7 activation.

We used a well-characterized mouse model, termed NOD.B10Sn-H2b/J (NOD.B10), to 

examine TLR7-mediated activation of ABCs in pSD41, 42. NOD.B10 mice exhibit many 

characteristic features of disease seen in pSD patients. For example, NOD.B10 females 

display loss of salivary flow, and salivary and lacrimal inflammation in addition to interstitial 

nephritis and elevated anti-nuclear autoantibodies (ANAs) in sera2, 3, 41, 42. We found that 

ABCs were expanded in NOD.B10 mice with clinical and advanced stage disease and this 

expansion relied, in part, on the expression of Myd88 in the hematopoietic compartment. 

Expression of TLR7 was also elevated in pre-disease NOD.B10 mice and TLR7 expression 

was highly enriched in both the marginal zone (MZ) and ABC subsets. Splenocytes derived 

from NOD.B10 females with clinical disease were hypersensitive to stimulation with a 

TLR7 agonist. MZ B cells and ABCs from NOD.B10 mice were enriched in secretion 

of distinct pro-inflammatory cytokines and ANAs, including those directed against RNA 

binding proteins (RBPs). Finally, sera from pSD patients showed similar autoantibody 

profiles as those observed for TLR7-stimulated murine MZ and ABC subsets, suggesting 

activation of analogous B cell subsets in pSD patients. Altogether, our data demonstrate 

that TLR7-responsive B cell populations induce pathogenic B cell activation that likely has 

clinical significance in the context of pSD.

2. Methods

2.1 Mice.

NOD.B10-SnH2b/J (NOD.B10) (stock #002591) and C57BL/10SnJ mice (BL/10) 

(stock #000666) were obtained from Jackson Laboratories. NOD.B10Myd88fl/fl and 

NOD.B10Myd88Δ mice were described previously6. All animals included in this study were 

female. Mice were euthanized at the clinical disease stage (26 weeks (wks) of age) or at the 

advanced disease stage (at least 52 wks of age). Each strain was bred and maintained in at 

the University at Buffalo Laboratory Animal Facility in accordance with NIH and IACUC 

guidelines.

2.2 Collection of tissue and sera.

Following euthanasia, spleens and cervical lymph nodes (cLNs) were harvested and single 

cell suspensions were generated by mechanical dispersion. RBCs were lysed using ACK 

lysis buffer. Blood was collected by cardiac puncture and maintained at room temperature 

for 2 hours. It was then centrifuged at 4,000 g for 20 minutes. Serum was removed and 

stored at −20°C for further analyses.

2.3 Culture and stimulation of stimulation of splenocytes.

Splenocytes (5 × 106) were cultured in RPMI 1640 containing 2% heat-inactivated FBS, 

2 mM L-glutamine, 50 μM 2-mercaptoethanol, 100 U/mL penicillin, and 100 μg/mL 
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streptomycin. Cells were cultured in media alone, in media containing Imq (0.04 or 0.625 

μg/mL) (InvivoGen), in media containing anti-IgM/IgG Fab (10 μg/mL) (SouthernBiotech), 

or in the presence of both anti-IgM/IgG Fab and Imq (10 μg/mL and 0.625 μg/mL, 

respectively). Cultures were performed in 1 mL of media in 24-well plates for 24 hours 

or 6 days as indicated.

2.4 Culture and stimulation of sort-purified B cell subsets.

For cytokine multiplex arrays, sort-purified splenic FO (B220+ CD23+ CD21lo/−), MZ 

(B220+ CD23− CD21+), or ABCs (B220+ CD11c+ CD11b+) were cultured in 2% RPMI 

in the presence or absence of Imq for 72 hours (1.5 × 105 cells each). Supernatants 

were harvested and a 16-plex cytokine array was performed (Quansys Biosciences). For 

autoantigen arrays, sort-purified splenic FO B cells (6 × 106 cells), MZ B cells (4.5 × 

106 cells), or ABCs (5.0 × 105 cells) were cultured in 2% RPMI containing Imq (0.625 

μg/mL) for 6 days. All cells were cultured in 96-well round bottom plates in 200 μL of 

media. Supernatants were harvested and stored at −20°C prior to analysis. We confirmed 

experimentally that the amount of IgG produced by each population was sufficient for 

autoantigen array analysis (data not shown). The autoantigen array was performed by the UT 

Southwestern Microarray core.

2.5 Flow cytometry and FACS.

Flow cytometry was performed as previously described. Briefly, cells were incubated with 

Fc block (CD16/32, clone 2.4G2, BD Biosciences) and treated wits antibodies directed 

against the following markers as indicated: B220 (clone RA3–6B2, BD Biosciences), CD23 

(clone B3B4, Biolegend), CD21/35 (clone 7G6, BD Biosciences), T-bet (clone 4B10, BD 

Biosciences), CD11c (clone HL3, BD Biosciences), CD11b (clone M1/70, BD Biosciences), 

CD4 (clone GK1.5, BD Biosciences), and TLR7 (clone A94B10, BD Biosciences). Data 

were acquired using a BD Biosciences Fortessa and analyzed using FlowJo software.

For cell sorting experiments, splenocytes were pooled from 2 – 3 NOD.B10 females 

that were at least 12 months of age. Following dissociation and RBC lysis, cells were 

fluorescently labeled and sorted using the following panels: FO (B220+ CD23+ CD21lo/−), 

MZ (B220+ CD23− CD21+), and ABCs (B220+ CD11b+ CD11c+). Cells were sorted using 

a BD Biosciences FACSAria.

2.6 ELISAs.

Antibody ELISAs were performed to quantify total IgG and IgG2c on serially diluted 

samples (Bethyl Laboratories and Stem Cell Technologies). IFNα (PBL Assay Science), 

IL-6 and IFNγ ELISAs (Invitrogen) were also performed. ELISAs were performed in 

accordance with manufacturer instructions and all samples were analyzed in duplicate.

2.7 Patient samples.

Patient samples were acquired from the Sjögren’s International Collaborative Clinical 

Alliance (SICCA) Biorepository43, 44. Patient demographics and clinical information 

are shown in Table 1. All pSD patients were females who displayed anti-Ro/SSA 

autoantibodies, had a focus score of at least 1, and displayed hyposalivation (n = 15, average 
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age = 52.2 years, range = 32 – 76 years). Non-SD controls were matched by age, sex, and 

ethnicity (n = 15, average age = 51.7 years, range = 30 – 79 years). All non-SD controls had 

a negative minor salivary gland biopsy and normal salivary production. Sera were received 

on dry ice and were stored at −80°C. All samples were shipped to UT Southwestern for 

autoantigen array analysis.

2.8 Statistics.

Mann-Whitney test at level 0.05 and ANOVA tests were performed where indicated using 

Prism software. Post-hoc analysis was done using Tukey’s multiple comparisons test. 

Autoantigen array data were analyzed using previously described methods for both murine 

and human samples18. For murine studies, autoantibodies from sort-purified ABC or MZ 

subsets were compared to those derived from FO B cells. Briefly, for MZ versus FO B cells 

we performed the two-sample two-sided t-test for all autoantigens, while for ABCs versus 

FO B cells we performed two-sample one-sided t-tests (H1: μABC>μF0) as the ABC subset 

was highly variable and a priori we were most interested in autoantigens that were enriched 

in the ABC subset as compared to the FO subset. For the p-values from each comparison 

we used the p. adjust R function in the R Stats package45 to adjust the p-values in order to 

control the false discovery rate (FDR). The method proposed by Benjamini and Hochberg 

was used to control the FDR46. An autoantigen was deemed significant if the corresponding 

adjusted p-value was less than 0.10. The autoantigen array data are deposited in the Gene 

Expression Omnibus (GEO) database under the following accession numbers: GSE236254 

(human) and GSE236255 (murine).

3. Results

3.1. ABCs are expanded in pSD mice in a Myd88-dependent manner.

Since the ABC population is integral to lupus pathogenesis and an ABC-like population is 

elevated in pSD patients34, 37–39, 47, we first sought to determine if ABCs were expanded in 

pSD mice with increasing age. To this end, we harvested spleens from NOD.B10 females at 

a pre-disease (3 months old), clinical disease (6 – 7 months old) or advanced disease time 

point (at least 12 months old), as previously described41. Spleens were also collected from 

age- and sex-matched BL/10 controls. Flow cytometry was performed to quantify T-bet+ 

and T-bet+ CD11c+ ABC subsets. NOD.B10 mice displayed an elevated percentage of 

T-bet+ ABCs at the pre-disease (3-month-old), clinical disease (6-month-old) and advanced 

disease stages (12+ months of age) compared to age-matched controls (p = 0.001, p = 

0.0009, and p = 0.0002, respectively) (Figure 1A).

We performed similar analyses to examine T-bet+ CD11c+ ABCs in pSD mice. Our data 

revealed that this population was also expanded with age in pSD females, as NOD.B10 

mice at the clinical and advanced disease stage displayed elevated percentages of this ABC 

population as compared to healthy controls at each time point examined (p = 0.0002, and 

0.01, respectively) (Figure 1B).

To determine if these changes relied on Myd88 expression in immune cells, we harvested 

spleens from NOD.B10 females that lacked Myd88 in the hematopoietic compartment 
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(NOD.B10Myd88Δ strain). NOD.B10Myd88fl/fl mice were used as Myd88-sufficient controls, 

as previously published6. NOD.B10Myd88fl/fl females at the advanced disease stage 

displayed expansion of both T-bet+ and T-bet+ CD11c+ ABCs as compared to age- and 

sex-matched NOD.B10Myd88Δ females (p = 0.04 and p = 0.001, respectively) (Figure 1C and 

D). These data indicate that ABCs increase with age in both strains and are expanded in pSD 

mice. This expansion relies, at least in part, on the expression of Myd88 in immune cells.

3.2 B cell TLR7 expression is increased in pre-disease pSD mice and is highly enriched 
in the MZ and ABC subsets

To begin to examine the Myd88-mediated signals that may contribute to ABC expansion in 

pSD, we next focused on TLR7, because this Myd88-dependent TLR is crucial for ABC 

expansion in other models and is integral to lupus pathogenesis14, 32, 34, 48. The percentage 

of splenic TLR7-expressing B cells was elevated in NOD.B10 mice with advanced disease 

as compared to 3-month-old BL/10 controls (p < 0.0001) (Figure 2A). Additionally, TLR7+ 

B cells were expanded in the spleens and cLNs of aged BL/10 mice as compared to young 

strain-matched controls (p = 0.003 and 0.002, respectively) (Figure 2A and B). To assess 

TLR7 function, splenocytes from pSD mice at the clinical disease stage were cultured with a 

low dose of Imq (0.04 μg/mL) and supernatants were harvested. Analogous experiments 

were performed in BL/10 controls. Splenocytes derived from NOD.B10 mice secreted 

elevated levels of IL-6 as compared to those from healthy controls (p = 0.005) (Figure 

2C). We then assessed TLR7 expression in the cultured cells. Our data revealed that the 

percentage of B cells expressing TLR7 is increased following Imq treatment as compared to 

unstimulated controls in both in both BL/10 and NOD.B10 splenocytes (p < 0.0001 and p 

= 0.01, respectively). No differences were observed in the percentage of B cells expressing 

TLR7, however, between either unstimulated or Imq-treated samples from BL/10 mice as 

compared to their NOD.B10 counterparts (Figure 2D).

Next, we assessed TLR7 expression in FO, MZ, and ABC splenic B cells in pSD females 

at the clinical disease stage and age-and sex-matched BL/10 controls. TLR7 was highly 

expressed in both MZ B cells and CD11b+ CD11c+ ABCs derived from both BL/10 and 

NOD.B10 mice, with lower expression observed in the FO populations of both strains 

(Figure 2E and F). Of note, there were no differences observed in TLR7 expression between 

analogous subsets of each strain (Figure 2F).

Finally, we sought to determine if TLR7 expression was dependent on immune-intrinsic 

Myd88 in pSD mice. To this end, we assessed the percentage of TLR7+ B cells in aged 

NOD.B10Myd88Δ females. Our data revealed that this population was decreased in both 

splenic and cLN populations as compared to age- and sex-matched NOD.B10Myd88fl/fl 

controls (p = 0.008 and p = 0.03, respectively) (Figure 2G and H). Altogether, these results 

demonstrate TLR7 sensitivity is heightened in pSD splenocytes. Moreover, TLR7 expression 

is governed by Myd88 and is enriched in both MZ and ABC subsets in both control and pSD 

mice.
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3.3 TLR7 activation promotes ABC differentiation and leads to heightened IgG, IgG2c, 
and IFN production in pSD mice.

We next performed experiments to determine if TLR7 stimulation drives heightened 

antibody secretion and ABC skewing in pSD mice with clinical disease, and whether this is 

enhanced in the presence of BCR ligation. Parallel experiments were performed in age- and 

sex-matched BL/10 controls. We harvested splenocytes and cultured cells in either media 

alone, media containing Imq, media containing anti-IgM/IgG Fab (BCR), or with media 

containing both Imq and the BCR crosslinker. Supernatants were harvested and secretion of 

IgG and IgG2c was assessed. We found IgG secretion increased following Imq stimulation 

as compared to media alone in NOD.B10 females (p < 0.0001). IgG secretion was also 

increased when NOD.B10 splenocytes were stimulated with BCR/Imq, but addition of BCR 

crosslinking did not enhance IgG secretion when compared to cells treated with Imq alone. 

B cells derived from NOD.B10 mice showed heightened IgG secretion as compared to 

BL/10 controls in response to Imq and Imq/BCR treatment (p < 0.0001 and p < 0.0001, 

respectively) (Figure 3A). We also assessed secretion of IgG2c, because this subclass of 

antibody is enriched in autoimmunity and autoreactive IgG2c is preferentially secreted by 

ABCs in a lupus model49, 50. We assessed IgG2c in the 3 samples that had significant 

IgG levels and found that B cells from NOD.B10 females secreted high levels of IgG2c in 

response to stimulation with Imq in comparison to Imq-treated B cells derived from healthy 

controls (p = 0.002). Of note, concomitant Imq/BCR stimulation did not increase IgG2c 

production in NOD.B10 splenocytes as compared to NOD.B10 samples treated with Imq 

alone (Figure 3B).

Since IgG2c production is induced by IFNα and IFNγ51–54, we assayed our culture 

supernatants to quantify the levels of IFN produced. Our results revealed that IFNα levels in 

the culture supernatants were relatively low, although IFNα levels secreted by the NOD.B10 

splenocytes cultured with Imq were higher than those detected from the Imq-treated BL/10 

supernatants (p < 0.0001) (Figure 3C). Additionally, NOD.B10 splenocytes treated with Imq 

exhibited higher IFNα production as compared to strain-matched samples treated with the 

Imq/BCR cocktail (p = 0.02) (Figure 3C). BL/10 splenocytes secreted negligible amounts of 

IFNγ, regardless of the treatment condition (Figure 3D). NOD.B10 splenocytes treated with 

Imq or Imq/BCR produced high levels of IFNγ as compared with their BL/10 counterparts 

(p < 0.00001 for both comparisons). Moreover, NOD.B10 splenocytes treated with Imq and 

Imq/BCR secreted more IFNγ as compare to strain-matched cells cultured in media alone 

or with the BCR agonist alone (p < 0.0001 for all comparisons) (Figure 3D). Treatment of 

NOD.B10 splenocytes with Imq and Imq/BCR yielded similar IFNγ levels, indicating that 

addition of the BCR crosslinker to the TLR7 agonist did not augment the production of 

IFNγ (Figure 3D).

Finally, we cultured cells for 48 hours as indicated above and performed flow cytometry 

to assess ABC differentiation, as previously described55. We found that the percentage of 

T-bet-expressing B cells was relatively low in both BL/10 and NOD.B10 splenocytes when 

cells were cultured in media alone. An increase in the percentage of T-bet+ B cells was 

noted in BL/10 cultures following stimulation with either Imq, BCR crosslinking, or Imq 

in conjunction with BCR stimulation in both strains as compared to cells cultured in media 
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alone (p < 0.0001, p = 0.006 and p = 0.002, respectively) (Figure 3E and F). Similarly, T-bet 

expression increased in NOD.B10 B cells stimulated with Imq, BCR agonism, or following 

Imq/BCR stimulation as compared to NOD.B10 cells cultured in media alone (p < 0.0001, p 

= 0.006, and < 0.0001, respectively) (Figure 3E and F). In addition, NOD.B10 splenocytes 

stimulated with BCR crosslinking showed elevated B cell T-bet expression as compared their 

BL/10 counterparts (p = 0.002) (Figure 3E and F).

We next examined B cells that co-expressed T-bet and CD11c. We found no differences 

among any of the BL/10 culture conditions. NOD.B10 splenocytes stimulated with 

Imq/BCR showed a higher percentage of T-bet+ CD11c+ B cells as compared to BL/10 cells 

cultured under the same conditions (p = 0.02) (Figure 3G). The percentage of NOD.B10 

T-bet+ CD11c+ B cells was also increased as compared to NOD.B10 cells cultured in media 

or with BCR crosslinking alone (p = 0.001 and 0.005, respectively) (Figure 3G). Taken 

together, these data indicate that NOD.B10 B cells secrete higher levels of IgG, IgG2c, 

IFNα, and IFNγ in response to Imq as compared to BL/10 controls. Moreover, TLR7 

agonism promotes ABC differentiation in vitro in splenocytes, and this is further enhanced 

by Imq/BCR stimulation in NOD.B10 mice.

3.4 TLR7 agonism mediates production of distinct pro-inflammatory cytokines in MZ B 
cells and ABCs.

To examine the functional significance of TLR7 activation of splenic B cell subsets in the 

context of pSD, we sort-purified FO, MZ, and ABC subsets from the spleens of NOD.B10 

females with advanced disease. Of note, ABCs represent a heterogeneous group of B 

cells that have been identified as either T-bet+, CD11c+, both T-bet+ and CD11c+, or 

both CD11b+ and CD11c+31, 32, 56. Recent studies using lupus mice revealed that CD11c 

expression was a better predictor of T-bet positivity than either cells that expressed CD11b 

or those that were negative for CD21/35 or CD2347. This observation was most consistent 

among B cells that expressed the highest levels of T-bet47. Therefore, we conducted 

functional assays using CD11b+ CD11c+ cells, as this strategy to sort-purify ABCs is 

validated by rigorous studies34, 47.

We cultured sort-purified cells in the presence or absence of Imq, harvested the supernatants 

and assessed cytokine production by multiplex array (Figure 4). FO B cells did not show 

enhanced secretion of any of the mediators examined following TLR7 ligation. MZ B cells 

showed much greater TLR7 sensitivity as compared to FO, as increased secretion of TNFα, 

MIP-1α, IL-6, and IL-10 was observed in response to Imq as compared to supernatant 

collected from MZ B cells cultured in media alone (p = 0.03, p = 0.003, p < 0.0001, and 

p < 0.0001 respectively) (Figure 4A, B, D and E). Of note, MZ B cells stimulated with the 

TLR7 agonist secreted higher levels of IL-6 as compared to both TLR7-stimulated FO and 

ABC B cell subsets (p = 0.002 and 0.008 respectively) (Figure 4D). Additionally, MZ B 

cells stimulated with Imq secreted high levels of IL-10 as compared to TLR7-stimulated FO 

B cells (p < 0.0001) (Figure 4E).

Finally, we analyzed ABCs and found that this subset was also highly responsive to TLR7 

agonism. Similar to MZ B cells, TLR7-stimulated ABCs secreted significant levels of 

TNFα, MIP-1α, and IL-10 as compared to ABCs cultured in media alone (p < 0.0001, 
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p = 0.002, and p = 0.01 respectively) (Figure 4A, B, and E). Of note, TLR7-stimulated 

ABCs secreted RANTES (CCL5), and RANTES levels were significantly higher than those 

observed in FO and MZ stimulated with Imq and in unstimulated ABCs (p = 0.02, p = 0.03, 

and p = 0.02 respectively) (Figure 4C). Finally, ABCs produced higher levels of TNFα as 

compared to Imq-stimulated FO and MZ B cells (p < 0.0001 and p = 0.0001, respectively) 

(Figure 4A). Thus, MZ cells and ABCs preferentially secrete numerous pro-inflammatory 

cytokines in response to TLR7 agonism in pSD.

3.5 Specific ANAs are enriched in the MZ and ABC repertoires of pSD mice following 
TLR7 agonism.

To assess TLR7-mediated autoreactive IgG, FO, MZ, and ABC subsets were sort-purified 

and cells were cultured in media containing Imq for 6 days. Autoantigen arrays were 

performed on supernatants collected from the Imq-stimulated cultures. We focused our 

analyses on ANAs, as these are elevated in pSD patients44. ANA-specific IgG was enhanced 

in both the MZ and ABC subsets as compared to the FO (Figure 5 and Suppl. Figure 1). 

Of note, IgG derived from pSD MZ B cells was enriched for binding to numerous RBPs 

as compared to the FO subset, including U1-snRNP A (p = 0.002), U1-snRNP C (p = 

0.004), La/SSB (p = 0.02), and Sm/RNP (p = 0.02) (Figure 5B). In addition, the MZ B 

cell repertoire was enriched for reactivity against PM/Scl-100 (p = 0.005), PM/Scl-75 (p = 

0.002), Ku (p70/p80) (p = 0.004), PL-7 (p = 0.005), Nup-62 (p = 0.007), Jo-1 (p = 0.01), 

GP210 (p = 0.01), SP100 (p = 0.01), SRP54 (p = 0.01), nucleolin (p = 0.02), PL-12 (p = 

0.02), DFS70 (p = 0.02), genomic DNA (p = 0.02), ssDNA (p = 0.04), CENP-A (p = 0.04), 

dsDNA (p = 0.04), histone 2A (p = 0.06), and Mi-2 (p = 0.09) (Figure 5B).

We also analyzed the ABC supernatants and observed enhanced reactivity to numerous 

ANAs as compared to the FO subset (Figure 5A). These data demonstrate that the ABC 

repertoire shows a high degree of anti-nuclear autoantigen reactivity and select autoantibody 

specificities are enriched in the ABC subset, specifically those directed against nucleolin (p 

= 0.005), genomic DNA (p = 0.01), histones (histone 2A (p = 0.01), histone 2B (p = 0.02), 

histone H1 (p = 0.03) and histone H3 (p = 0.05), nucleosome (p = 0.03), Ku (p70/p80) (p 

= 0.04), PML/Scl-100 (p = 0.05), PML/Scl-75 (p = 0.05), SPR54 (p = 0.06), ssDNA (p = 

0.06), PL-12 (p = 0.06), Jo-1 (p = 0.06), DFS70 (p = 0.06), dsDNA (p = 0.07), Nup62 (p 

= 0.09), and CENP-B (p = 0.09) (Figure 5C). Additionally, the data show that reactivity 

to select RBPs (Sm (p = 0.06), SmD (p = 0.06), and SmD1 (p = 0.06)) are preferentially 

enriched in the ABC compartment (Figure 5C). Altogether, these findings indicate that 

TLR7-stimulated MZ B cells and ABCs secrete numerous autoantibodies with relevance to 

pSD.

3.6 Sera from patients with pSD are enriched for autoantibodies that are preferentially 
secreted by the Imq-treated MZ and ABC subsets.

To determine if sera from pSD patients showed similarities in ANA-specific IgG reactivity 

as compared to the cultured B cells subsets, we acquired serum samples from pSD patients 

(n = 15) and age, sex, and ethnicity matched non-SD controls (n = 15). We performed 

autoantigen arrays on these samples. As above, we focused our analyses on ANAs. We 

found that 25 ANA-specific IgGs were significantly enriched in pSD patients as compared 
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to non-SD controls (p values are shown in Suppl. Table 1) (Figure 6A and B and Suppl. 

Figure 2). To determine whether autoantibodies that were increased in pSD patients were 

also enriched in murine TLR7-stimulated B cell subsets, we compared our human data to 

that from our pSD model (Figure 6C and Supplemental Table 2). Of note, 3 autoantibodies 

that were assessed in the murine autoantigen arrays were not included on the human one 

(SmD1, DFS70, and genomic DNA), so these were excluded from our comparisons. Our 

data revealed that 60% of the autoantibodies that were detected by both murine and human 

arrays were enriched in both the pSD patient sera (n = 12/20) and the MZ repertoire. 

Additionally, 12 autoantigens (60%) were recognized by autoantibodies derived from the 

ABC subset (Figure 6C). These data suggest that TLR7-mediated activation of specific B 

cell subsets shapes the pSD patient autoantibody repertoire, and TLR7-dependent signals 

could be a significant driver of these autoantibodies in pSD patients.

4. Discussion

Data from the current study revealed that ABCs are expanded in pSD mice, and these 

cells carry pathogenic potential in the context of pSD. Seminal studies in healthy mice and 

those with lupus demonstrate that ABC expansion is mediated by B cell-intrinsic TLR7 

activation34–36. Similarly, our work shows that TLR7 activation contributes to activation 

of MZ B cells and ABCs in the context of pSD as evidence by cytokine secretion and 

autoantibody production. Of relevance to the human disease, numerous autoantibodies 

induced by TLR7 in MZ and ABC subsets were also elevated in pSD female patients. 

Thus, our data indicate that TLR7-driven B cell activation contributes to pathology in the 

context of pSD, and this is mediated, at least in part, by ABC expansion and activation.

Both type I and type II IFNs play a critical role in autoimmunity54, 57–59, and are implicated 

in the etiopathogenesis of pSD in mice and humans30, 60, 61. TLR7-activated NOD.B10 

splenocytes secreted both IFNα and IFNγ, although IFNγ levels were much higher than 

those observed for IFNα (Figure 3C and D). Recent work in a lupus model revealed that 

TLR7-driven IFNγ production was essential for the generation of germinal center B cells 

and antibody secreting cells59. Of direct relevance to our studies, concomitant activation of 

TLR7, IFNγR, and BCR drives expression of T-bet in B cells, leading to the differentiation 

and proliferation of the ABC subset36, 62, 63. In addition, IFNγ upregulates T-bet in B 

cells and mediates IgG2c secretion64. Approximately 50% of the cells that comprise the 

ABC subset express T-bet47, and activated ABCs secrete IgG2a/c antibodies preferentially64. 

Consistent with these studies, we found that TLR7 agonism increased the percentage of 

NOD.B10 B cells co-expressing T-bet and CD11c following stimulation with Imq/BCR as 

compared to BL/10 B cells cultured under analogous conditions (Figure 3G). Moreover, 

TLR7 stimulation of splenocytes from pSD mice resulted in significant secretion IgG2c 

(Figure 3B). Thus, results from the present study, in conjunction with our prior work18, 

indicate that TLR7 agonism induces heightened ABC differentiation and activation in the 

context of pSD, and IFNγ likely plays a key role in ABC-mediated pathology.

Prior studies in healthy mice revealed that TLR7-stimulated MZ B cells and ABCs are a 

significant source of inflammatory cytokines as compared to FO B cells65–67. Our work 

corroborates and extends these findings, as MZ B cells and ABCs treated with Imq produced 
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numerous pro-inflammatory cytokines as compared to the FO subset (Figures 4), and these 

cytokines are both implicated in both exocrine-specific and systemic pSD manifestations20, 

68–75. It is important to point out that while there are likely inherent differences in cell 

viability and proliferation among the B cells subsets examined in Figure 4, strong evidence 

from both healthy and autoimmune mice demonstrates that MZ B cells and ABCs are 

hyperresponsive to TLR7 agonism as compared to the FO subset65, 76. Therefore, it is 

likely that the differences in cytokine secretion among the subsets is derived primarily from 

underlying differences in TLR7 sensitivity in the B cell subsets examined, and is not simply 

reflective of altered cell viability or proliferation. While these cytokines are elevated locally 

and systemically in pSD, further studies are needed to determine whether MZ and ABC-like 

B cells are a significant source of these mediators in pSD patients.

Of relevance to the current study, recent work in a lupus mouse model found that 

females displayed significant ABC expansion that was absent in males. When TLR7 
was overexpressed in males, however, this sex bias was abrogated and males developed 

even more severe disease than that observed in females34. It is important to note that a 

striking female disease predilection is observed in pSD patients, and this is female sex 

bias is among the highest observed for all autoimmune diseases1. While the reasons for 

this remain incompletely understood, it is interesting to speculate that dysregulated TLR7 

expression in immune cell populations may mediate pSD. TLR7 is expressed on the X 

chromosome, and females inactivate one of the TLR7 alleles through a complex process 

called X chromosome inactivation (XCI)77. Several recent studies demonstrate that certain 

genes, including TLR7, may fail to undergo proper XCI in immune cells78, and this likely 

contributes to the female disease predilection observed in lupus patients79, 80. Of note, 

transcriptional profiling studies revealed that TLR7 was overexpressed in CD19+ B cells 

derived from pSD female patients as compared to those derived from healthy sex-matched 

controls20. Work herein corroborates studies in pSD patients17, although further studies are 

needed to determine whether immune-intrinsic TLR7 activation underlies the female disease 

predilection observed in pSD.

Imq-treated MZ B cells and ABCs represented a significant source of select ANA-specific 

IgGs, including those directed against numerous RBPs (Figure 5). Of note, RBPs form 

complexes with RNA resulting in the formation of ribonuclear protein particles, including 

small nuclear ribonuclear particles (snRNPs)81. Generation of anti-RBP autoantibodies may 

be of clinical consequence in pSD because autoantibodies that target RBPs can activate 

both BCR and TLR7 signaling, culminating in TLR7-dependent B cell activation that 

results in chronic inflammation characterized by secretion of proinflammatory cytokines 

and autoantibodies82–84.

Anti-Sm and anti-RNP autoantibodies are RBPs that correlate with disease severity and 

predict risk of flares in patients with SLE85–89, and RNA-binding autoantibodies are 

generated in a TLR7-dependent manner in lupus models14, 48. It is likely that antibodies 

directed against RNA-associated proteins contribute to pSD pathogenesis as well, through 

induction of TLR7-mediated B cell activation. Previous work from our group provides 

evidence for this disease mechanism in pSD, as sera from pre-disease NOD.B10 females 

treated with a TLR7 agonist were enriched in IgG autoantibodies with specificity for 
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RBPs18. Interestingly, autoantigen array studies conducted on pSD patient sera also revealed 

enrichment of antibodies with specificity for RBPs (Figure 6). While several of these, such 

as anti-Ro and -La, are well-characterized and even used diagnostically in pSD patients44, 

90, others, including Sm, SmD, and U1-snRNP C, are less studied in the context of pSD and 

likely have clinical significance.

A previous study found that while autoantibodies with RNP reactivity were relatively 

uncommon in pSD patients, those with these autoantibodies were more likely to exhibit 

hypergammaglobulinemia and pulmonary involvement as compared to anti-RNP-negative 

pSD patients91. Of note, of the patients who displayed anti-RNP positivity, 30% of these 

individuals also had anti-Sm autoantibodies, and none of these individuals were diagnosed 

with SLE91. More recent work found pSD patients with African ancestry exhibited more 

severe disease and B cell hyperactivity characterized by a higher prevalence of anti-RNP 

autoantibodies as compared to Caucasian pSD patients, suggesting these autoantibodies may 

be preferentially enriched among pSD patients from certain racial and ethnic backgrounds92.

While the way in which anti-RNP antibodies are generated in pSD is poorly understood, 

there are a few studies that have identified putative disease mechanisms with relevance to 

pSD. First, epitope spreading induced by the autoantigen La can result in the generation 

of autoantibodies that display reactivity for U1-RNP93. Second, prior Epstein Barr Virus 

(EBV) infection may result in the loss of tolerance to the Sm antigen, as the dominant 

epitope of SmD is highly homologous to the EBV encoded protein EBV nuclear antigen 

I (EBNA I)94. Interestingly, mice immunized with EBNA I peptide develop anti-SmD 

antibodies94. A corroborative study found that immunization of mice with a Ro 60 peptide 

or the cross-reactive EBNA I peptide resulted in the generation of autoantibodies that had 

specificity for other Ro epitopes as well as spliceosomal components95. These findings 

are relevant to pSD, as EBV infection is implicated in pSD pathogenesis and a recent 

study found that greater than 90% of anti-Ro- and/or La-positive pSD patients displayed 

anti-EBNA I antibodies96. These were also detected in healthy controls, however, so the 

clinical significance of this finding remains unclear97. Nonetheless, these data suggest that 

epitope spreading and molecular mimicry contribute to the generation of autoantibodies with 

specificity for snRNPs in pSD.

Our autoantigen array studies on sort-purified MZ B cells show that this subset is enriched 

in Ro52 and La/SSB autoantibodies (Figure 5), both of which are included in the ACR 

diagnostic criteria for pSD44. While the mechanisms underlying this observation are unclear 

at present, autoantibodies directed against RBPs, such as La/SSB, could contribute to the 

chronic activation of both the MZ and ABC subsets through activation of TLR7-dependent 

signaling cascades, as discussed above. The role of Ro52 autoantibodies in disease, 

however, is much less well understood. Of note, mice that lack Ro52 expression develop 

autoimmunity and B cell hyperactivation98, 99. Additionally, Ro52 autoantibodies from pSD 

patients neutralize Ro52 function in vitro, although it remains to be determined whether this 

ability is maintained in vivo100, 101. It is interesting to speculate that autoantibodies directed 

against Ro52 may act in an autocrine manner to inhibit the function of this protein in MZ 

B cells. Thus, concomitant TLR7 activation and inhibition of Ro52 function could be dual 

mechanisms that contribute to activation and even malignant transformation of MZ B cells 
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in pSD patients, as anti-Ro52 and La/SSB autoantibodies are risk factors for lymphoma 

development in the context of pSD102. Further studies, however, are needed to determine this 

conclusively.

It is important to note that in the current study we only examined female pSD mice and 

anti-Ro-positive female patients who shared common clinical features of disease. Moreover, 

the pSD patients selected for the study showed relatively homogenous clinical findings. 

Thus, additional studies are needed to assess TLR7 signaling and ABC activation in males 

and in more diverse pSD patient populations.

Conclusion

In conclusion, this study provides evidence for ABC activation in pSD that is driven by 

TLR7 agonism. Our work provides a strong rationale for further studies to examine the role 

of TLR7 and ABC-mediated pathology in both males and females with pSD. These results 

carry clinical relevance, as blockade of TLR7-mediated B cell activation could represent a 

potential therapeutic approach in pSD patients.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: ABCs are expanded in aged NOD.B10 mice in a Myd88-dependent manner.
(A and B) Spleens were harvested from NOD.B10 females at 3 (n = 8), 6 (n = 13), and at 

least 12 months of age (n = 9) and from sex-matched BL/10 controls at 3 (n = 8), 6 (n = 

12), and at least 12 months of age (n = 10) and flow cytometry was performed. (C and D) 

Spleens were harvested from NOD.B10Myd88Δ females (12 months of age, n = 7) and age- 

and sex-matched NOD.B10Myd88fl/fl controls (n = 6). Cells were gated on ABCs (B220+, 

CD21−, CD23−) and expression of (A and C) T-bet+ and (B and D) T-bet+ CD11c+ cells 

is shown. Horizontal lines represent mean and SEM (NS, non-significant, *p < 0.05, **p < 

0.01, ***p < 0.001, and ****p < 0.0001). Data from at least 2 independent experiments are 

shown.
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Figure 2: B cell TLR7 expression increases with disease progression in pSD and NOD.B10 
splenocytes show heightened responsiveness to TLR7 agonism.
(A and B) Spleens and cLNs were harvested from NOD.B10 females at 3 (n = 8) and at least 

12 months of age (n = 9) and from sex-matched BL/10 controls at 3 (n = 8) and at least 

12 months of age (n = 10) and flow cytometry was performed. (C) Spleens were harvested 

from NOD.B10 females (6 – 7 months, n = 6) and age- and sex-matched BL/10 controls (n 

= 8). Cells were cultured with Imq and IL-6 ELISAs were performed on the supernatants. 

(D) Cultured splenocytes from NOD.B10 females (6 – 7 months of age, n = 11) and age- 

and sex-matched BL/10 mice (n = 12) were harvested after 24 hours and flow cytometry 

was performed. Cells were gated on B220 and expression of TLR7 is shown. (E) Spleens 

were harvested from NOD.B10 females (6 – 7 months, n = 11) and age- and sex-matched 

BL/10 controls (n = 6). Expression of TLR7 is shown for FO B cells (B220+ CD23+ 

CD21lo/−), MZ B cells (B220+ CD23− CD21+), and ABCs (B220+ CD11b+ CD11c+) from 

one representation BL/10 and NOD.B10 female. Data from all animals is quantified in (F). 

(G and H) Spleens were harvested from NOD.B10Myd88Δ females (12 months of age, n 

= 7) and age- and sex-matched NOD.B10Myd88fl/fl controls (n = 6). Cells were gated on 

B220 and expression of TLR7 is shown. Horizontal lines represent mean and SEM (NS, 

non-significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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Figure 3: TLR7 activation drives heightened production of IgG, IgG2c, IFNα, and IFNγ in pSD 
splenocytes.
Spleens were harvested from NOD.B10 females (6 – 7 months, n = at least 7) and age- and 

sex-matched BL/10 controls (n = at least 5). Cells were cultured as indicated for 6 days and 

ELISAs were performed for (A) IgG, (B) IgG2c, and (C) IFNα and (D) IFNγ. Splenocytes 

were cultured for 48 hours and flow cytometry was performed. Cells were gated on B220 

and expression of T-bet and CD11c was assessed. T-bet expression from one representative 

(E) BL/10 and NOD.B10 female is shown. The percentage of T-bet+ and T-bet+ CD11c+ 

ABCs from each strain and culture condition was quantified and is shown in (F) and (G), 

respectively. Data from at least 2 independent experiments are shown.
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Figure 4: TLR7 mediates inflammatory cytokine production in pSD the MZ and ABC subsets.
Spleens (n = 2 or 3 pooled) were harvested from NOD.B10 females at least 12 months of 

age and FO (B220+ CD23+ CD21lo/−), MZ (B220+ CD23− CD21+), and ABCs (B220+ 

CD11b+ CD11c+) subsets were sort-purified and cultured for 72 hours as indicated. 

Supernatants were harvested and cytokine multiplex arrays were performed to assess the 

levels of (A) TNFα, (B) MIP-1α, (C) RANTES, (D) IL-6, and (E) IL-10. Horizontal lines 

represent the mean and SEM (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001). 

Data from 3 independent experiments are shown.
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Figure 5: TLR7 drives heightened autoantibody production in MZ B cells and ABCs derived 
from NOD.B10 mice.
Spleens (n = 2 or 3 pooled) were harvested from NOD.B10 females at least 12 months of 

age and FO (B220+ CD23+ CD21lo/−), MZ (B220+ CD23− CD21+), and ABCs (B220+ 

CD11b+ CD11c+) cells were sort-purified. Cells were cultured in the presence of Imq for 6 

days and supernatants were harvested and an autoantigen array was performed. (A) Heatmap 

summarizing IgG autoantigen array data is shown. ANA-specific IgG autoantibodies that 

were enriched in (B) MZ B cells as compared to FO B cells and (C) ABCs as compared to 

FO B cells are shown. Data are from 5 independent experiments.
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Figure 6: ANA-specific IgG from pSD patients shows heightened specificity for ANAs that are 
preferentially secreted by TLR7-stimulated pSD B cells.
(A) Autoantigen arrays were performed on pSD and non-pSD control sera for IgG and 

a heatmap of the ANA-specific IgG is shown. (B) Autoantibodies that were significantly 

enriched in the pSD patient sera are shown. (C) Venn diagram showing autoantibodies 

enriched in pSD patient sera (black circle) and TLR7-stimulated murine MZ (blue circle) 

and ABC subsets (red circle). Figure C only includes autoantibodies that were common to 

both the human and mouse arrays. Ribophos P1 = Ribophosphoprotein P1.
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Table 1:

Patient demographics

pSS Sex Age Ethnicity Ro/SSA La/SSB OSS score Schirmer test

1 F 35 Caucasian Negative Negative 2 Negative

2 F 55 Caucasian Negative Positive 4 Negative

3 F 47 Hispanic/Latino Negative Negative 2 Negative

4 F 48 Caucasian Negative Negative 0 Negative

5 F 59 Caucasian Negative Negative 2 Negative

6 F 67 Caucasian Negative Negative 2 Negative

7 F 49 Afro-American or African heritage Negative Negative 1 Negative

8 F 76 Caucasian Negative Negative 0 Negative

9 F 59 Asian or Pacific Islander Negative Negative 1 Negative

10 F 51 Asian or Pacific Islander Negative Negative 3 Negative

11 F 61 Asian or Pacific Islander Negative Negative 3 Negative

12 F 48 Caucasian/Native American Negative Negative 0 Negative

13 F 53 Caucasian Negative Negative 4 Negative

14 F 43 Caucasian Negative Negative 0 Negative

15 F 32 Asian or Pacific Islander Negative Negative 2 Negative

Non-SS

1 F 36 Caucasian Positive Positive 6 Negative

2 F 55 Caucasian/Native American Positive Positive 11 Positive

3 F 48 Hispanic/Latino Positive Positive 11 Negative

4 F 48 Caucasian Positive Positive 6 Positive

5 F 61 Caucasian Positive Positive 11 Negative

6 F 68 Caucasian Positive Positive 10 Positive

7 F 43 Afro-American or African heritage Positive Negative 9 Positive

8 F 79 Caucasian Positive Negative 9 Positive

9 F 57 Asian or Pacific Islander Positive Positive 5 Positive

10 F 49 Asian or Pacific Islander Positive Positive 9 Positive

11 F 62 Asian or Pacific Islander Positive Positive 11 Negative

12 F 46 Caucasian Positive Positive 4 Negative

13 F 51 Caucasian Positive Positive 11 Positive

14 F 43 Caucasian/Native American Positive Negative 1 Negative

15 F 30 Asian or Pacific Islander Positive Negative NP Negative
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