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Making topological protein links using enzymatic reactions 

Roger Castells-Graells 1 , 2 and Todd O. Yeates1 , 2 ∗
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of knotted and/or interlinked proteins 
uniquely challenging. A first demonstra- 
tion of designed protein knotting came 
from fusing the monomers of a naturally 
homodimeric protein; the two subunits 
were naturally twisted about each other 
in a way that made the fused form fortu- 
itously knotted [5 ]. On the related prob- 
lem of forming a link or catenane between 
two protein chains, this was first achieved 
in a similar fashion by connecting the 
ends of the entwined chains of a homod- 
imeric p53 protein domain [6 ]. 

The creation of topologically complex 
protein backbones—links or knots—of 
diverse form is possible if additional 
backbone connections can be made and 
broken, al l whi le the backbone is held 
in a specific 3D configuration. Build- 
ing upon considerable prior research 
[7 ], in a recent report, Fang et al . [8 ] 
demonstrate this kind of backbone 
‘rewiring’ through clever application of 
chemical biology tools, in combination 
with approximate 3D modeling. The 
researchers identified the enzyme di- 
hydrofolate reductase (DHFR) as one 
in which the native 3D structure could 
support a rewiring process leading to 
two closed interlinked chains, known 
as a catenane. The process involves two 
enzymatic reactions catalysed by or- 
thogonal inteins—self-reacting splicing 
motifs—engineered into the starting 
gene construct. Each intein reaction 
closes a ring between one of the original 
chain termini and a position on the chain 
interior (Fig. 1 ). Together, the two ring 
closures release the intein motifs, leaving 
the DHFR catenane as the product, 
which retains enzymatic activity in its 
rewired form. The autocatalytic feature 
of the construct makes it an effectively 
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Figure 1. A schematic diagram showing the 
creation of two closed rings (right) from two 
intein-based splicing reactions on a linear pro- 
tein backbone (left). The paths of the protein 
backbones are illustrated as smoothed curves 
without folded protein characteristics in order 
to clarify the underlying topological relation- 
ships. The top panel illustrates the expected 
outcome—unlinked rings—from an arbitrary 
choice of protein as the framework. The bot- 
tom panel illustrates the case of linked rings 
obtained for special choices of the underlying 
protein framework, which was the enzyme di- 
hydrofolate reductase described by Fang et al . 
[8 ]. The dashed lines indicate new connections 
formed by the intein ligations, with cleavages 
at positions marked by ‘X’. 

one-pot synthetic system in the cell. The 
authors go on to demonstrate superior 
thermal stability of the catenane version 
of the novel DHFR compared with its 
natural linear form. This dual-intein cate- 
nane process adds a new twist to the 
field of engineering topologically com- 
plex proteins. 

This latest protein engineering 
achievement is a timely one, dovetail- 
ing with powerful new advances in 
machine-learning and artificial 
intelligence tools for protein engineering 

©
C
w

roteins are exceedingly complex 
olecules though, at their heart, they 
re essentially linear polymers. Pull 
t their ends and one obtains an ex- 
ended backbone. While that is true in 
ost cases, some natural proteins have 
volved elaborations that complicate the 
icture. These modifications typically 
tabilize a natively folded conformation 
nd prevent its unfolding. Numerous 
tructural and chemical mechanisms for 
mbellishing the protein backbone have 
een elucidated, ranging from simple 
isulfide bonds to much more complex 
opological features. The diversity of 
aturally evolved variations speaks to 
heir functional importance in stabilizing 
roteins against chemical, thermal or 
hysical unfolding forces. 
Certain types of protein backbone 

ariation, such as disulfide bonds, are 
eadily understood in terms of local struc- 
ure. Other potentially stabilizing fea- 
ures can only be understood in terms 
f the overall global path of the pro- 
ein backbone and its topological en- 
anglements. For example, there are rare 
ases in which the path of a protein 
ackbone forms a knot in 3D space. In 
ther rare examples, two protein chains 
re cyclized by disulfide bonds in a 
ay that links them and makes them 

nseparable [1 ,2 ]. 
Whether in the context of a protein 

ackbone or purely mathematical curves 
n space, the global nature of knotting 
nd linking makes it non-trivial to iden- 
ify such topologically complex struc- 
ures [3 ]. Indeed, the first deeply knot- 
ed protein backbone was discovered [4 ] 
nly after the initial structural report. 
he same considerations—global vs. lo- 
al dependence—make the engineering 
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9 ]. Previous successes in designing 
opologically complex proteins, the 
resent work included, have emerged 
rom human insight into how knotted or 
inked curves might be generated. Even 
ore complex structures and topological 
ariations are likely to flow in the future 
rom creative applications of rapidly 
mproving computer algorithms [10 ]. 
opological protein forms of the type 
resented here should be enticing targets 
or these new computational tools. 
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