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The chronology and phylogeny of bacterial evolution are difficult to reconstruct due
to a scarce fossil record. The analysis of bacterial genomes remains challenging because
of large sequence divergence, the plasticity of bacterial genomes due to frequent gene
loss, horizontal gene transfer, and differences in selective pressure from one locus to
another. Therefore, taking advantage of the rich and rapidly accumulating genomic data
requires accurate modeling of genome evolution. An important technical consideration
is that loci with high effective mutation rates may diverge beyond the detection limit of
the alignment algorithms used, biasing the genome-wide divergence estimates toward
smaller divergences. In this article, we propose a novel method to gain insight into
bacterial evolution based on statistical properties of genome comparisons. We find that
the length distribution of sequence matches is shaped by the effective mutation rates
of different loci, by the horizontal transfers, and by the aligner sensitivity. Based on
these inputs, we build a model and show that it accounts for the empirically observed
distributions, taking the Enterobacteriaceae family as an example. Our method allows
to distinguish segments of vertical and horizontal origins and to estimate the time
divergence and exchange rate between any pair of taxa from genome-wide alignments.
Based on the estimated time divergences, we construct a time-calibrated phylogenetic
tree to demonstrate the accuracy of the method.

bacterial evolution | molecular clock | mutation rate | maximal exact matches |
horizontal gene transfer

Reconstructing bacterial evolution is a challenging task. In contrast to multicellular
organisms for which an abundant fossil record helps to date events on phylogenetic
trees, bacteria leave very little trace of their existence (1). Despite the accumulation of
genomic data in the last decades, divergence times of many bacterial taxa are yet to be
reliably estimated. Such estimates may be very useful, especially when combined with
host, habitat, or ecosystem data (2). Methods to estimate time divergences from genomic
data rely on the “molecular clock” assumption (3–6), but applying it to date bacterial
diversification events is often difficult. In particular, it is necessary to determine the
rate at which nucleotides mutate over time, i.e., the speed at which the clock “ticks.”
However, this effective mutation rate does not only depend on the background point
mutation rate (associated with replication errors and repair) and on the generation time
of the bacterium (7, 8) but also on different ecological parameters (9, 10), location along
the chromosome (11–13), activity of nucleoid-associated proteins (14), fitness effects of
the mutations (15–17) and other factors. All this, being difficult to assess in practice,
prevents an accurate estimation of divergence times. Furthermore, the molecular clock
is also obfuscated by horizontal gene transfers, especially when the clock is applied on a
small number of genes (e.g., slow-evolving rRNA genes) (18–22), and some of those genes
have taken part in horizontal transfer (23–27). Finally, loci with high effective mutation
rates diverge rapidly such that alignment algorithms do not detect such homologous loci
in distant bacteria. As a consequence, these regions are not considered in divergence time
estimation, resulting in information loss and in biased divergence time estimates.

While the phylogenetic relationships between species can usually be inferred using
the molecular clock, we lack reliable and scalable methods to infer the branching
times on phylogenetic trees. Namely, for bacteria, the molecular clock cannot be
satisfactorily calibrated in contrast to multicellular organisms (28): One has to relate
to ecological events at known times to specific points in the phylogenetic tree (29), for
instance, linking the evolution of bacteria and their hosts (30), see also ref. 6. However,
this approach often leads to orders of magnitude discrepancies between estimates of
the mutation rate on different timescales (6, 28, 31, 32). Such discrepancies led to
the hypothesis of time-dependent mutation rate (33–36) and corresponding relaxed
molecular clock models (37). Relaxed molecular clock models, however, require to fit
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many free parameters, which can be problematic when there is
only limited amount of data available. Moreover, these models are
mostly applied to a small number of marker genes such that large
parts of the genomes are not considered in the time divergence
estimations, discarding potentially useful information.

In sum, evolutionary reconstruction in bacteria is particularly
difficult due to the mosaic structure of genomes: Different loci
evolve with different effective mutation rates, while some loci
are acquired via horizontal gene or allele transfer. The mosaic
structure of bacterial genomes can be directly observed in the
alignment of two bacterial genomes: The mutation densities
significantly vary along the alignment from one locus to another
(see SI Appendix, Figs. S1 and S2, for the example of the
E. coli vs. S. enterica comparison). Here, we develop an approach
that takes into account this mosaic structure to estimate time
divergences between bacterial species. We do so by modeling
the number of exact matches in alignments of pairs of genomes.
In particular, we show that studying the distribution of exact
matches allows to accurately distinguish homologous regions
which have been vertically inherited from a common ancestor
from those which have been acquired by horizontal transfer.
Modeling match length distributions (MLDs) from the vertical
part, we further demonstrate that time divergences between two
species can be estimated directly from the MLD, using only
a few simple assumptions on the mutation rate distribution.
Predictions of the model, e.g., the total homologous region
length, average similarity, and other statistical properties, agree
well with the empirical results for taxa pairs over a wide range of
time divergences.

The Model and Its Analytical Solution
The main goal of our study is to fit the length distribution of
exact matches of pairwise whole-genome alignments of bacteria to
estimate their time divergence. To do so, it is necessary to model

the mosaic structure of bacterial genomes and their evolutionary
dynamics.

The Mosaic Molecular Clock Model. The main assumption of our
model is that bacterial genomes have a mosaic structure, that is,
each locus i mutates with a different effective mutation rate �i
and is inherited vertically. We refer to this part of the genome
as vertical. By the “effective” mutation rate, we mean the rate of
mutation and its fixation in the population. In addition, a taxa
pair exchanges random loci via horizontal transfer with rate � per
base pair and per year. The part of the genome that comprises such
loci is denoted as horizontal. One can see a schematic illustration
of the model in Fig. 1A. Below we describe in more details
our assumptions about the effective mutation rate distribution
and how we model the detection limit of the aligner. All the
definitions used in the model are summarized in SI Appendix,
section A.

Mutation Rate Distribution. In our model, the mutation rates are
distributed between two values: The smallest one,�c , corresponds
to the mutation rate of the most conserved regions, like rRNA
genes, while the largest one, �s, corresponds to the spontaneous
background point mutation rate. In this study, we consider�c and
�s as fixed parameters and use the value estimated in the literature,
i.e., �c = 10−10 per bp and year (29) and �s = 3.64 · 10−9 per
bp and year (38). The mutation rate distribution is a crucial
ingredient in the model that we infer using a combination of
analytical arguments and empirical evidence.

Consider a homologous locus i of length Ki � 1 in two
bacterial taxa A and B. The genomic divergence between the two
bacteria along this locus is given by �i = �i� (in the �i � 1
regime), where �i = (�A

i + �B
i )/2 is the average of the two

effective mutation rates, �A
i and �B

i , at this locus for these two
lineages, and � is the time divergence between the two taxa (twice
the time to their last common ancestor). We assume that for all

A B

Fig. 1. (A) Illustration of the model for the evolution of two taxa A and B. After speciation, different loci evolve with different effective mutation rates along
their genomes (as indicated by the background color) and independently accumulate mutations over time (as indicated by black vertical lines). In addition to
vertical evolution, loci are also transferred horizontally, resulting in shared mutations in both taxa. When comparing the genomes of both taxa, the number
of accumulated mutations will vary between loci due to species-specific differences in mutation rates. In addition, horizontally transferred segments will show
fewer differences than vertically transferred segments since some of their mutations are shared. (B) Distribution of genetic divergences �i obtained from
segmented alignments of E. coli vs. E. albertii (circles). The distribution of the average mutation rate was obtained using �i = ��i with � = 2.3 · 107, as obtained
in further analyses (Fig. 2A). The uptick of the distribution for small values of �i and �i is generated by recent HGT events (SI Appendix, section C.1). The solid
line represents the assumed distribution of mutation rate, Eq. 1 with �c = 10−10 (29) and �s = 3.64 · 10−9 (38).
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loci i, the mutation rates �A
i and �B

i in two bacterial lineages
A and B are not correlated. Following this assumption, it can
be demonstrated that the distribution of �i scales linearly for
small values (39, 40) (SI Appendix, section B). It follows that
the divergences of different loci �i = �i� (in the vertical part
of the genome) follow the same linear distribution. We observe
this linear regime empirically, as shown in Fig. 1B (see also
SI Appendix, section C for additional examples). In sum, our
assumption for the distribution of the effective mutation rate is
given by

p(�i) =
2

�2
s − �2

c

{
�i �c ≤ �i ≤ �s
0 otherwise

. [1]

Further on, we omit the locus index i to simplify the notation.

Alignment Software Detection Limit. To accurately compute the
MLD from the whole-genome alignment of a pair of bacteria, it
is further required to take into account the alignment software
detection limit. The ability of an alignment software to detect
homology depends on the properties of the alignment algorithm
used and on the properties of the considered sequences. Here,
we summarize the properties of the aligner into one effective
parameter �, assuming that an aligner can detect homologous
sequences as long as their divergence � is smaller than a threshold
�. We will discuss the validity of this assumption and estimate
� below in Numerical Validation. The dependence of � on the
length is much weaker and is ignored. This aligner detection limit
affects the analysis of vertical and horizontal parts of the genome
in different ways.

If a given locus in the vertical part of the genome mutates with
a mutation rate � and the time divergence of this locus is �, it
is detected as homologous if and only if �� ≤ �. Defining �a as
the mutation rate of the least conserved vertical alignable region,
for � < �/�s, we have �a = min (�/�,�s). For � > �/�c , no
homology of the vertical part of the genome can be detected.
Therefore, in the following derivations for the vertical part, the
upper limit of the integration over p(�) is �a, which is equal
to �s only for � < �/�s. The same reasoning applies to the
horizontal part, only with different values for the time divergence.
In contrast to the vertical part where the time divergence is the
same for all loci, in the horizontal part, time divergences vary from
one locus to another because sequences have been transferred at
different time points in history.

Analytical Solution.
Howto relate themodel to genomic data? Inferring the parameters
of our model from empirical genomic data is challenging. This
is due to the fact that unlike artificial mosaics, the boundaries of
the constituent pieces are not well recognizable and the pieces are
often too small to be analyzed thoroughly and even identified.
Here, we briefly discuss the validation procedure of our model
using empirical data and demonstrate how to relate p(�) to an
easily accessible empirical quantity.

To take into account the mosaic structure of the genomes,
we consider a combination of clocks, one per locus—each clock
ticking at a different pace due to the different mutation rates.
In addition, some loci may also have undergone horizontal gene
transfer and thus vary in their divergence times. In this paper,
we combine these different molecular clocks into one “mosaic
molecular clock.”

In practice, the mosaic structure of the genomes we study is not
known a priori, that is, one has to infer the regions with constant

mutation densities. To this end, we developed a simple method
called segmut to partition the genomes into regions with constant
mismatch densities using a �2 approach (Materials and Methods,
Fig. 1B and SI Appendix, Figs. S2 and S3). This method has
several drawbacks since it is computationally intensive, and the
results are difficult to verify on empirical data. To circumvent
this difficulty, we decided to use another approach that was
already efficiently applied in different contexts (refs. 39–43). The
main idea, we employ here, is to study the length distribution of
maximal exact matches between homologous sequences. Indeed,
one can show (44), using the result derived in ref. 45 that studying
match length distribution (MLD) allows to assess time divergence
between DNA sequences. Namely, for a given � and � between
two loci of length K � r, the expected number of their exact
sequence matches, m(r), is given by

m(r|�, �) = K (��)2e−��r . [2]

Therefore, if the mutation rate follows a certain distribution p(�),
the MLD for two genomes of length L0 is given by

m(r|�) = L0

∫
∞

0
(��)2e−��rp(�)d�. [3]

We note that the integral above can be represented as a
Laplace transformation: m(r|�) = L0

∂2

∂r2 p̃(�r), where p̃(�r) =
L {p}(�r) =

∫
∞

0 e−��rp(�)d� is the Laplace transform of p(�).
Hence, there is a direct relationship between the MLD m(r|�)
and the Laplace transform of the mutation rate distribution. As
a consequence, studying m(r)—a quantity that can be easily
computed for empirical data—allows reconstructing the evolu-
tionary history of the genomes, in particular their mutation rate
distribution. Below we further consider that � is also distributed
along genomes due to horizontal transfers, but the principle is
the same: The distribution m(r) is easy to compute empirically,
easy to calculate analytically, and contains information about
the distributions of � and �. In SI Appendix, section D, we
demonstrate the consistency between the genome segmentation
results and the MLD.

In the following, we use our model to calculate analytically
the MLD, compare it to the empirical one, and infer the model
parameters � and � for all considered pairs of taxa. To simplify
the analysis, below we consider separately the MLD from the
vertical part of the genome, mv, and the MLD of the horizontally
transferred part, mh. In the next section, we calculate analytically
the shape of the MLD of the vertical and horizontal parts of the
genomes. More detailed calculation can be found in SI Appendix,
section E.
The vertically transferred part. The MLD from the �-detectable
vertical part of the genome (homologous loci with � < �a, such
that their divergences are smaller than �) with time divergence �,
using Eq. 1, is given by

mv(r)=
2L0

�2
∂2

∂r2


e−�c�r(�cr�+1)−e−�s�r(�sr�+1)

(�2
s −�2

c )r2 �≤ �
�s

e−�c�r(�cr�+1)−e−�r(�r+1)
(�2

s −�2
c )r2 �> �

�s .
[4]

One can see that the tail of the MLD from the vertical part
scales as r−4, as previously observed in eukaryotes (39, 40).

The total length of the �-detectable homologous vertical part
of the genome decreases with increasing time divergence � and is
given by
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Lv = L0

1 � ≤ �
�s

( �
� )

2
−�2

c
�2
s −�2

c
� > �

�s

. [5]

Along the vertical region with this length, the average
divergence is given by

�v =
2
3
�


�3
s −�3

c
�2
s −�2

c
� ≤ �

�s
( �
� )

3
−�3

c

( �
� )

2
−�2

c
� > �

�s

. [6]

See SI Appendix, section E.3, for representative plots of these
functions.
The horizontally transferred part. Assuming that only a small
fraction of the genome has been transferred (i.e., ��

2 � 1), the
MLD from the �-detectable horizontal part of the genome can
be written as

mh(r) =
�L0

�c + �s
∂2

∂r2


1
r −

e−�c�r−e−�s�r
�r2(�s−�c)

� ≤ �
�s

1
r −

e−�c�r−e−�r(�r−�sr�+1)
�r2(�s−�c)

� > �
�s

.

[7]

One can see that the tail of the MLD from the horizontally
transferred part scales as r−3, as was also derived and shown
empirically in ref. 43.

In the same regime, the total length of the �-detectable
homologous part of the genome due to HGT is given by

Lh = L0


�
2� � ≤ �

�s
��
2�s + �

2�s
��2

c ( �
�−�s)−��s( �

�−�s)
�2
s −�2

c
� > �

�s

. [8]

Along the horizontally transferred region with this length the
average divergence is given by

�h =


2
3
�3
s −�3

c
�2
s −�2

c

�
2 � ≤ �

�s
�
2

2
3

2�2+ 1
� (�c�)

3
−3��s�

�2+(�c�)2−2��s�
� > �

�s

. [9]

The total match length distribution. Assuming that the total
contribution of the homologous part due to HGT is much smaller
than the contribution from the vertical part (i.e., Lh � Lv,
otherwise, the MLD is fully determined by the contribution
from the horizontal part, as in ref. 43), the total MLD is given
by

m(r) = mv(r) + mh(r), [10]

wheremv andmh are given by Eqs. 4 and 7. The total �-detectable
homologous length is given by

L = Lv + Lh, [11]

whereLv andLh are given by Eqs. 5 and 8. The average divergence
is given by

� =
Lv�v + Lh�h
Lv + Lh

, [12]

where �v and �h are given by Eqs. 6 and 9.
Eqs. 10–12 are the main analytical results of the article, and

we use them in the following to validate the model and to fit the
parameters � and � for different pairs of taxa using Eq. 10, while
we estimate the value of � using numerical simulation.

Numerical validation. To test our theory and estimate �, we
simulated the evolution of taxa under the assumptions of the
model (Fig. 1A and Materials and Methods): Each locus mutates
with a certain rate, distributed as Eq. 1, and horizontal transfer
of loci occurs with rate �. We aligned sequences obtained in
these simulations using the nucmer software (46) with default
parameters. Fitting all resulting MLDs with � as a free parameter,
we find that for the used aligner, � ' 0.25 results in good fits
(SI Appendix, Fig. S4). Applying segmut to the alignments of the
simulated sequences, we obtain distributions of mutation rates
and divergences similar to the empirical ones (SI Appendix, Fig.
S5). Using � = 0.25, we were able to fit the numerical MLDs,
and to accurately estimate both the divergence times and the
horizontal transfer rates values used to simulate the sequences,
demonstrating the consistency of our approach (SI Appendix,
Fig. S6). These results demonstrate that our method allows to
reconstruct the evolutionary history of a taxa from genomic data.
In the following, analyzing empirical data, we use � = 0.25,
assuming that � is the property of the aligner and does not
depend strongly on the analyzed sequences.

Empirical Validation
Fitting the Two Regimes of the MLD. To test our model on
empirical data we downloaded 5,149 fully assembled genomes
from 11 taxa of the Enterobacteriaceae family, as well as 759
genomes from two outgroups: Serratia and Vibrio genera (see SI
Appendix, Table 1 for details). For each taxa pair, we computed
the total MLD resulting from the whole-genome comparisons of
all genomes of taxon 1 vs. all genomes of taxon 2 (normalized
by the number of comparisons, see Materials and Methods).
Obtained MLDs exhibit two different regimes, corresponding to
short and long matches, in good agreements with the prediction
of our model (see Fig. 2 for a few examples and SI Appendix,
SI-ExtendedFigures.pdf for all 13× 12/2 taxa pairs).

Short matches follow a power-law with a −4 exponent, as
expected for the matches from the vertical part Eq. 4, while
long matches are distributed according to a −3 power-law, as
predicted for horizontally transferred loci Eq. 7. The location
of the transition between the two regimes depends on the time
divergence between the taxa: The closer the two taxa are, the
longer the matches of the vertical part. Analytical prediction for
the combination of the vertically and horizontally transferred part
from Eq. 10 fits well the empirical data for almost all taxa pairs.
When many pairs of genomes are available for a taxa pair, our
method has good statistical power, allowing to clearly separate the
r−3 and r−4 regimes and to accurately estimate the values of � and
�. Interestingly, estimating � with only few or even one genome
per taxon also results in good estimates (SI Appendix, section F.3).

Model Setbacks. Our model failed to estimate the time diver-
gence for two specific taxa pairs: 1. E. coli vs. E. fergusonii and
2. E. asburiae vs. E. hormaechei. In SI Appendix, Fig. S7, one
can see the reason for this: The MLD of the first pair has a
m(r) ∼ r−3 regime in the vertical part, implying that Eq. 1
is not valid and suggesting instead p(�) ∼ const for this pair.
One can observe similar behaviors for another closely related
pair E. coli vs. E. albertii in Fig. 2A (for this pair, the time
divergence estimate is nevertheless reasonable). For the other
pair, E. asburiae vs. E. hormaechei (SI Appendix, Fig. S7B),
the rate of horizontal transfer is so high that the horizontally
transferred segments dominate over the vertical part. Since the
time divergence estimation is based solely on the vertical part, the
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Fig. 2. Match length distributions of nine selected pairs of taxa in panels (A–I). Names of the taxa are indicated in the Bottom-Left corner of the panels. The
numbers in the brackets indicate the number of genomes, and � is the average divergence between the genomes of the two taxa. The empirical data (dots)
are fitted with Eq. 10 (black solid lines) using the global parameters �s = 3.64 · 10−9, �c = 10−10, and � = 0.25. The values of � and � are fitted for each pair
separately and are shown in the Top-Right corner. Using the obtained parameters, the vertical and the horizontal parts of the match length distributions are
plotted using Eq. 4 (blue lines) and Eq. 7 (red lines), respectively.

signal is obfuscated. In fact, this demonstrates another quality of
our approach: Studying the MLD shape, one can easily diagnose
pairs for which the assumptions of the model are not fulfilled,
and therefore, the parameter estimation fails.

The Estimated Parameters Exhibit Predicted Trends. Our
model makes several predictions regarding the estimated param-
eters and their relationships. First, the model predicts that the
total length of the homologous regions of the genomes of two taxa
depends on their time divergence. For small time divergences, the
full genome can be aligned, and after a certain time threshold
(i.e., � > �/�s), Lv decreases with the divergence time as
Lv ' (�/�s�)2 Eq. 5 and SI Appendix, section E.3. Indeed, this
relationship is well reproduced on empirical data as shown in
Fig. 3A. Our model further predicts that the average divergence
between the two genomes depends on the time divergence in
a nontrivial fashion Eq. 6 and SI Appendix, section E.3. As
predicted, we observe on empirical data that the average genome-
wide divergence scales linearly for closely related species, reaches
'

2
3 of the aligner detection limit � for � = �s/�, and then

grows very slowly with � (Fig. 3B). Finally, we find that the rate
of horizontal transfer, �, as presented in Fig. 3C, can vary by

orders of magnitude (ref. 48) and exhibits a clear trend to decay
as the divergence time grows, as previously observed (see, e.g.,
refs. 43, 49–51).

Phylogenetic Analyses. We next investigated whether the esti-
mated divergence times were coherent and compatible. To do
so, we computed a phylogenetic tree from our time estimates,
forcing the ultrametricity of the tree (Materials and Methods).
The resulting tree is shown in Fig. 3D. In the Inset of the
figure, one can see that the pairwise distances in the obtained
tree follow closely the estimated values. This result shows that
our estimated time divergences have an inherent ultrametric
structure, demonstrating that all considered lineages have similar
mutation rate distributions. Moreover, the topology of the tree
reproduces well what is expected based on the literature: For
instance,Klebsiella pneumoniae is closely related to Raoultela (52),
and S. enterica is closely related to Citrobacter (53).

In contrast, using a simple, nonmosaic molecular clock
assumption, the topology of the tree and the value of the
time estimates would be very different (SI Appendix, Fig. S8).
Indeed, because segments with high divergence are not identified
by the alignment software, the estimated divergence is greatly
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A B C

D

Fig. 3. Relationships between the model parameters and the estimated time divergences for species of the Enterobacteriaceae family. (A) Ratio of the detectable
homologous length and estimated value of the genome length of the common ancestor for all pairs of taxa as a function of the time divergence between the
taxa. The blue line is Lv /L0, the predicted length ratio from the vertical part based on Eq. 5; the red line is Lh/L0, the predicted length ratio from the horizontally
transferred and detectable part based on Eq. 8. The dotted gray line represents the full (detectable and nondetectable) length ratio of the horizontally transferred
part, given by ��. The length ratio L/L0 from both detectable parts (vertically and horizontally transferred) from Eq. 11 is indistinguishable from Lv—the blue
line—on this scale for these data. Detailed empirical data for each taxa pair are shown in SI Appendix, Fig. S9. (B) Empirical divergences for all taxa pairs after
Jukes–Cantor distance correction (47) vs. fitted time divergence (squares). The blue line represents the predicted divergence along the vertical part Eq. 6, while
the red line represents the predicted divergence along the horizontally transferred part Eq. 9. The total predicted divergence given by Eq. 12 is indistinguishable
from �v for these data. Detailed empirical data for each taxa pair are shown in SI Appendix, Fig. S10. (C) Fitted HGT rate as a function of the fitted divergence
time for all pairs of taxa. Data points labeled with digits 1 (E. coli vs. E. fergusonii) and 2 (E. asburiae vs. E. hormaechei) are further discussed in the main text,
and their MLDs are shown in SI Appendix, Fig. S7. (D) UPGMA tree constructed using the estimated pairwise time distances �. The inset plot compares the time
distances on the resulting ultrametric tree with the estimated values (on a double-logarithmic scale).

underestimated for distant pairs, and the resulting tree would
have an unresolved star-like structure.

Discussion and Summary
In this paper, we studied the statistical properties of similarities
between bacterial genomes. Those similarities are shaped by
mutations, horizontal transfer of genes/alleles, gene losses, and
selection during their evolution since their last common ancestor.
In practice, the observed similarities are also shaped by the
sensitivity of the used aligner: If two loci are too distant,
the aligner cannot detect their homology, and such loci are
disregarded. In this case, only more conserved loci (or recently
transferred ones) are detected by the aligner, making the bacterial
genomes appear more similar than they really are.

We combined all these factors and propose a mathematical
framework to model and assess their contributions. We show that
the analysis of match length distributions is a powerful tool that
allows to uncover details of bacterial evolution. In our model, mu-
tations are assumed to occur randomly, breaking long matches to
shorter ones. Different loci mutate with different effective rates,
�, depending on their associated selective pressure. On the other
hand, horizontal transfers between two genomes generate long

matches with a given rate �. Gene losses reduce the total length of
homologous loci, scaling down the MLD prefactor L0. The sen-
sitivity of the aligner is modeled by considering only homologous
loci with an average divergence lower than a threshold �.

By explicitly modeling the distribution of mutation rates along
genomes, we can resolve the long-standing discrepancy between
the mutation rate measured in short time-scale experiments
and the one inferred from distant bacteria on the evolutionary
time scales without the ad hoc assumption of time-dependent
mutation rate. Indeed, our framework makes it possible to
estimate the time divergence between bacterial species � as well as
their HGT rate � using whole-genome sequence alignment alone.
In our framework, reliable estimate of the HGT rate � requires
the comparison of many sequenced genomes. In contrast, by
using whole-genome alignments, we can robustly estimate the
time divergence � between two taxa from a single comparison
in most cases (SI Appendix, sections F.2 and F.3) such that
our method could be applied even to species with few genomes
available.

Selective Pressure and Distribution of Effective Mutation
Rates. The distribution of mutation rates along genomes reflects
the variation of selective pressure. The selective pressure on a
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locus is affected by the fitness effect of a mutation at this locus
and by the effective population size of the taxon (54, 55). The
distribution of fitness effects can in principle be assessed (16), but
these methods require in general to conduct complex experiments
in controlled environments. In contrast, in this study, we directly
model the mosaic distribution of effective mutation rates under
simple assumptions.

If mutation rates along different lineages are not correlated,
one expects that the mean effective mutation rates are linearly
distributed Eq. 1 (39, 40). The validity of the no-correlation
assumption is not obvious—More conserved loci in one lineage
are expected to tend to be more conserved in another lineage. In
this case, we would expect a different MLD shape SI Appendix,
section B.

In fact, this linear behavior is not unique to bacteria, and the
same principles also apply to eukaryotic genomes: Eukaryotes
also have mosaic genomes with a distribution of mutation rates,
the main difference being that horizontal transfer in eukaryotes
is much rarer than in prokaryotes (56). Applying our method
to the comparison of a few vertebrate genomes, we find that the
resulting MLDs could be fitted with only the vertical part (see
SI Appendix, Fig. S11 and refs. 39, 40, 57, 58).

Here, we propose a very simple model to explain the linear
distribution of mutation rates. There might be other (more
complex) models which lead to the same linear distribution
of effective mutation rates that we observe empirically both in
bacteria and vertebrates.

HGT Detection Based on MLD. Detection of horizontal transfer
of a locus is often based on its high similarity in two organisms,
much higher than one would expect due to conservation (59).
Long (almost) exact matches are often interpreted as horizontal
transfers, (43, 50, 60, 61). However, in the absence of a
model, it is not clear what is the threshold that discriminates
horizontally transferred and well-conserved sequences, leading
to false-negative or false-positive detection errors (62). Detailed
analysis of the MLD can help to minimize those errors: The
presence of two clear regimes in the MLD suggests that sequences
with exact matches shorter than the cross-over between the two
regimes are conserved, while longer ones most probably have
been horizontally transferred. This way of classifying loci is
nonparametric and can be applied to all pairs of taxa, which
exhibit MLDs with two clear regimes.

Since the model proposed here clearly disentangles conserva-
tion and horizontal transfers, our estimate of horizontal transfer
rates is expected to be more accurate than the one found in
previous studies. Our results confirm that the rate decreases with
the divergence time, as previously observed (43, 48–51). Note
that in this study we filtered out plasmid sequences so that
the estimated horizontal transfer rates are related only to the
chromosomal part of the genome.

Phylogenetic Analysis. Using the presented approach, we built
an ultrametric tree of the Enterobacteriaceae family with Serratia
and Vibrio as outgroups (Fig. 3D). Topologically, the tree
reproduces known phylogenetic relationships.

While these relationships can also be found on a tree
constructed using the average genome-wide divergences (SI
Appendix, Fig. S8), we emphasize that this tree is not topologically
identical to the one built using our method. For instance, the
average divergence tree suggests that Salmonella is closer to
Klebsiella (� = 0.1479) than to Escherichia (� = 0.1498). The
tree based on the time divergences estimated using our method

suggests the opposite (� = 1.88 · 108 and � = 6.67 · 107,
respectively), in agreement with the 16S rRNA result (63, 64)
although 16S rRNA phylogeny cannot be taken as a ground
truth (27, 65).

Overall, for closely related taxa where the molecular clock
still holds, the two methods yield very similar trees. In contrast,
for distantly related taxa where many homologous sequences are
too divergent to be detected by the aligner, the branch lengths
estimated by our method are very different from those found by
the average divergence method. As a consequence, the average
divergence tree has a star-like shape, while our method can better
resolve deep branching patterns.

Interestingly, we estimate that Escherichia and Salmonella
branched 100 · 106 y ago. This is ' 30% smaller than the
currently accepted estimate of 140·106y based on the appearance
of mammals (29). This suggests that our assumptions about the
values of the mutation rates �c and �s are higher than the real
ones or that the branching of the two taxa occurred significantly
after the appearance of mammals.

Model Setbacks. For two taxa pairs (labeled as 1 and 2 in Fig. 3
and SI Appendix, Fig. S7), the time divergence estimates are not
accurate. Possible reasons for this may be that the recombination
rate between the two species is so high that the vast majority of the
observed matches result from horizontally transferred loci rather
than from evolutionary conserved ones, such that one cannot
reliably estimate the time divergence using our approach. Another
possible reason might be that the mutation rate distribution
does not follow the linear distribution assumed in our model.
Although the assumption of linear mutation rate distribution is
very general and is fulfilled in most cases, it might be violated
for closely related pairs in at least two scenarios: i) if the effective
mutation rates of the homologous loci are well correlated or ii) if
mutations occur mostly at loci with high effective mutation rates
for which the asymptotic scaling considerations in Mutation Rate
Distribution do not apply.

Improvement of the Method. To resolve the described limita-
tions of our model, several research avenues could be explored.
First, for simplicity, in this article, we used a strict molecular
clock, meaning that the mutation rate distribution is the same
along all branches, and we assumed that the mutation rate varies
only along the genome in a mosaic form. The presented approach
could further be extended, relaxing the clock also along the
lineages. Another potential theoretical extension of our model
would be to relax the assumption about the independence of
the mutation rates in two taxa. As we show in SI Appendix,
section B.3, correlated mutation rates would lead to a power-
law tail in the vertical part with a different exponent, which,
in principle, can be taken as another fitting parameter. Note,
however, that the current model results in good fits for many
pairs of species and its simplicity makes it very easy to apply in
practice. The proposed extensions have the potential to improve
the quality of the parameter estimations, but would come at the
cost of more ad hoc assumptions and a larger number of free
parameters to fit.

On the technical side, in this paper, we used the nucmer
software to construct all alignments because this method is
computationally very efficient. However, our framework could
easily be adapted to other algorithms with improved sensitivity,
e.g., lastz (66) to align more distantly related genomes and
measure horizontal transfer rates and time divergences. The exact
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same theoretical framework could be used, just changing the
effective parameter � to account for the difference in sensitivity.

Summary. We demonstrated that a method embracing the
complex mosaic structure of bacterial genomes and explicitly
accounting for the technical limitations of sequence homology
detection can improve the estimation of deep phylogenetic
branches and their timing. The main advantage of our method
is that it can leverage genome-wide alignment data, resulting
in robust time divergence estimates that are not dependent on
a few specific marker genes. Our results have implications that
go beyond bacterial evolution as we have shown that our model
applies to the mosaic structure of many more genomes, including
vertebrates.

Materials and Methods

Throughout this article, the time (�) units are years, length (L) units are bp, while
the rates (mutation � and horizontal transfer �) are in units of y−1 bp−1. The
used scripts are located on the github repository (67).

Data. We used taxa from the Enterobacteriaceae family and two outgroups: the
Serratia and Vibrio genera. We considered only the chromosomal part of the
genome.Tofilteroutplasmids,weusedonlycompletegenomeandchromosome
level assemblies in refseq (68) database using the NCBI (69). Plasmids were
filtered based on the header in the fasta files. We considered only species with at
least 20 available assemblies. For species with smaller number of full assemblies,
we grouped the species to corresponding genera. To mitigate sampling biases,
we removed samples obtained from large multi-isolate projects, as they are
indicated in the NCBI site.

Aligning the Genomes. To align pairs of genomes, we used nucmer (46)
with the default settings, using only unique matches in both genomes (--mum
option). To estimate the divergence, we calculated the number of differences
per alignment, normalized by the alignment length. Insertions and deletions
were considered as single differences.

Plotting MLDs—Logarithmic Binning. To plot the MLD, we used a linear
3 bp binning up to 35 bp and logarithmic binning with 10 points
per decade for larger matches. Namely, our breaks of the histogram are
0.5, 2.5, 5.5, 8.5, ..., 35.5, 35.5 · 100.1, 35.5 · 100.2, 35.5 · 100.3... In the
plots, centers of the bins are geometric mean of their boundaries. Within each
bin, we count the number of matches and normalize it by the size of the bin.
In addition, we normalize the MLD by the total number of alignments we do
for the two considered taxa. If we analyze two taxa with n1 and n2 genomes,
respectively, we do n1 × n2 alignments, collect all the exact matches, and,
therefore, divide the total MLD by n1 × n2.

Simulating the Genomes. To simulate bacterial evolution, we started from
the 5,005,213 bp-long E. coli chromosome NZ_CP092647.1 and divided it to
segments with different lengths, distributed exponentially with an average of
104bp. Each segment was evolved with a mutation rate drawn from the uniform
distribution between �c = 10−10 and �s = 3.64 · 10−9. We assume
that transversions and transitions occur with the same probability and back
mutations are allowed. We used this framework to evolve pairs of genomes with
a wide range of divergence times, from 107 to 9 · 108. Horizontal transfer is
implemented by transferring a random segment of length 104 from one branch
to another with rate � = 106/�2 per bp to mimic the relationship between
the horizontal transfer rate and the divergence time observed in real data
(Fig. 3C). The HGT rate was assumed to be constant in time from the beginning
of the simulation, which does not affect the results significantly because only
very recent HGT events contribute to the MLD tail. For each value of � , we
simulated 12,800 pairs with different random seeds. The resulting sequences
were aligned and analyzed using the same procedure used for empirical
genomes.

Segmenting the Genomes (Segmut Package). We segmented the align-
ments of the bacterial genomes with respect to the density of mutations following
the ideas in refs. 70–72, maximizing the �2 statistic of the mutations density
of the segments. The developed segmut R package can be found in the github
repository (73).

Fitting Procedure. To fit the empirical MLD using Eq. 10 for each pair of taxa,
we used two free parameters: � and �. Genome length of the common ancestor
of the pair of taxa, L0, is taken as the length of the smallest genome of the
pair. The fitting is performed by minimizing the mean square relative difference
between the theoretical and the empirical binned MLDs using the Nelder–Mead
algorithm (74), see also SI Appendix, section F.1. To find the starting point, we
used Harmony Search heuristic (75) with 104 starting points.

Building the Tree. We build the ultrametric tree using hierarchical clustering of
the taxa based on their estimated pairwise time divergences � . We use average
linkage clustering (hclust function from the stats R package), which is equivalent
to the UPGMA method (76). To get the pairwise distances from the resulting
tree, we use cophenetic function from the stats R package.

Data, Materials, and Software Availability. Software is available in Github
(67) and segmut (73). All other data are included in the manuscript and/or SI
Appendix.
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