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Abstract

Numerous classification and regression problems have extensively used Support Vector

Machines (SVMs). However, the SVM approach is less practical for large datasets because

of its processing cost. This is primarily due to the requirement of optimizing a quadratic pro-

gramming problem to determine the decision boundary during training. As a result, methods

for selecting data instances that have a better likelihood of being chosen as support vectors

by the SVM algorithm have been developed to help minimize the bulk of training data. This

paper presents a density-based method, called Density-based Border Identification (DBI), in

addition to four different variations of the method, for the lessening of the SVM training data

through the extraction of a layer of border instances. For higher-dimensional datasets, the

extraction is performed on lower-dimensional embeddings obtained by Uniform Manifold

Approximation and Projection (UMAP), and the resulting subset can be repetitively used for

SVM training in higher dimensions. Experimental findings on different datasets, such as

Banana, USPS, and Adult9a, have shown that the best-performing variations of the pro-

posed method effectively reduced the size of the training data and achieved acceptable

training and prediction speedups while maintaining an adequate classification accuracy

compared to training on the original dataset. These results, as well as comparisons to a

selection of related state-of-the-art methods from the literature, such as Border Point extrac-

tion based on Locality-Sensitive Hashing (BPLSH), Clustering-Based Convex Hull (CBCH),

and Shell Extraction (SE), suggest that our proposed methods are effective and potentially

useful.

1 Introduction

In recent years, large datasets have become increasingly prevalent in various domains, posing

challenges for traditional machine learning algorithms due to their computational complexity

and memory requirements. These challenges motivated the creation of various methods and

algorithms that aim at minimizing the bulk of the training data to speed up training the models

without compromising their accuracy. Data reduction techniques have been extensively

researched and implemented to address this issue. These techniques can be broadly
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categorized into dimensionality reduction, cardinality reduction, and numerosity reduction

techniques [1]. Dimensionality reduction, including feature selection and extraction tech-

niques, focuses on identifying and selecting the most informative attributes from a dataset [2].

Cardinality reduction techniques, such as binning and discretization, transform the original

data into a reduced representation [1, 3]. Numerosity reduction, including instance selection

or sampling techniques alternatively, aims at choosing a representative subcategory of a dataset

by removing redundant and noisy data points [4].

Support Vector Machines (SVMs) are powerful and effective machine learning algorithms

that have shown excellent performance in various tasks. The algorithm tries to locate a hyper-

plane that divides data points of various classes with the greatest possible margin by optimizing

a quadratic programming problem [5]. This problem is computationally expensive and can be

prohibitive for applying the algorithm to large datasets. However, it was found that only a sub-

set of the training data points, called support vectors (SVs), contribute to the final decision

boundary, while the remaining data points can be considered redundant and thus potentially

removed [6]. As a result, instance selection techniques have been developed to identify data

points that the SVM algorithm is more likely to choose as support vectors. These techniques

frequently rely on the assumption that these support vector candidates are located near the

decision boundary [7]. Many research efforts have been directed towards developing instance

selection algorithms for SVM training data reduction. In this part, a few of the most important

techniques are briefly discussed. Here is a brief summary of the most pertinent connected

work.

Barros de Almeida et al. [8] used k-means to divide the dataset into small clusters. Clusters

consisting exclusively of data points with identical class labels were discarded and substituted

with their centroid. Clusters that contained data points from various categories were retained.

This method is affected by the distribution of the dataset and the presence of noisy data points.

Koggalage and Halgamuge [9] used a variable radius around cluster centers to recognize

crisp regions that comprise data points of the same category. To avoid removing potential sup-

port vectors in crisp clusters near the decision boundary, a variable safety margin is applied,

and only data points that lie between cluster centers and the safety margin are removed.

Wang et al. [10] introduced the K-means SVM (KM-SVM) algorithm, which aimed at

reducing the inference time of the SVM classifier by minimizing the number of identified SVs.

They used k-means to condense the data into cluster centers, which were then used for search-

ing the input parameter space for a good combination of the regularization parameter (C),

gamma, and compression rate parameters that yielded fewer support vectors. Their algorithm

showed promising results; however, it did not consider the respective contributions of distinct

cluster centers in determining the decision boundary.

In their study, Bang and Jhun [11] proposed enhancements to the KM-SVM approach to

account for the significance of different cluster centers by introducing a weight depending on

the number of data points within each cluster during the optimization process. Additionally,

the authors suggested a weighting strategy for imbalanced datasets. They also proposed an

additional process for recovering data points that are in proximity to the SVs. These salvaged

data points are then used to reconstruct the SVM classifier. This improves the precision of the

selected model, but, as a consequence of the additional processes and the increase in the num-

ber of SVs, training and inference times are relatively prolonged.

Demir and Erturk [12] applied k-means clustering separately to each class to obtain cluster

centroids. The number of clusters used for k-means is determined based on the number of

data points in the class. An SVM classifier is then learned on the set of centroids. Data points

of clusters whose centroid is identified to be a support vector, in addition to the centroids

themselves, comprise the final reduced training set.
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Shen et al. [13] used a two-stage approach; first, the dataset is partitioned using k-means.

The resulting clusters are further divided into sub-clusters based on class labels. The centroids

of the clusters are employed to train an SVM to obtain an approximate hyperplane, which is

then used to discard clusters that are far away from it. For the second stage, the authors pro-

posed the Fast Iteration of FDR (FIFDR) algorithm, in which the Fisher Discriminant Ratio

(FDR) is applied using distance densities of points to the centroids to obtain a boundary

between the dense area of data points near the centroids and the outer sparse area of data

points. Points within the boundary are removed.

Lui et al. [14] proposed the Shell Extraction (SE) algorithm, in which, first, the geometric

centroid of each class is calculated. Then, a certain radius around each centroid defines a

reduction sphere, and data points within the sphere are removed. The radius is calculated

based on the average distance between the centroid and the data points of the class and a user-

defined parameter. This process is iteratively applied to the remaining data points. For each

iteration, the new centroids are calculated and the reduction spheres are expanded. The algo-

rithm terminates when the number of retained data points is less than a user-defined thresh-

old. The algorithm assumes that the classes are spherical. Furthermore, its output is dependent

on parameters controlling the radii of the reduction spheres and the rate of their expansion.

In the clustering-based convex hull (CBCH) algorithm introduced by Biranzhandi and

Youn [15], the dataset is partitioned by k-means into clusters. All the data points of clusters

containing different class labels are preserved. For clusters containing the same class label, the

convex hulls are calculated for each cluster, and only the data points at their vertices are

retained while the rest of the data points are removed. The procedure’s efficiency is dependent

on the number of clusters and their preliminary centroids.

Aslani and Seipel [16] introduced the border point extraction based on locality-sensitive

hashing (BPLSH) algorithm, in which data points are allocated to buckets using a collection of

hash function families based on locality-sensitive hashing (LSH). A similarity index, expressed

as the count of common buckets for a pair of points across all families of hashing functions, is

used to quantify the closeness between points. Samples with quite close neighbors of an oppo-

site class are considered border data points and are retained. Only one representative instance

is preserved in a homogeneous region. Similar to other methods using partitioning of the data-

set, performance is affected by the granularity of partitions.

In his approach, Gaffari [17] proposed a method aiming to reduce both the data set size and

boundary complexity. Based on the neighborhood information of each data point, harmful

data points are removed. A harmful point has a class label that is different from the dominant

class label of its neighbors. Outlier points, which are not in the neighborhood of other points,

are also removed. Boundary points are then determined based on being one of the mutually

closest pairs of points of different classes. Then, from the remaining points, those whose closest

point of a different class is still not selected are also added to the boundary points. The remain-

ing non-boundary points are condensed into cluster centers using hierarchical clustering.

Those representatives, combined with the boundary points, form the reduced dataset.

The previously mentioned related work has shown that instance selection can be employed

to reduce the bulk of the training set without significantly affecting the accuracy of the SVM

classifier. However, most of these methods are based on clustering the whole dataset into parti-

tions and then detecting samples in proximity to the decision boundary by checking for the

occurrence of multi-class samples in the clusters. This method is affected by the distribution of

the dataset as well as the occurrence of anomalies in the dataset. Moreover, it is also sensitive

to the granularity of the clusters and the initialization of the centroids. For instance, as the

granularity of clusters increases, the majority of clusters will likely contain only a single class

label. In contrast, with lower granularity, it will be more likely that more than one class label
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will be included in most of the clusters, thereby decreasing the accuracy of their selection. Fur-

thermore, most of the techniques mentioned do not have control over the size of the reduced

dataset.

The main aim of this research is to identify a layer of data points at the borders of different

classes, as they most likely include data points to be selected as support vectors by the SVM

algorithm. Retaining such a layer of data points and using it for training can enhance the train-

ing efficiency of the SVM algorithm while not significantly compromising classification accu-

racy. This is especially important when applying SVM to large-scale datasets.

The key contributions of this study are as follows:

• A novel density-based method for SVM training data reduction, called Density-based Border

Identification (DBI), is proposed, which utilizes density-based techniques to identify a layer

of border data points that are likely to include support vectors identified by the SVM

algorithm.

• Four variations of the DBI method are also proposed. These variations either extend the DBI

techniques or replace them with different strategies for the selection of data points to achieve

improved performance.

• An approach for speeding up the training of the SVM classifier in higher dimensions is

introduced. This approach is based on applying instance selection in lower-dimensional

embeddings before mapping the reduced dataset back to the original higher dimensionality

for training, which allows the use of the same reduced dataset for multiple training sessions.

• A modified implementation of k-fold cross-validation is proposed, which is tailored for

training the SVM on a subset of the dataset with a different distribution.

• A balanced evaluation of the proposed methods is presented by simultaneously considering

multiple objectives, namely accuracy, training speedup, and testing speedup.

The rest of the paper is organized as follows: In Section 2, a brief background is presented

for the SVM and density-based techniques. We describe the suggested algorithm, the SVM

training approach, and the four variations of the algorithm in Section 3. Section 4 comprises

the experimental setup, evaluation methodology, and experimental results. A general discus-

sion of the main findings is presented in Section 5. Finally, Section 6 concludes the research.

For reference, a list of the acronyms used is available in S2 File.

2 Background

This section offers a concise background on the SVM algorithm and the DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) clustering algorithm.

2.1 Support vector machines

The SVM algorithm [18] is a supervised learning algorithm that can be utilized to solve classifi-

cation and regression problems. It is based on the idea of locating the optimal hyperplane that

divides the data points into distinct classes. As depicted in Fig 1, the hyperplane is defined by

the equation:

wTxþ b ¼ 0 ð1Þ

where w is the normal vector to the hyperplane and b is the bias term. The distance between a
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data point x and the hyperplane is given by:

d ¼
jwTxþ bj
jjwjj

ð2Þ

The aim of the SVM algorithm is to maximize the margin between the hyperplane and the

nearest data points, thus enhancing its generalization ability. These points are denoted as sup-

port vectors. The SVM algorithm can be expressed as the following quadratic programming

problem:

minimize
w;b;x

1

2
jjwjj2 þ C

Xn

i¼1

xi

subject to yiðwTxi þ bÞ � 1 � xi; 8i ¼ 1; . . . ; n

xi � 0; 8i ¼ 1; . . . ; n

ð3Þ

Fig 1. Separating hyperplanes in the linearly separable case. The hyperplane is shown as a solid line, the margins as

dashed lines, and the support vectors are enclosed in red circles.

https://doi.org/10.1371/journal.pone.0300641.g001
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where C is a regularization parameter and ξi is a slack variable that allows some data points to

be misclassified.

The previous formulation of the optimization problem has a quadratic objective function

and linear constraints. Consequently, it is a convex optimization problem that can be effi-

ciently solved using the Lagrangian dual formulation. Since this formulation of the problem is

convex, meaning that its objective function is quadratic and its constraints are linear, it is illeg-

ible for the Lagrangian dual formulation.

The Lagrangian dual formulation of the SVM optimization problem is given by:

maximize
a

Xn

i¼1

ai �
1

2

Xn

i¼1

Xn

j¼1

aiajyiyjx
T
i xj

subject to
Xn

i¼1

aiyi ¼ 0

0 � ai � C; 8i ¼ 1; . . . ; n

ð4Þ

where α is a vector of Lagrange multipliers, with each multiplier corresponding to a data point.

The solution to the dual optimization problem determines the optimal values of the Lagrange

multipliers α. In turn, the optimal values of w and b can be calculated as follows:

w ¼
Xn

i¼1

aiyixi

b ¼ yi �
Xn

i¼1

aiyix
T
i xj

ð5Þ

Eq 5 demonstrates that the optimal values of w and b depend only on points with nonzero

Lagrange multipliers αi. These are known as support vectors. The following decision function

can then be used to classify unseen data points:

f ðxÞ ¼ signð
Xn

i¼1

aiyix
T
i xj þ bÞ ð6Þ

Using the kernel trick, the SVM algorithm can be extended to non-linearly separable data.

The kernel trick is based on mapping the data points to a higher-dimensional space in which

they can be linearly separated. Without explicitly calculating the mapping function φ, the ker-

nel function K(xi, xj) = φ(xi)Tφ(xj) is used to compute the dot product of the mapped data

points. The linear kernel, the polynomial kernel, and the radial basis function (RBF) kernel are

the most frequently employed kernel functions. The equation Kðxi; xjÞ ¼ xTi xj denotes the lin-

ear kernel. Kðxi; xjÞ ¼ ðxTi xj þ cÞd is the definition of the polynomial kernel, where c is a con-

stant and d is the degree of the polynomial. The RBF kernel is introduced as K(xi, xj) = exp

(−γ||xi − xj||2) where γ is a constant [19].

The SVM algorithm is designed to solve binary classification problems, but it can be

adapted to handle multi-class classification problems using the one-versus-all strategy. In this

method, a separate SVM classifier is trained for each class, and the data point is allocated to

the class with the maximum score. A data point’s score is quantified by the separation between

the data point and the SVM classifier’s hyperplane [20]. One-versus-one is another approach,

according to which a distinct SVM classifier is trained for every pair of classes. The data point

is allocated to the class with the maximum number of votes. Since the number of SVM
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classifiers is quadratic in the number of classes, the one-versus-one technique is computation-

ally more costly than the one-versus-all method. Nonetheless, it is more accurate than the one-

versus-all approach because, unlike the one-versus-all approach, it does not introduce the class

imbalance problem [21]. In this study, the one-versus-one approach is used.

2.2 Density-based clustering and DBSCAN

Our density-based approach is inspired by the concepts of the density-based clustering algo-

rithm DBSCAN [22]. Three types of points are distinguished by the DBSCAN algorithm: core,

border, and outlier. Core points are those with a minimum number of neighboring points

(minPts) within a specified radius (ε). Border points lie within the radius of a core point but

lack sufficient neighbors to be considered core points. Outlier points are not reachable from

any of the core points within the specified radius.

Let x and y be two arbitrary data points. We say that x is directly density-reachable from y if

x is within the ε-neighborhood of y and y is a core point, which means it has at least minPts
neighbors within a distance of ε. x is said to be density-reachable from y if there exists a

sequence of data points z1, . . ., zn such that z1 = y, zn = x and zi+1 is directly density-reachable

from zi for i = 1, . . ., n − 1. x is density-connected to y if there exists a data point z from which

both x and y are density-reachable.

The procedure begins by choosing an arbitrary point p and determining all its ε-neighbors.

If p has at least minPts neighbors, it is considered a core point; otherwise, it is an outlier. If p is

a core point, a new cluster is formed with p and all its neighbors added. Then, the cluster

expands by including the neighbors of the core points that were added to the cluster. This pro-

cedure repeats until all density-connected points are added. The algorithm then chooses

another unvisited point and repeats the process. The algorithm terminates when all points

have been visited [23].

3 Proposed method

Most instance selection algorithms for reducing training data in SVM have the target of identi-

fying a subset of the dataset that is most likely to contain the support vectors. This is justified

by considering that the SVM classifier calculates the decision function using only the support

vectors identified through the learning process. The rest of the training data is discarded at the

end of the training phase. This observation suggests that other subsets of the training dataset

exist with specific distributions and sufficient data points to guide the SVM algorithm in iden-

tifying support vectors that would produce a decision function for the SVM classifier that is

comparable to what would be obtained using the original full dataset. The set of SVs extracted

by the classifier trained on the entire dataset can be regarded as one such subset. Knowing the

support vectors in advance is practically impossible without training the SVM classifier, which

makes this only a hypothetical case. However, it was observed that training the SVM solely on

these data points would result in the identification of nearly all of them as support vectors.

Due to the elimination of all data points other than support vectors, the distributions of the

reduced subset and the original dataset would differ significantly. Interestingly, experimenta-

tion has shown that the resulting decision boundaries are almost identical to those constructed

by the SVM trained on the whole dataset, given that the same kernel function and hyperpara-

meters are used, as illustrated in Fig 2.

In this work, we offer a density-based approach for instance selection, called Density-based

Border Identification (DBI), in which density-based techniques are applied in a supervised

manner. The neighborhoods of the data points of each class are analyzed separately, and a

score is assigned to each data point according to the number of high-density neighbors (i.e.,
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core points). These scores are then used to guide the splitting of the data points within each

class into core, border, and outlier points. Outliers and core points are discarded, while border

points are retained. The collective union of the border points of all classes comprises the final

reduced training set. A user-defined ratio parameter controls the number of retained data

points. DBI uses a similar method to DBSCAN to identify a layer of border points for each

class. The main differences are that DBI does not consider the density-connectivity between

points and does not assign points to clusters. Instead, it identifies core points with respect to

the ε and minPts parameters and then calculates a score for each point according to the num-

ber of core points in its neighborhood. The points with zero scores are considered outliers and

are discarded. The points with scores above a certain threshold are considered core points and

are also discarded. The remaining points are considered border points and are retained. The

subsequent subsections provide the details of the DBI algorithm.

3.1 Identifying core points

In this step, the algorithm identifies core points within the class being analyzed. The algorithm

uses similar definitions to DBSCAN. The definitions are provided as follows:

Definition 3.1 (ε-neighborhood). The ε-neighborhood of a point p is defined as:

NεðpÞ ¼ fq 2 D j distðp; qÞ � εg ð7Þ

where D is the set of all data points in the class and dist(p, q) is the distance between points p
and q. Various distance metrics, such as Euclidean distance, Manhattan distance, etc., may be

used for the computation of the distance between two points. This study employs Euclidean

distance.

Definition 3.2 (core point). A point whose ε-neighborhood contains at least minPts neigh-

bors. Formally, a point p is considered a core point if:

p 2 fq 2 D j jNεðqÞj � minPtsg ð8Þ

where |Nε(q)| is the number of points in the ε-neighborhood of q.

Fig 2. Training an SVM classifier only on support vectors compared to that trained on the whole dataset. The

decision boundaries are shown as solid lines, the margins as dotted lines, and the support vectors are enclosed in

circles. (a) A classifier trained on the entire dataset. (b) A classifier trained only on support vectors identified earlier by

an SVM classifier trained on the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.g002
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For every point in the class being analyzed, the ε-neighbors count is determined, and core

points are identified and marked according to the preceding definition. This step classifies all

points in the class being analyzed as either core points or non-core points.

3.2 Calculating core scores

In this step, the algorithm calculates a score for each point based on the number of core points

in its ε-neighborhood. The scores are calculated according to the following definitions:

Definition 3.3 (core neighbors). The core neighbors of a point p are the points in the ε-

neighborhood of p that are also core points. The formal definition is as follows:

Ncore
ε ðpÞ ¼ fq 2 NεðpÞ j jNεðqÞj � minPtsg ð9Þ

where Nε(p) is the ε-neighborhood of p and |Nε(q)| is the number of points in the ε-neighbor-

hood of q.

Definition 3.4 (core score). The core score of a point p is defined as:

SðpÞ ¼ jNcore
ε ðpÞj ð10Þ

Where jNcore
ε ðpÞj is the number of core neighbors of p.

At this step, each point in the class being analyzed has a core score. These scores can be

seen as a measure of how close a point is to the center of the class. The higher the score, the

closer the point is to the center of the class. The lower the score, the further the point is from

the center of the class. As with most density-based clustering algorithms, DBI assumes that the

classes are densest at their centers.

3.3 Identifying border points

In this step, points are classified as either border points or outliers. The points with core scores

of 0 are considered outliers and are marked as such to be later discarded. For the rest of the

points, a threshold t is used to decide whether a point is a border point.

Following are the definitions of border outliers and border points.

Definition 3.5 (outlier). An outlier p is a point that has a core score of 0. In other words, it

has no core neighbors. A formal definition of an outlier point p is as follows:

p 2 fq 2 D j SðqÞ ¼ 0g ð11Þ

Definition 3.6 (border point). A point p that has a core score between 1 and a certain

threshold t. It is formally presented as follows:

p 2 fq 2 D j 1 � SðqÞ � tg ð12Þ

The threshold t is calculated based on a user input ratio r 2 [0, 1], which represents the

desired ratio of the size of the reduced dataset to that of the entire training set. t is derived by

converting the ratio r to a quantile of the core scores after removing the outliers. To account

for the discarded outliers, an adjusted ratio q is calculated as follows:

q ¼
r

1 �
jOj
jDj

ð13Þ

where |D| is the size of the class being analyzed and |O| represents the number of outliers. The
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threshold t is then calculated as depicted in the following equation:

t ¼ QðfSðpÞ j p 2 D n Og; qÞ ð14Þ

where Q is the quantile function, S is the core score function, and O is the set of outliers.

3.4 Reducing the training set

In this step, the algorithm discards the outliers and non-border points and retains the border

points. The retained border points of all classes are combined to form the reduced training

dataset. This dataset is then used to train an SVM classifier.

A summary of the DBI algorithm is presented in Algorithm 1. The main steps of the algo-

rithm are illustrated in Fig 3.

Algorithm 1 DBI Algorithm
1: Input: Dataset D, radius ε, minimum number of points minPts, ratio r
2: Output: Reduced training set R
3: R  ;
4: for each class C 2 {C1, . . ., Cn}
5: O  {q 2 CjS(q) = 0}
6: q  r

1�
jOj
jCj

7: t  Q({S(p)jp 2 C\O}, q)
8: R  R[{p 2 Cj1 � S(p)�t}
9: end for

It is relevant to mention that one advantage of DBI is that it considers all borders of classes

when selecting border points. This is expected to be useful, especially in multi-class classifica-

tion problems where most of the border samples contribute to the decision boundaries. This

can be seen, for instance, when using dimensionality reduction techniques such as t-SNE (t-

Distributed Stochastic Neighbor Embedding) [24], in which local structure is more preserved

than global structure, making distances between classes less reliable [25]. Furthermore, embed-

dings obtained by t-SNE for multi-class datasets tend to have a layout of classes that packs clas-

ses close to each other. This layout makes classes have most of their borders adjacent to those

of other classes and hence contribute to the decision boundaries. Another advantage is that

each of the classes is analyzed independently, which allows for the identification of outliers

according to the distribution of each class. This also enables applying techniques to determine

suitable parameters specific to each class, such as when classes have different densities. For this

study, the same parameters were used for all classes. However, this approach can be easily

Fig 3. Identification of a layer of border points in our proposed method (DBI). (a) The input classes of a synthetic

2-dimensional dataset set. (b) The calculated core scores for all points of the dataset. (c) The three identified types of

points; i.e. border points (red), core points (green) and outliers (black). (d) The final reduced training set.

https://doi.org/10.1371/journal.pone.0300641.g003
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extended to allow for different parameters for each class. Additionally, DBI enables more con-

trol over the number of retained samples by using the user-defined ratio parameter.

3.5 Training the SVM classifier

After the reduced training set is obtained, it is utilized to train the SVM classifier. Given that

the reduced data set will have a different data distribution than that of the whole dataset, and

even though the selected subset is intended to, most likely, contain candidates for the SVs, it is

almost impossible to precisely select the exact SVs. This implies that the hyperparameters will

deviate from the optimal values that would be obtained by training on the whole dataset.

Therefore, the hyperparameters of the SVM classifier must be specifically tuned for optimal

performance [7]. In this study, the hyperparameters are tuned using a grid search approach

with k-fold cross-validation.

When implementing grid search, it is crucial to ensure that the validation set used to tune

the hyperparameters is representative of the target distribution when cross-validation is

employed. It should therefore be sampled from the original training dataset. The k-fold tech-

nique ensures no overlap occurs between the training and validation sets for every fold, as long

as it performs the splitting on a single dataset. However, its implementation is not straightfor-

ward in this study since the training fold must be derived from the extracted reduced set. We

present a modified implementation of k-fold cross-validation to address this issue. The steps

involved in this strategy are as follows:

1. K-fold cross-validation is performed on the original full training set to obtain k training

and validation folds, T1, V1, . . ., Tk, Vk.

2. For each fold i, a training set T 0i is constructed by selecting the data points in the reduced set

R that are also in Ti.

3. Ti is discarded while Vi is retained unchanged.

4. The SVM classifier is trained on T 0i using a set of hyperparameters and validated against Vi.

5. The optimal hyperparameters are determined according to the highest mean accuracy

across all folds.

6. The SVM classifier is trained on the entire reduced set R using the selected

hyperparameters.

Notably, because the k-fold split method randomly selects samples for both the training

and validation splits, the training subsets from the reduced dataset will have the same ratio to

the reduced set as the original training subsets had to the original training set. An advantage of

this method is that it permits the extraction of the reduced subset only once prior to grid

search or cross-validation, as opposed to applying the extraction step to every training split,

which would result in the loss of information provided by the validation subset that was set

aside. In addition, the extraction method’s outputs within the k-fold splits may differ signifi-

cantly from the final output used for training the SVM classifier after grid search, particularly

for low values of the number of folds. We argue that our methodology is less sensitive to

changes in fold count.

3.6 Higher-dimensional datasets

The DBI algorithm is designed to operate on datasets of relatively low dimensionality since its

performance is anticipated to degrade as the dataset’s dimensionality increases. This is because

the distance between points becomes less reliable, which is a characteristic of the curse of
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dimensionality [26]. To circumvent this limitation, we suggest employing the UMAP (Uniform

Manifold Approximation and Projection) dimensionality reduction technique [27]. It is a

method of non-linear dimensionality reduction based on manifold learning. It is intended to

conserve the data’s local structure, to be computationally efficient, and to scale well to large

datasets. In our method, UMAP is intended to be used to transform the dataset to lower

dimensions, such as 2 or 3 dimensions, before applying the data selection phase of DBI. Once

the reduced dataset is identified, it can be mapped to any higher-dimensional embeddings for

the training phase using the indices of the data points in the original dataset.

The use of UMAP for enhancing DBSCAN performance was investigated in [28]. The

authors argued that the use of UMAP improves the performance of the DBSCAN algorithm by

reducing its parameter sensitivity. We argue that reducing the dimensionality of the dataset for

data reduction will be beneficial for allowing repetitive training of the SVM classifier more effi-

ciently. This is usually needed for model selection, hyperparameter tuning, and cross-valida-

tion. We also argue that the use of UMAP for dimensionality reduction will be specifically

favorable in this case for the following reasons:

• The embeddings that are produced by UMAP maintain the data’s local structure, which is

expected to be useful for DBI, which relies on local structure.

• UMAP tends to produce more compact clusters in their embeddings compared to other

dimensionality reduction techniques such as t-SNE [29].

• Given its topological assumptions about the distribution of points on the lower-dimensional

manifold, UMAP tends to favor a certain degree of uniformity of cluster density [27].

• It was observed during experimentation that most of the support vectors identified in

higher-dimensional embeddings tend to reside at the boundaries of the compact clusters in

the lower-dimensional embeddings. This is assumed to make the extraction of a border layer

in lower-dimensional embeddings more relevant.

• It was also observed that in higher-dimensional embeddings produced by UMAP, the num-

ber of resulting support vectors is significantly lower than that of the original dimensionality.

This is expected to result in a faster prediction time. This contrasts with the higher number

of support vectors detected in higher-dimensional embeddings produced by linear

dimensionality reduction techniques such as PCA (Principal Components Analysis).

3.7 Variants of the DBI algorithm

In DBI, we focused on the extraction of a layer of border points to represent the reduced set;

however, this method is sensitive to the distribution of the dataset, and therefore the perfor-

mance of the algorithm is expected to vary depending on the dataset. One limitation was

observed in cases of datasets with significant overlap between their classes. In such cases,

excessive reduction of the dataset will result in very thin layers of border points. Such overlap-

ping border layers will represent a considerable ratio of the selected subset, and therefore

instances from different classes crossing the decision boundary will interfere with the con-

struction of a suitable decision boundary and result in a degraded performance of the final

classifier. Another drawback is that with overlapping borders, most of the data points in the

overlapping area will be considered support vectors. This results in a high number of support

vectors and, hence, a slower prediction time. In response to these constraints, we introduce the

following variations to the DBI algorithm:
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3.7.1 BRI (Border-biased Random Instance selection). In this variant, DBI is extended

to combine two scoring schemes: the core score and a pureness score. The core score is the same

as the core score used in DBI, with an additional normalization step to range from 0 to 1. The

pureness score is calculated for a point as the ratio of the number of k nearest neighbors shar-

ing the same class label to the total number of k nearest neighbors. The pureness score is then

added to the core score to obtain the final score of the point. Outliers will have a core score of

0 and will be discarded. It is worth noting that the final score will be higher for points that are

further away from the borders of classes and those that are not in overlapping areas. The score

is then used as the weight for a weighted random sampling of points to be discarded from the

reduced training set. This method shares the same parameters as DBI with the additional k
parameter. The k parameter is used to control the number of neighbors used to calculate the

pureness score. The pureness score is calculated as follows:

purenessðpÞ ¼
jfq 2 NkðpÞ j q 2 Cgj

jNkðpÞj
ð15Þ

where Nk(p) is the k nearest neighbors of p and C is the class of p. The final score is calculated

as follows:

scoreðpÞ ¼
S0ðpÞ þ purenessðpÞ if SðpÞ 6¼ 0

0 otherwise

(

ð16Þ

where S0(p) is the normalized core score of p which is calculated as follows:

S 0ð pÞ ¼
Sð pÞ � min

q2C
SðqÞ

max
q2C

SðqÞ � min
q2C

SðqÞ
ð17Þ

This variant, in other words, randomly selects points for removal from the dataset with a

high probability for points that are more central and that have pure neighborhoods. This is

equivalent to randomly selecting points for retention with a high probability for points that are

closer to the borders of classes and that lie in overlapping areas. Therefore, it aims to overcome

the first limitation.

3.7.2 BRIX (border-biased random instance selection with eXclusion). To address the

second limitation, we propose a variant that aims to reduce the number of detected SVs. In

this variant, the same scoring scheme used in BRI is used to calculate the score of each point.

However, instead of using the pureness score directly, its complement is used as a measure of

how impure the neighborhood of the point is. The final score is calculated as follows:

scoreð pÞ ¼
S0ð pÞ þ ð1 � purenessðpÞÞ if SðpÞ 6¼ 0

0 otherwise

(

ð18Þ

The remaining steps are identical to the BRI variant. This variant thus randomly selects

points for removal, with a high probability for points that are more central and that have impure

neighborhoods. This is equivalent to randomly selecting points for retention with a high proba-

bility for points that are closer to the borders of classes and that lie away from overlapping areas.

As a result, the reduced dataset will have less overlap between classes, as can be seen in Fig 4.

3.7.3 SVO (Support Vector Oracle). Here we propose a different approach to border

layer extraction that is independent of the DBI density-based approach. The Support Vector

Oracle (SVO) is intended for use with datasets of higher dimensions. It identifies support vec-

tors in lower-dimensional embeddings produced by UMAP by training an SVM classifier.
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Then it uses the identified support vectors as seeds to construct the reduced dataset by select-

ing the nearest neighbors sharing the same label. Therefore, it requires the parameter k which

defines the number of nearest neighbors to collect. An example is illustrated in Fig 5. The con-

structed reduced dataset is then used for training SVM classifiers after mapping its data points

to the original dataset based on their original indices. They can also be mapped to other

higher-dimensional UMAP embeddings of the original dataset.

3.7.4 SVOX (Support Vector Oracle with eXclusion). This is a variant of the SVO that

aims at a smaller number of identified support vectors using a similar strategy to the BRIX var-

iant. Specifically, it excludes support vectors with impure neighborhoods from the seeds of

identified support vectors according to a defined threshold. The remaining steps are similar to

the SVO variant, except that only data points with pure neighborhoods are considered neigh-

bors. The support vectors to be included as seeds are selected as follows:

SVðpÞ ¼
p if purenessðpÞ � L

None otherwise

(

ð19Þ

Fig 4. Effect of border overlap on the decision boundaries of the trained classifier on the Banana dataset. The whole dataset is compared to

our proposed DBI and BRIX methods, both at a ratio of 0.2. The test dataset is plotted against the decision boundaries (solid lines) and margins

(dashed lines). (a) Whole dataset. (b) Reduced dataset (DBI). (c) Reduced dataset (BRIX variant). (d) Test dataset plot against decision boundaries

(whole dataset). (e) Test dataset plot against decision boundaries (DBI). (f) Test dataset plot against decision boundaries (BRIX variant). Notice

the misclassified points in the central region of the plot in (e) due to the overlapping borders of the opposite class around the central part.

https://doi.org/10.1371/journal.pone.0300641.g004
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where pureness(p) is the neighborhood pureness measure for p as defined in Eq 15, and L is a

user-defined threshold. Similar to SVO, k controls the extent of the neighbors to be collected.

Another variable, N manipulates the number of neighbors to consider when estimating the

pureness measure. The excluded support vectors and their neighbors are more likely to be

found in areas of overlap between classes. This variant is thus expected to have an advantage in

such cases.

4 Experiments

This section details the experimental setup and the outcomes of applying the DBI method and

its variants to different datasets.

4.1 Datasets

The DBI algorithm and its variants were assessed on synthetic and real-world datasets. The

datasets used are briefly described in this section.

Banana. A two-dimensional dataset that consists of two classes that show considerable

overlap. It consists of 5,300 samples. In our experiments, the training dataset contains 4,240

samples, while the testing dataset has 1,060 samples [30].

USPS. This dataset consists of 10 classes of handwritten digits. 7,291 samples are provided

for training and 2,007 for testing. Every sample is a 16x16 grayscale image automatically

scanned from an envelope by the U.S. Postal Service [31].

Adult9a. One of the categories included in the Adult dataset. It comprises 32,561 and

16,281 samples for training and testing, respectively. Every instance represents an individual

with 123 characteristics. The objective of this binary classification problem is to predict

whether an individual earns more than $50,000 annually. With 24,720 samples in the negative

class and 7,841 samples in the positive class, the dataset is extremely unbalanced. The dataset is

preprocessed by eliminating samples with missing values and encoding categorical attributes

with one-hot encoding [32].

4.2 Metrics

The predictive performance of the classifier trained by employing the DBI algorithm and its

variants is assessed using the classification accuracy as defined in Eq 20.

accuracy ¼
TP þ TN

TP þ TN þ FPþ FN
ð20Þ

Fig 5. Reduced dataset selection using the proposed SVO method for a non-overlapping dataset. (a) A moons-

shaped dataset. (b) Identified support vectors. (c) Reduced subset using SVO at k = 15.

https://doi.org/10.1371/journal.pone.0300641.g005
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where TP denotes true positives, TN represents true negatives, FP is false positives, and FN,

false negatives. Equivalently, it represents the proportion of accurate predictions out of all pre-

dictions made.

For the experiments, the accuracy is evaluated against the testing dataset, which is not used

during the training phase and hence is not considered during the instance selection process. A

baseline accuracy is calculated by training the SVM classifier on the entire training dataset and

evaluating its accuracy. This baseline score is then contrasted with the accuracy of a model

trained only on the reduced portion of the data. Another metric that is used as a potential indi-

cator of the quality of the selected training subset is the number of support vectors identified by

the SVM classifier. Minimizing this number will speed up the prediction time of the SVM clas-

sifier and reduce its memory requirements. An interesting metric that is used for exploratory

analysis is a measure of how similar the support vectors identified in the selected training sub-

set are to those identified in the full training dataset. For this purpose, the Jaccard similarity
coefficient is used. It is described in Eq 21 for two sets A and B, as the proportion of the inter-

section of the two sets to their union [33].

JðA;BÞ ¼
jA \ Bj
jA [ Bj

ð21Þ

Training time and testing time are also measured for both the baseline classifier and that

trained on the reduced subset. The training time is measured as the time the SVM classifier

takes to train once using the tuned hyperparameters identified by grid search for each of the

compared classifiers. The testing time is measured as the time it takes to predict the labels of

the test set using the trained SVM classifier.Training speedup and testing speedup are calculated

as the ratio of the training time of the baseline classifier to that of the reduced subset and the

ratio of the testing time of the baseline classifier to that of the reduced subset, respectively.

4.3 Experimental setup

The experiments were conducted using Python 3.8.10 on a machine with an Intel Core i7–

10750H CPU, an NVIDIA GeForce GTX 1660 Ti GPU, and 16 GB of RAM running Ubuntu

20.04.1 LTS. The experiments were conducted using the scikit-learn library [34]. The

SVM classifier was trained using the SVC class and the RBF as the kernel. The regularization

hyperparameter C was tuned separately for each of the compared classifiers using a grid search

approach. It was selected from the values (1, 10, and 50). The kernel coefficient γ was set to the

default value calculated by the SVC class, which is estimated as follows:

g ¼
1

d � VarðXÞ
ð22Þ

where X is the training data, d is the number of its attributes, and Var(X) is its variance. There-

fore, since the training data is standardized before training, i.e., scaled to unit variance, it will

be 1/d. A different set of the SVM hyperparameters was tuned for the Adult9a dataset, where C

was selected from the values (128, 256, and 512) and γ was selected from the values (5 × 10−5,

1 × 10−4, 5 × 10−4). The grid search was performed using 5-fold cross-validation for the classi-

fier training on the whole dataset, and a customized 5-fold cross-validation, as described in

Section 3.5, was employed for training on the reduced dataset. For DBI and its variants, minPts
was fixed at 6, while ε was fixed at 0.5 for both USPS and Adult9a datasets and 0.05 for the

Banana dataset for all experiments. For BRI and BRIX, k was set to 15. All the experiments

were repeated 10 times with different random seeds, where appropriate. The outcomes pre-

sented are the mean over the 10 runs.
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For the multidimensional datasets, feature extraction and dimensionality reduction were

applied using UMAP [27] with the default parameters. The USPS dataset was reduced to 64

dimensions for training the SVM classifier, and it was reduced to 2 and 3 dimensions for

applying the data reduction using DBI or its variants. An exception to this is the Adult9a data-

set, which is only reduced to 2 dimensions for border layer extraction while training occurs on

the original dimensionality, which has a relatively low number of features (123).

4.4 Comparison methodology

In our study, a comparative approach was adopted to evaluate the performance of our pro-

posed methods against other existing methods. This comparison was not solely based on a sin-

gle attribute, such as accuracy, but rather considered multiple objectives simultaneously. This

approach aligns with the multi-objective nature of the problem of training data reduction for

SVM models, which involves balancing training speedup, testing speedup, accuracy, and

memory requirements (e.g., the number of SVs). Balancing these objectives presents a signifi-

cant challenge, as improving one aspect may lead to the degradation of another. Therefore,

careful consideration of trade-offs among these objectives is essential for identifying the opti-

mal solution for a given application.

Our adopted approach involved selecting the best point for each method such that it

achieved the maximum reduction of the data while maintaining an accuracy not lower than a

certain threshold from the original accuracy of the model trained on the entire dataset (i.e., the

baseline classifier). This approach allowed for the identification of solutions that offered signif-

icant data reduction without compromising too much on accuracy.

Additionally, we employed the concept of the Pareto set to further refine our analysis in a

similar approach to that used in [16]. The Pareto set, in the context of multi-objective optimi-

zation, represents a set of solutions that are considered optimal in the sense that no other solu-

tions in the search space are superior to them when all objectives are considered. These

solutions are also known as non-dominated, Pareto optimal, or efficient solutions. A solution is

said to dominate another solution if it is better or equal in all objectives and strictly better in at

least one objective. In other words, a solution is dominated if there exists another solution that

improves at least one objective without worsening the others. In that sense, each solution in

the Pareto set offers a unique trade-off among the multiple objectives [35].

For identifying the Pareto set, we consider the following metrics as possible objectives to

optimize:

• Error rate: This metric quantifies the proportion of incorrect predictions made by the model.

It is computed as (1−accuracy), where accuracy is as defined in Eq 20.

• Training time ratio: This metric is the ratio of the training time on the reduced subset to that

on the entire dataset (i.e., 1/training speedup). A lower training time ratio is indicative of a

more computationally efficient model, as it denotes a reduction in the time required for

training when utilizing the reduced dataset.

• Testing time ratio: Analogous to the training time ratio, this metric is the ratio of the testing

time on the reduced subset to that on the entire dataset (i.e., 1/testing speedup). A lower test-

ing time ratio is preferable, as it signifies an enhancement in prediction speed when employ-

ing the reduced dataset.

The elements of the Pareto set were ranked based on their Euclidean distance from the opti-

mal point, which provided valuable insights into the best points in terms of the trade-off

between speedup and accuracy.
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The score, representing closeness to the optimal point, is calculated as follows:

score ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � x∗i Þ

2

q
ð23Þ

where xi is the value of the i-th objective for the solution under consideration, x∗i is the value of

the i-th objective for the optimal point, and n is the number of objectives. The optimal point in

this context would be the zero point, representing the ideal of minimizing all the optimized

metrics.

An interesting alternative for distance calculation is the weighted Euclidean distance, which

allows for the incorporation of weights into the different objectives to reflect their relative

importance for the target application. However, the Euclidean distance was used in this study,

as it is more intuitive and straightforward to interpret. This multi-objective optimization per-

spective enabled a more comprehensive and nuanced evaluation of the methods under

consideration.

4.5 Results

The findings of applying the DBI method and its variants to the various datasets are presented

in this section.

4.5.1 Banana. For the Banana dataset, different target ratios for the reduced dataset were

verified. The outcomes are detailed in Table 1 and Fig 6. BRIX shows an accuracy of 0.88 at a

ratio of 0.1, which is the highest accuracy compared to the other variants at the same ratio.

BRIX and BRI show similar accuracies around 0.9 for ratios 0.2 and higher, which are on par

with those of the whole dataset. There is a relatively lower accuracy for DBI, with a sharp rise

in accuracy from 0.68 to 0.87 at a ratio of 0.4. This can be due to the observation that the

reduced dataset obtained using DBI with ratios below this value has a significantly different

distribution due to its relatively thin border layers, as shown in Fig 4. These border layers over-

lap, crossing to the opposite side of the expected decision boundary. This confuses the grid

search during model selection. For example, at ratio 0.2, the selected regularization parameter

C value was 1, which is considerably lower than that of 50, which was selected at ratio 0.4. This

results in misidentified decision boundaries and relatively degraded accuracy below this ratio.

Table 1. Results of the proposed methods (DBI, BRI & BRIX) on the Banana dataset with different reduction ratios.

Ratio Training Speedup Testing Speedup Accuracy Number of SVs Jaccard similarity

Whole dataset 1.00 1.00 0.896 940 1.00

DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX

0.1 33.75 24.24 51.62 3.09 2.99 11.70 0.602 0.842 0.880 303 304 65 0.19 0.23 0.05

0.2 10.66 9.36 22.63 1.73 2.12 6.98 0.645 0.893 0.896 547 447 121 0.36 0.34 0.11

0.3 4.50 5.66 13.29 1.26 1.66 5.14 0.685 0.896 0.897 707 568 170 0.53 0.43 0.16

0.4 2.15 3.63 8.20 1.02 1.36 3.48 0.874 0.896 0.901 887 639 259 0.78 0.52 0.25

0.5 1.98 2.76 5.57 0.96 1.21 2.71 0.900 0.899 0.900 967 747 341 0.88 0.57 0.33

0.6 1.76 2.20 3.56 0.96 1.18 1.94 0.900 0.900 0.900 994 766 449 0.90 0.67 0.42

0.7 1.50 1.77 2.56 0.99 1.07 1.69 0.897 0.900 0.901 999 847 528 0.92 0.73 0.54

0.8 1.39 1.55 1.85 0.96 1.14 1.28 0.898 0.899 0.901 1027 909 724 0.89 0.79 0.65

0.9 1.22 1.31 1.47 0.98 1.02 1.14 0.897 0.898 0.899 982 949 836 0.94 0.86 0.80

Each row compares performance metrics of the proposed methods for a different value (0.1 to 0.9) of the reduction ratio parameter r (the user-defined desired

proportion of the training set to retain). The first row represents the metrics measured after training on the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t001
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Ratios of 0.4 and above, on the other hand, show increasingly improved decision boundaries

closer to those identified by training on the whole dataset, which can be attributed to having

enough training data points to help the grid search find a suitable regularization parameter.

BRIX also achieves the highest training speedup, starting at 51 for the ratio of 0.1, with a sharp

decline reaching around 13 at the ratio of 0.3, after which the decline slows down. DBI and

BRI have similar declines but with earlier sharp drops and lower starting values of around 35

and 25, respectively.

The BRIX variant also achieves a significant speedup in classifier testing time. This reaches

12 at the lowest ratio of 0.1 and slowly declines for higher ratios. On the other hand, very mini-

mal testing speedup is obtained by BRI and DBI. This is attributed to the substantial reduction

in support vectors obtained by BRIX, particularly for low reduced dataset ratios. This can, in

turn, be attributed to the fact that BRIX favors selection from non-overlapping regions in con-

trast to the other variants. It is evident in Fig 4 that the reduced set selected by DBI shows a sig-

nificant overlap in the border layers of the two classes, while the overlap is much reduced for

the BRIX variant. For completeness, SVO and SVOX were also tested against the Banana data-

set for different values of k. The results are presented in Fig 7 and Table 2. SVO and SVOX

maintained nearly stable accuracy across all tested values of k. However, the training speedup

for SVOX was about 3 times that obtained by SVO. The testing speedup was highest at k = 1

for SVOX at a value of 3.28 and declines rapidly as k reaches 5, after which it is nearly constant

around 2.5. SVO shows slightly slower prediction times than the baseline classifier for all val-

ues of k. This is attributed to the fact that the number of support vectors identified by SVO

Fig 6. Results for our proposed methods (DBI, BRI and BRIX) on the Banana dataset with different reduction

ratios.

https://doi.org/10.1371/journal.pone.0300641.g006
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slightly exceeds that of the baseline classifier. These findings suggest that a possible use case for

SVOX when applied to low-dimensional datasets, at their original dimensionality, is to reduce

the size of the trained model through the reduction of the number of support vectors, resulting

in a faster prediction time.

Fig 7. Results for the proposed SVO and SVOX methods on the Banana dataset with different values of k.

https://doi.org/10.1371/journal.pone.0300641.g007

Table 2. Results of the proposed SVO & SVOX methods on the Banana dataset with different values of k.

k Reduced (ratio) Training

Speedup

Testing

Speedup

Accuracy Number of SVs Jaccard

similarity

Whole

dataset

1.00 1.00 1.00 0.896 940 1.00

SVO SVOX SVO SVOX SVO SVOX SVO SVOX SVO SVOX SVO SVOX

1 0.22 0.13 5.23 17.14 0.97 3.28 0.898 0.902 937 244 1.00 0.26

2 0.24 0.15 4.00 15.53 0.96 2.98 0.895 0.901 939 245 0.98 0.26

3 0.26 0.17 3.44 12.85 0.97 2.45 0.895 0.901 938 333 0.98 0.35

4 0.27 0.19 4.08 10.78 0.96 1.95 0.901 0.901 973 334 0.95 0.35

5 0.29 0.20 3.79 11.67 0.94 2.42 0.901 0.901 973 334 0.95 0.35

10 0.35 0.27 2.96 8.66 0.96 2.44 0.901 0.899 975 340 0.94 0.35

15 0.40 0.32 2.62 7.86 0.96 2.38 0.901 0.900 977 344 0.94 0.36

20 0.44 0.36 2.41 6.92 0.96 2.40 0.900 0.901 977 346 0.94 0.36

30 0.51 0.43 2.11 5.87 0.98 2.44 0.901 0.898 977 347 0.94 0.36

40 0.57 0.50 1.80 5.04 0.93 2.33 0.901 0.898 980 348 0.94 0.36

50 0.62 0.55 1.73 4.67 0.92 2.49 0.901 0.898 982 345 0.94 0.36

Each row compares performance metrics of the methods for a different value (1 to 50) of the parameter k of the SVO

& SVOX methods. The first row represents the metrics measured after training on the whole dataset. “Reduced

(ratio)” is the ratio of the size of the resulting reduced dataset to the size of the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t002
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The DBI algorithm and its variants were compared experimentally to the CBCH algorithm

[15]. The authors claimed that CBCH, with the number of clusters K = 50, yielded an accuracy

of 0.95, but the actual mean accuracy obtained after 10 runs of the experiment was 0.89. Nota-

bly, the 0.90 accuracy obtained by training the SVM on the entire dataset is extremely unlikely

to be surpassed by any other method without overfitting the data. This is assumed given that

there is a substantial overlap between the two dataset classes. Also observed was an average

reduced ratio of 0.70 obtained at k = 100. The Jaccard index is high (0.93) primarily because

CBCH retains instances in areas of overlap between the two classes, and most of those are con-

sidered support vectors by the SVM algorithm. In addition, the proposed methods are com-

pared to FIFDR [13] and BPLSH [16] according to reported results in the literature [17]. The

compared results are presented in Table 3. In our comparisons, the records for our proposed

methods were selected such that they have the minimum reduced dataset while attaining an

accuracy of not less than 0.02 from the baseline classifier. It is observed that the BRIX variant

outperforms the compared methods and the other variants in terms of training speedup, test-

ing speedup, reduction ratio, and support vector count at a reduced ratio of 0.1 and an accept-

able accuracy of 0.88, which is on par with that of the other methods. SVOX shows the highest

accuracy of 0.9 and ranks second after BRIX in terms of the other metrics. DBI, SVO, and

CBCH do not achieve any significant speedup in testing time. This is attributed to the number

of support vectors identified being nearly equivalent to that of the baseline classifier. It is also

noted that CBCH, FIFDR, and DBI require a reduced dataset of more than half of the original

dataset to obtain adequate accuracy relative to the baseline classifier.

For additional insights into the performance of the proposed methods, the Pareto set for

the proposed and compared methods was identified. The objectives considered for the Pareto

set are the error rate, training time ratio, and testing time ratio. The Pareto set elements are

listed in Table 4. After the elimination of 70 non-dominating solutions, the set is composed of

only five elements. These elements are exclusively proposed methods, namely BRIX and

SVOX. BRIX constitutes four elements of the Pareto set, while SVOX constitutes only one.

The ranking of the Pareto set elements based on closeness to the optimal point is represented

in Fig 8.

To enhance the analysis of the Pareto set, the different trade-offs presented by each of the

Pareto set elements are visualized in Fig 9. It can be observed that BRIX has closer points to

the optimal point than SVOX for all the objectives. Furthermore, the distribution of the differ-

ent compared methods in the solution space of the three optimization objectives, in addition

Table 3. Results of the proposed methods compared to other methods from the literature on the Banana dataset.

Method Reduced (ratio) Accuracy Training Speedup Testing Speedup Reduced SVs (ratio)

Whole dataset 1.00 0.896 1.00 1.00 1.00

FIFDR [13] 0.684 0.877 4.99 1.741 0.315

CBCH (K = 100) [15] 0.70625000 0.899057 1.540797 0.968350 1.024043

BPLSH (M = 90, L = 10) [16] 0.24707547 0.881887 5.138549 1.077517 0.857766

Proposed Methods DBI (r = 0.5) 0.5 0.900 1.98 0.96 1.028

BRI (r = 0.2) 0.2 0.893 9.36 2.12 0.47

BRIX (r = 0.1) 0.1 0.88 51.62 11.7 0.068

SVO (k = 1) 0.2217 0.898 5.23 0.97 0.996

SVOX (k = 1) 0.1335 0.902 17.14 3.28 0.26

The first row represents the metrics measured after training on the whole dataset. “Reduced (ratio)” is the ratio of the size of the resulting reduced dataset to the size of

the whole dataset. “Reduced SVs (ratio)” is the ratio of the number of SVs of the reduced dataset to that of the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t003
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to the ratio of the reduced dataset, is investigated and presented in Fig 10. The proposed meth-

ods, except DBI and SVO, predominate in the set of closest points to the optimal point. It is

also evident that the proposed methods are superior in terms of training time ratios and exclu-

sively dominate testing time ratios below 0.5.

4.5.2 USPS. For the USPS dataset, we experimented with applying the DBI algorithm to

the 2-dimensional UMAP embeddings while training the SVM classifiers on both the whole

dataset and the reduced one using our method using 64-dimensional embeddings. The results

are presented in Fig 11 and Table 5. The findings exhibit similar patterns to those observed in

the Banana dataset regarding the training speedup. However, the testing speedup is much

lower for the USPS dataset. DBI demonstrates an almost constant testing speedup of around 2

for ratios 0.1 and above. Interestingly, it also shows a nearly constant value of around 400 for

the number of identified support vectors, which is about half the number for the whole dataset.

This observation aligns with the linear inverse relationship between speedup and the number

of support vectors. It may also be explained by the preserved association between local struc-

tures in both 2-dimensional and 64-dimensional UMAP embeddings. BRIX achieved the high-

est speedup of 62.17 for training and 5.78 for testing, with an acceptable accuracy of 0.915 at a

ratio of 0.04. Testing speedup declined almost linearly with increasing the ratio of the reduced

set for ratios above 0.05. BRI and BRIX maintained an almost constant accuracy of 0.92 for

ratios of 0.1 and above. Similarly, DBI maintained an accuracy of 0.92 for ratios of 0.4 and

above. Nonetheless, its accuracy of 0.85 at a ratio of 0.1 is much lower than that of the BRI and

BRIX variants.

Table 4. Pareto set of different methods on the Banana dataset.

Method Reduced (ratio) Accuracy Training Speedup Testing Speedup Reduced SVs (ratio) Rank

BRIX (r = 0.1) 0.10 0.880 51.62 11.70 0.07 1

BRIX (r = 0.2) 0.20 0.896 22.63 6.98 0.13 2

BRIX (r = 0.3) 0.30 0.897 13.29 5.14 0.18 3

SVOX (k = 1) 0.13 0.902 17.14 3.28 0.26 4

BRIX (r = 0.4) 0.40 0.901 8.20 3.48 0.28 5

Methods in the Pareto set are ordered by their rank according to closeness to the optimal solution. “Reduced (ratio)” is the ratio of the size of the resulting reduced

dataset to the size of the whole dataset. “Reduced SVs (ratio)” is the ratio of the number of SVs of the reduced dataset to that of the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t004

Fig 8. Ranking of Pareto set methods on the Banana dataset based on closeness to the optimal point. The optimal point is the zero point,

representing the ideal of minimizing all the optimized metrics. The score is calculated as the reciprocal of the Euclidean distance from the

optimal point.

https://doi.org/10.1371/journal.pone.0300641.g008
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To evaluate the effectiveness of the SVO and SVOX proposed variants for high-dimensional

datasets, we compared their performance for the USPS dataset. The results are presented in

Fig 12 and Table 6.

Both variants were tested against values for the k parameter, specifically 1, 2, 3, 4, 5, 10, 20,

30, 40, and 50. For SVOX, N and L were fixed at 15 and 0.5 respectively. It is to be noted that k
includes the support vector itself, so the actual neighbor count to be included is k − 1. This

means that for SVO, when k = 1, the reduced dataset will include only the support vectors

identified by the SVC in 2 dimensions. For SVOX, k − 1 will include at most all the support

vectors, since those with impure neighborhoods are excluded. It is then possible to evaluate

the effect of the two strategies of adding neighbors of support vectors to the reduced dataset by

comparison. SVOX shows a higher training time speedup of 40.8 at k = 1, compared to 12.2

for SVO. The speedup declines increasingly slower for larger k for both variants. SVOX also

shows a higher accuracy at lower k values than SVO, as it starts at a value of 0.917 at k = 1 com-

pared to 0.88 for SVO and a baseline of 0.922. This signifies the effect of SVOX’s strategy of

pure-neighbor selection on enhancing the model’s accuracy. Both variants maintain a rela-

tively stable testing speedup as k increases. Nevertheless, SVOX shows more than 3 times the

speedup of SVO for both testing and training. The number of identified support vectors when

Fig 9. Pareto set for the Banana dataset. After the elimination of 70 non-dominating solutions, the set is composed of only five elements. These

elements are exclusively proposed methods, namely BRIX and SVOX. (A point is dominating if it is better or equal in all objectives and strictly better in

at least one objective).

https://doi.org/10.1371/journal.pone.0300641.g009
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using the reduced dataset obtained by SVOX is also significantly lower than that of SVO.

SVOX contributed to identifying only 164 support vectors at k = 1 compared to 629 for SVO

and a baseline of 790. The reduced dataset ratio is slightly lower for SVOX but increases almost

linearly as k increases. It starts at 0.08 for SVOX at k = 1, while SVO shows a value of 0.12.

These observations suggest that SVOX can identify a better subset of informative data points

at very low reduction ratios.

Additionally, the proposed methods were compared experimentally to three existing meth-

ods from the literature: CBCH, BPLSH, and Shell Extraction (SE). The results are presented in

Table 7. The parameters considered for the compared existing methods are as follows: CBCH

with k 2 {50, 100, . . ., 700}, BPLSH with M 2 {10, 20, 30} and L 2 {10, 30, 50, 70, 90, 110}, and

SE with preservation ratios r 2 {0.1, 0.2, . . ., 0.9}. Notably, due to technical limitations related

to the memory requirements of constructing the convex hulls in dimensions higher than 8, the

CBCH method was applied to the USPS dataset using the 2-dimensional UMAP embeddings,

for instance selection, before training the SVM classifier trained on the corresponding selected

subset in the 64-dimensional embeddings of the dataset, similar to the technique used for our

proposed methods. For this comparison, the record selected for each method is the one with

the minimum reduced dataset ratio and an accuracy of not less than 0.02 from the baseline

classifier. In other words, the records are not necessarily the ones with the highest attainable

Fig 10. Comparison of methods on the Banana dataset. The distribution of the different methods in the solution space of the three optimization

objectives, in addition to the ratio of the reduced dataset, is shown for each pair of objectives. The proposed methods, except DBI and SVO, are

predominantly closest to the optimal point.

https://doi.org/10.1371/journal.pone.0300641.g010
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Fig 11. Results for the proposed methods (DBI, BRI and BRIX) on the USPS dataset with different reduction

ratios.

https://doi.org/10.1371/journal.pone.0300641.g011

Table 5. Results of the proposed methods (DBI, BRI & BRIX) on the USPS dataset with different reduction ratios.

Ratio Training Speedup Testing Speedup Accuracy Number of SVs Jaccard similarity

Whole dataset 1.00 1.00 0.922 790 1.00

DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX

0.01 88.81 90.70 98.19 6.24 8.81 9.44 0.488 0.305 0.786 82 58 52 0.08 0.07 0.02

0.02 66.88 64.54 72.90 4.37 5.06 6.77 0.548 0.701 0.896 139 113 80 0.12 0.09 0.04

0.03 58.51 62.66 63.79 3.92 4.22 5.85 0.564 0.802 0.909 178 161 102 0.15 0.10 0.04

0.04 54.48 50.28 62.17 3.29 3.41 5.78 0.622 0.871 0.915 217 199 109 0.18 0.12 0.05

0.05 39.06 45.14 51.77 2.52 3.20 5.12 0.684 0.891 0.917 254 227 123 0.20 0.12 0.05

0.1 24.22 27.71 33.35 1.70 2.38 4.84 0.850 0.917 0.920 405 306 142 0.25 0.15 0.07

0.2 13.03 14.96 18.85 1.79 2.38 4.38 0.911 0.921 0.921 412 309 159 0.29 0.19 0.09

0.3 9.08 9.15 12.87 1.76 2.19 4.15 0.917 0.921 0.921 415 326 179 0.33 0.23 0.12

0.4 6.73 6.57 8.20 1.85 2.16 3.20 0.919 0.921 0.921 421 345 225 0.34 0.26 0.17

0.5 4.99 5.14 6.57 1.80 2.17 3.00 0.920 0.922 0.921 418 362 248 0.35 0.29 0.20

0.6 4.21 4.38 5.05 1.81 2.09 2.77 0.920 0.922 0.922 406 374 272 0.36 0.32 0.23

0.7 3.44 3.31 3.75 1.83 1.90 2.39 0.921 0.922 0.921 403 388 307 0.38 0.35 0.27

0.8 2.72 3.01 2.84 1.78 1.87 2.09 0.921 0.922 0.922 407 397 345 0.39 0.37 0.32

0.9 2.34 2.52 2.37 1.74 1.78 1.97 0.922 0.922 0.922 411 405 383 0.41 0.40 0.38

Each row compares performance metrics of the proposed methods for a different value (0.01 to 0.05 and 0.1 to 0.9) of the reduction ratio parameter r (the user-defined

desired proportion of the training set to retain). The first row represents the metrics measured after training on the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t005
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accuracy for each method but rather the ones with maximum data reduction while maintain-

ing acceptable accuracy.

The results show that the proposed methods generally surpass the existing methods in

terms of data reduction and speedup. Specifically, the BRIX method stands out as the most effi-

cient, reducing the dataset to a mere 4% of its original size and achieving a training speedup of

over 62 times and a testing speedup of 5.78. CBCH reduces the dataset to 63.18% of its original

size, achieving almost the same accuracy as the baseline (0.922). BPLSH reduces the dataset to

Fig 12. Results for the proposed SVO and SVOX methods on the USPS dataset with different values of k.

https://doi.org/10.1371/journal.pone.0300641.g012

Table 6. Results of the proposed SVO & SVOX methods on the USPS dataset with different values of k.

k Reduced (ratio) Training Speedup Testing Speedup Accuracy Number of SVs Jaccard similarity

Whole dataset 1.00 1.00 1.00 0.922 790 1.00

SVO SVOX SVO SVOX SVO SVOX SVO SVOX SVO SVOX SVO SVOX

1 0.12 0.08 12.22 40.87 1.20 4.39 0.884 0.917 629 164 0.39 0.11

2 0.13 0.10 10.51 34.48 1.13 4.18 0.905 0.918 679 176 0.40 0.12

3 0.15 0.11 9.33 31.47 1.21 4.05 0.913 0.919 690 189 0.40 0.13

4 0.17 0.13 8.25 28.34 1.05 3.88 0.917 0.919 720 190 0.41 0.13

5 0.18 0.14 7.76 27.24 1.05 4.01 0.918 0.919 725 183 0.41 0.13

10 0.25 0.21 5.26 18.01 1.08 3.83 0.917 0.920 718 194 0.46 0.14

15 0.31 0.26 4.22 14.86 1.02 3.68 0.919 0.920 724 202 0.49 0.15

20 0.36 0.31 3.59 12.86 0.99 3.77 0.920 0.920 741 202 0.50 0.15

30 0.44 0.39 2.87 10.60 1.01 3.75 0.921 0.920 746 191 0.53 0.15

40 0.51 0.46 2.41 9.06 0.98 3.66 0.920 0.921 743 190 0.57 0.16

50 0.57 0.51 2.10 7.66 1.00 3.87 0.921 0.921 750 182 0.58 0.15

Each row compares performance metrics of the methods for a different value (1 to 50) of the parameter k of the SVO & SVOX methods. The first row represents the

metrics measured after training on the whole dataset. “Reduced (ratio)” is the ratio of the size of the resulting reduced dataset to the size of the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t006
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36%, achieving slightly lower accuracy but faster training and testing processes. SE reduces the

dataset to 40%, achieving slightly lower accuracy but faster training and testing processes. The

proposed methods tend to retain a lower SV ratio compared to the existing methods. Specifi-

cally, the BRIX and SVOX methods preserve only 14% and 21% of the original SV count,

respectively. In contrast to the proposed methods, the existing methods tend to retain a higher

SV ratio. Specifically, CBCH, BPLSH, and SE preserve 96%, 86%, and 87% of the original SV

count, respectively. In terms of accuracy, the proposed methods demonstrate comparable per-

formance, with minor decreases from the baseline despite significant data reduction. This sug-

gests that all methods effectively retain the essential information in the data for SVM training.

The Pareto set was additionally identified for the proposed and compared methods for the

USPS dataset. The list of Pareto set elements and their ranking are presented in Table 8 and

Fig 13, respectively. The Pareto set is composed of 17 elements selected from 106 candidate

solutions. BRIX dominates the Pareto set with 10 out of 17 elements, including the top 7 ranks.

This indicates that BRIX is the most effective method in terms of the trade-off between accu-

racy, training time, and testing time.

The Pareto set for the USPS dataset is presented in Fig 14. It can be observed that BRIX pre-

dominated other Pareto set elements in the regions closest to the optimal point for all the

objectives. Furthermore, a wide gap is observed between the proposed methods and the com-

pared methods in terms of all the objectives, where the proposed methods are grouped closer

to the optimal point. Comparisons of the different methods in the solution space of different

trade-off objectives are presented in Fig 15. It is evident that all the proposed methods except

SVO predominantly occupy the closest regions to the optimal point and are superior in terms

of testing time ratios, as they exclusively occupy the testing time ratios below 0.5. It is interest-

ing to note that SVO is the only proposed method that has a similar distribution to the com-

pared methods in the solution space of the three optimization objectives. Another interesting

observation is that although BRIX, SVOX, BRI, and DBI show an almost similar linear correla-

tion between the reduced dataset ratio and the training time ratio, BRIX and SVOX show a

much lower testing time ratio for the same reduced dataset ratio. This is attributed to the sig-

nificantly lower number of support vectors identified by BRIX and SVOX compared to BRI

and DBI.

Adult9a. To assess our methods on imbalanced datasets, we employed our experiments

on the Adult9a dataset. The outcomes are shown in Fig 16 and Table 9.

Table 7. Results of the proposed methods compared to other methods from the literature on the USPS dataset.

Method Reduced (ratio) Accuracy Training Speedup Testing Speedup Reduced SVs (ratio)

Whole dataset 1.00 0.922123 1.00 1.00 1.00

CBCH (k = 400) [15] 0.63182005 0.922073 1.621575 1.025486 0.961014

BPLSH (M = 30;L = 20) [16] 0.36004663 0.921923 3.254135 1.128958 0.857655

Shell Extraction (SE) [14] 0.4 0.918934 3.209440 1.118775 0.871665

Proposed Methods DBI (r = 0.2) 0.2 0.911061 13.034276 1.785425 0.522033

BRI (r = 0.1) 0.1 0.917389 27.714068 2.379853 0.387920

BRIX (r = 0.04) 0.04 0.914898 62.172803 5.783704 0.138205

SVO (k = 3) 0.15165272 0.913154 9.330182 1.209709 0.874003

SVOX (k = 1) 0.07924839 0.916542 40.865746 4.393510 0.208468

The first row represents the metrics measured after training on the whole dataset. “Reduced (ratio)” is the ratio of the size of the resulting reduced dataset to the size of

the whole dataset. “Reduced SVs (ratio)” is the ratio of the number of SVs of the reduced dataset to that of the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t007
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Consistent with findings from the other two datasets, it is observed that BRIX achieves the

highest scores on all metrics, with a reduced ratio as low as 0.05, while achieving an acceptable

accuracy of 0.840, less than 1% below the baseline (0.850), a training speedup of 790, a testing

speedup of 47, and 0.03 of the baseline SV count. BRI ranks second, but only for ratios of 0.5

and above, where its accuracy is at or above 0.845. Similar to the results for Banana, the

increase in SV counts is nearly linear with growing ratios. In contrast to other datasets, DBI’s

precision is significantly diminished, which may indicate that its selection strategy is less suited

for imbalanced datasets. In contrast, the BRIX strategy is more resistant to imbalanced data-

sets. SVO and SVOX were also evaluated against the Adult9a dataset. The findings are pre-

sented in Fig 17 and Table 10. Similar to the previous datasets, SVOX shows a higher training

speedup of about 5 times that of SVO, starting at 25 at k = 1 and slowly declining to reach 16 at

k = 50. SVOX also achieves a testing speedup of about 5 times that of SVO, starting at 5.1 at

k = 1 and declining to 4.9 at k = 50. The most prominent observation is that SVOX maintains

an almost constant accuracy of around 0.844 for all tested values of k, while, similar to DBI,

SVO shows a significantly lower accuracy of 0.7 at k = 1, which rises with an increasingly

slower rate to reach 0.8 at k = 50. The number of identified support vectors is also significantly

lower for SVOX, accounting for 0.24 of the baseline at k = 1. Both variants show an extremely

slow increase in the number of SVs and the ratio of the reduced dataset as k increases. This

may be due to the increasing probability of including shared neighbors and other support vec-

tors with increasing values of k. These findings may suggest that SVOX is more effective in

identifying a better subset of informative data points at very low reduction ratios for imbal-

anced datasets.

Our findings were compared to those of FIFDR [13], Gaffari’s method [17] and Shell

Extraction (SE) [14] according to the literature [17]. Table 11 summarizes the comparison. For

this comparison, the records for our proposed methods were selected such that they have the

Table 8. Pareto set of different methods on the USPS dataset.

Method Reduced (ratio) Accuracy Training Speedup Testing Speedup Reduced SVs (ratio) Rank

BRIX (r = 0.02) 0.02 0.896 72.90 6.77 0.10 1

BRIX (r = 0.04) 0.04 0.915 62.17 5.78 0.14 2

BRIX (r = 0.03) 0.03 0.909 63.79 5.85 0.13 3

BRIX (r = 0.05) 0.05 0.917 51.77 5.12 0.16 4

BRIX (r = 0.1) 0.10 0.920 33.35 4.84 0.18 5

BRIX (r = 0.01) 0.01 0.786 98.19 9.44 0.07 6

BRIX (r = 0.2) 0.20 0.921 18.85 4.38 0.20 7

SVOX (k = 2) 0.10 0.918 34.48 4.18 0.22 8

BRIX (r = 0.3) 0.30 0.921 12.87 4.15 0.23 9

BRIX (r = 0.5) 0.50 0.921 6.57 3.00 0.31 10

BRIX (r = 0.6) 0.60 0.922 5.05 2.77 0.34 11

BRI (r = 0.5) 0.50 0.922 5.14 2.17 0.46 12

BPLSH (M = 50;L = 20) 0.63 0.922 1.64 1.14 0.92 13

CBCH (k = 700) 0.67 0.922 1.54 1.05 0.96 14

SE (r = 0.7) 0.70 0.922 1.46 1.04 0.97 15

SE (r = 0.8) 0.80 0.922 1.30 1.04 0.98 16

BPLSH (M = 90;L = 30) 0.83 0.922 1.20 1.04 0.96 17

Methods in the Pareto set are ordered by their rank according to closeness to the optimal solution. “Reduced (ratio)” is the ratio of the size of the resulting reduced

dataset to the size of the whole dataset. “Reduced SVs (ratio)” is the ratio of the number of SVs of the reduced dataset to that of the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t008
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minimum reduced dataset ratio while attaining an accuracy of not less than 0.01 from the base-

line classifier (0.850). BRIX outperforms the other methods in terms of reduced dataset ratio

(0.05), training speedup (790), testing speedup (47) and SV count (0.03 of baseline), while Gaf-

fari’s method ranked second with reported values of 0.15, 61.9, 21, and 0.08, respectively.

SVOX ranks third with respect to the same metrics, with values of 0.22, 25, 5, and 0.25, respec-

tively. FIFDR and DBI rank first with an accuracy of (0.849), followed by BRI and Gaffari’s

method at (0.845) and SVOX at (0.844). DBI ranks last for SV count (0.98 of baseline) and

reduced dataset ratio (0.9), preceded by FIFDR with a ratio of 0.52 and an SV count of 0.97.

The results of Shell Extraction and SVO had accuracy values of 0.7 and 0.8, respectively, which

may not be suitable for this dataset based on the specified accuracy threshold.

Table 12 lists the Pareto set elements for the proposed and compared methods for the

Adult9a dataset, and their ranking is presented in Fig 18. The Pareto set is composed of 17 ele-

ments selected out of 68 possible candidate solutions. BRIX ranks first, followed very closely

by Gaffari’s method. BRI constitutes five elements of the set, however, with relatively lower

scores than BRIX. SVO and SVOX were not included in the Pareto set.

The Pareto set for the Adult9a dataset is presented in Fig 19. Consistent with the ranking of

the Pareto set elements, BRIX and Gaffari’s method lie the closest to the optimal point for all

the objectives. Furthermore, the top-ranking methods, namely BRIX and Gaffari’s method, are

Fig 13. Ranking of Pareto set methods on the USPS dataset based on closeness to the optimal point. The optimal point is the zero point,

representing the ideal of minimizing all the optimized metrics. The score is calculated as the reciprocal of the Euclidean distance from the

optimal point.

https://doi.org/10.1371/journal.pone.0300641.g013
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separated from the other methods with a wide gap in terms of all the objectives. This may indi-

cate they have relatively similar efficiency on the Adult9a dataset. This may be attributed to the

fact that Gaffari’s objective of reducing complexity at the decision boundary is, in a sense, simi-

lar to BRIX’s objective of selecting more points from non-overlapping regions. It is to be noted

that all available points in the solution space were considered for inclusion in the Pareto set.

This allowed the presence of points with extreme trade-offs, such as those for DBI and BRI, at

a ratio of 0.01 where accuracy was sacrificed entirely in favor of extreme speedups, rendering

them practically useless solutions that can be safely ignored. In a practical setting, a specific

accuracy threshold may be specified so that points with accuracy below the threshold would

not be considered for inclusion in the Pareto set. A comparison of the different methods in the

solution space of different trade-off objectives is presented in Fig 20. It confirms the superior-

ity of BRIX and Gaffari’s method over the other methods in terms of the optimization objec-

tives. It is interesting to note that SVO and SVOX have a more clustered distribution in the

solution space than the other methods. However, the cluster for SVOX is close to the optimal

point, while that for SVO is relatively far from it. This may also indicate that SVOX is more

effective in identifying a better subset of informative data points due to its similarity to BRIX

in terms of the selection strategy.

For reference, recorded training and testing times for the proposed methods on USPS and

Adult9a datasets can be found in S1 File.

Fig 14. Pareto set for the USPS dataset. The Pareto set is composed of 17 elements selected from 106 candidate solutions.

https://doi.org/10.1371/journal.pone.0300641.g014
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5 Discussion

This study proposed and investigated the performance of five proposed instance selection

methods, specifically three density-based methods (DBI, BRI, and BRIX) and two SVM-based

methods (SVO and SVOX). The proposed methods were applied to three datasets: Banana,

USPS, and Adult9a, to reduce dataset sizes before training SVM classifiers. The effectiveness of

the proposed methods was assessed in terms of classification accuracy, training and testing

speedups, reduced dataset ratio, and support vector count. Additionally, comparisons with

other state-of-the-art methods were conducted.

The findings revealed that the proposed variants of the DBI method, especially BRIX and

SVOX, effectively reduced the size of the training data and achieved significant training and

prediction speedups while maintaining adequate classification accuracy compared to training

on the original dataset. The proposed methods outperformed the related existing methods in

terms of the extent of reduction, speedups, and support vector count. The proposed methods

also demonstrated their usefulness on high-dimensional datasets by applying instance selec-

tion in lower-dimensional embeddings before mapping the reduced dataset back to the origi-

nal higher-dimensionality for training.

Fig 15. Comparison of methods on the USPS dataset. The distribution of the different methods in the solution space of the three optimization

objectives, in addition to the ratio of the reduced dataset, is shown for each pair of objectives. The proposed methods, except SVO, are predominantly

closest to the optimal point.

https://doi.org/10.1371/journal.pone.0300641.g015
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Fig 16. Results for our proposed methods (DBI, BRI, and BRIX) on the Adult9a dataset with different reduction

ratios.

https://doi.org/10.1371/journal.pone.0300641.g016

Table 9. Results of the proposed methods (DBI, BRI & BRIX) on the Adult9a dataset with different reduction ratios.

Ratio Training Speedup Testing Speedup Accuracy Number of SVs Jaccard similarity

Whole dataset 1.0 1.0 0.850 11580 1.00

DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX

0.01 4568.5 9714.9 5732.3 173.1 251.1 148.5 0.437 0.182 0.805 78 52 89 0.00 0.00 0.01

0.02 2289.9 2251.4 2599.1 87.5 88.0 85.9 0.472 0.201 0.834 167 170 167 0.01 0.01 0.01

0.03 1865.6 711.8 1324.2 59.4 36.0 66.4 0.442 0.277 0.833 242 427 228 0.01 0.03 0.02

0.04 1265.2 347.5 1248.6 51.9 22.5 53.3 0.435 0.348 0.838 291 704 277 0.02 0.05 0.02

0.05 933.1 213.7 790.5 41.5 16.1 47.7 0.436 0.412 0.840 360 970 316 0.02 0.07 0.03

0.1 197.1 100.4 323.2 16.3 6.5 26.2 0.480 0.638 0.842 935 2371 599 0.06 0.15 0.05

0.2 34.4 19.1 75.6 5.3 3.5 13.6 0.604 0.796 0.843 2788 4302 1143 0.18 0.28 0.09

0.3 10.1 8.2 28.1 2.8 2.5 8.3 0.782 0.820 0.843 4695 5735 1882 0.30 0.36 0.15

0.4 5.1 4.9 14.4 2.2 2.1 5.5 0.785 0.834 0.845 6290 6929 2780 0.41 0.48 0.23

0.5 2.8 3.2 6.2 1.8 1.7 3.8 0.789 0.845 0.844 7742 7892 4000 0.52 0.56 0.32

0.6 1.9 2.5 4.3 1.4 1.6 2.9 0.799 0.848 0.848 9076 8721 5258 0.63 0.64 0.44

0.7 1.5 2.0 2.9 1.3 1.4 2.0 0.814 0.849 0.848 10010 9541 6758 0.67 0.73 0.56

0.8 1.6 1.4 2.0 1.2 1.3 1.7 0.839 0.851 0.849 10911 10254 8166 0.82 0.80 0.69

0.9 1.2 1.2 1.4 1.1 1.2 1.4 0.849 0.851 0.849 11336 10953 9900 0.89 0.90 0.82

Each row compares performance metrics of the proposed methods for a different value (0.01 to 0.05 and 0.1 to 0.9) of the reduction ratio parameter r (the user-defined

desired proportion of the training set to retain). The first row represents the metrics measured after training on the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t009
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Notably, the BRIX method stood out as the most efficient and effective method, achieving

the highest scores on all metrics and dominating the Pareto sets for all datasets, indicating its

superiority in balancing multiple objectives. It reduced the dataset to a very small fraction of

its original size while conveniently approaching the accuracy levels of training the SVM on the

full dataset. It also achieved significant speedups in both training and testing times and

reduced the number of support vectors considerably.

Fig 17. Results for the proposed SVO and SVOX methods on the Adult9a dataset with different values of k.

https://doi.org/10.1371/journal.pone.0300641.g017

Table 10. Results of the proposed SVO & SVOX methods on the Adult9a dataset with different values of k.

k Reduced (ratio) Training Speedup Testing Speedup Accuracy Number of SVs Jaccard similarity

Whole dataset 1.00 1.00 1.00 0.850 11580 1.00

SVO SVOX SVO SVOX SVO SVOX SVO SVOX SVO SVOX SVO SVOX

1 0.37 0.22 4.54 25.38 1.36 5.10 0.701 0.844 8678 2845 0.58 0.24

2 0.38 0.23 4.67 23.57 1.36 5.10 0.710 0.843 8768 2839 0.59 0.24

3 0.38 0.23 4.52 23.23 1.44 5.20 0.718 0.844 8858 2845 0.60 0.24

4 0.39 0.23 4.55 24.47 1.41 5.25 0.725 0.844 8925 2859 0.60 0.24

5 0.39 0.24 4.40 23.09 1.39 5.18 0.731 0.843 9003 2857 0.61 0.24

10 0.40 0.25 4.20 20.30 1.32 4.85 0.756 0.845 9259 2923 0.63 0.25

15 0.41 0.26 4.00 19.95 1.33 5.03 0.770 0.845 9445 2953 0.65 0.25

20 0.42 0.27 3.76 20.02 1.29 5.09 0.781 0.844 9562 2979 0.66 0.25

30 0.44 0.28 3.56 17.05 1.24 4.89 0.794 0.844 9775 3006 0.68 0.25

40 0.45 0.29 3.37 16.50 1.20 4.92 0.801 0.844 9907 3031 0.69 0.26

50 0.46 0.31 3.13 16.04 1.15 4.97 0.808 0.844 10047 3049 0.71 0.26

Each row compares performance metrics of the methods for a different value (1 to 50) of the parameter k of the SVO & SVOX methods. The first row represents the

metrics measured after training on the whole dataset. “Reduced (ratio)” is the ratio of the size of the resulting reduced dataset to the size of the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t010
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The superiority of BRIX may be attributed to its selection strategy, which combines two dif-

ferent approaches to instance selection scoring. The first favors the selection of more points

from boundary regions, which are more likely to contain candidate support vectors. The sec-

ond discourages the selection of points from overlapping regions, which are less informative

for decision boundary identification. This combination of strategies would result in the selec-

tion of a more informative subset of data points. It would also reduce the number of identified

support vectors, resulting in a substantial speedup in both training and testing times. Further-

more, the use of weighted random sampling using the combined scoring scheme ensures that

points from different regions of the dataset are also represented in the reduced dataset. This

Table 11. Results of the proposed methods compared to other methods from the literature on the Adult9a dataset.

Method Reduced (ratio) Accuracy Training Speedup Testing Speedup Reduced SVs (ratio)

Whole dataset 1.00 0.850 1.00 1.00 1.00

FIFDR [13] 0.523 0.849 2.1 1.023 0.974

Gaffari [17] 0.147 0.845 61.89 21.73 0.08

Shell Extraction (SE) [14] 0.374 0.703 7.5 3.43 0.361

Proposed Methods DBI (r = 0.9) 0.9 0.849477 1.174875 1.137709 0.978957973

BRI (r = 0.4) 0.4 0.844747 3.222566 1.724006 0.681548647

BRIX (r = 0.05) 0.05 0.840448 790.536832 47.744518 0.027288428

SVO (k = 50) 0.45924572 0.808396 3.131336 1.150444 0.867573402

SVOX (k = 1) 0.22302755 0.843529 25.380079 5.098934 0.245682211

The first row represents the metrics measured after training on the whole dataset. “Reduced (ratio)” is the ratio of the size of the resulting reduced dataset to the size of

the whole dataset. “Reduced SVs (ratio)” is the ratio of the number of SVs of the reduced dataset to that of the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t011

Table 12. Pareto set of different methods on the Adult9a dataset.

Method Reduced (ratio) Accuracy Training Speedup Testing Speedup Reduced SVs (ratio) Rank

BRIX (r = 0.05) 0.05 0.840 790.54 47.74 0.03 1

Gaffari 0.15 0.845 61.89 21.73 0.08 2

BRIX (r = 0.1) 0.10 0.842 323.17 26.18 0.05 3

BRIX (r = 0.04) 0.04 0.838 1248.59 53.25 0.02 4

BRIX (r = 0.02) 0.02 0.834 2599.13 85.95 0.01 5

BRIX (r = 0.2) 0.20 0.843 75.57 13.62 0.10 6

BRIX (r = 0.01) 0.01 0.805 5732.26 148.46 0.01 7

BRIX (r = 0.6) 0.60 0.848 4.26 2.94 0.45 8

DBI (r = 0.01) 0.01 0.437 4568.53 173.11 0.01 9

BRIX (r = 0.7) 0.70 0.848 2.92 1.98 0.58 10

BRI (r = 0.6) 0.60 0.848 2.50 1.58 0.75 11

BRIX (r = 0.8) 0.80 0.849 2.03 1.68 0.71 12

BRI (r = 0.01) 0.01 0.182 9714.89 251.12 0.00 13

BRI (r = 0.7) 0.70 0.849 1.95 1.41 0.82 14

BRI (r = 0.8) 0.80 0.851 1.42 1.29 0.89 15

FIFDR 0.52 0.849 2.10 1.02 0.97 16

BRI (r = 0.9) 0.90 0.851 1.24 1.23 0.95 17

Methods in the Pareto set are ordered by their rank according to closeness to the optimal solution. “Reduced (ratio)” is the ratio of the size of the resulting reduced

dataset to the size of the whole dataset. “Reduced SVs (ratio)” is the ratio of the number of SVs of the reduced dataset to that of the whole dataset.

https://doi.org/10.1371/journal.pone.0300641.t012
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somewhat permissive selection strategy would help preserve the diversity of the dataset and

improve the generalization of the trained model.

SVOX also showed promising results, which is possibly due to a similar selection strategy to

BRIX, which selects support vectors and their neighbors only if their neighborhoods are domi-

nated by the same class. Nevertheless, SVOX was outperformed by BRIX on all datasets, espe-

cially in terms of the number of identified support vectors and thus training and testing

speedups. This may possibly be attributed to the inclusion of a specific number of neighbors

for each support vector, which may include redundant points, especially in cases where many

support vectors are close neighbors. This would increase the number of identified support vec-

tors and thus reduce the speedups.

DBI and SVO were of modest performance and both struggled evidently on the Adult9a

dataset, suggesting their selection strategies may be susceptible to class skew. DBI was the least

effective, mainly due to its selection of points that are strictly at the borders of classes, which is

not effective for datasets with significant overlap between classes, especially at lower ratios of

the reduced dataset. SVO was also less effective than SVOX, which may be attributed to its

selection of neighbors for support vectors regardless of their neighborhood properties. This

may result in the selection of more redundant points in class-impure regions, which would

increase the number of identified support vectors and further degrade the speedups. Moreover,

the strict deterministic nature of the selection strategies of DBI, SVO, and SVOX may affect

the generalization ability of the trained model by preventing the inclusion of any

Fig 18. Ranking of Pareto set methods on the Adult9a dataset based on closeness to the optimal point.

https://doi.org/10.1371/journal.pone.0300641.g018
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representative points from different regions of the dataset. BRI, on the other hand, shares a

similarly permissive selection strategy with BRIX, which may explain its advantage over DBI

and SVO.

These observations and their interpretations substantiate the effectiveness of prioritizing

selection from non-overlapping regions in preserving class boundary information. Adopting

this selection strategy aligns with Gaffari’s method [17], which aims at reducing the complexity

of the decision boundary through the removal of harmful points (i.e., those with other classes

dominating their neighborhoods). However, it contrasted with other methods such as CBCH

[15] and BPLSH [16], where boundaries are identified based on impure-class neighborhoods.

They also suggest that, for the proposed density-based methods, including additional points

beyond the strict layer of border points was crucial for achieving acceptable accuracy levels,

especially for smaller sizes of the reduced dataset. Furthermore, training times are influenced

by the quality of the selected subset and its convenience to the SVM optimization algorithm, as

evident from the different training speedups attained by different methods despite having sim-

ilar reduced dataset ratios.

Another observation is that for all the proposed density-based methods, the number of

identified support vectors would gradually increase as more points were retained until reach-

ing the baseline count for the whole dataset. An unexpected exception to that was observed for

the USPS dataset, where the support vector count did not exceed half of the baseline count for

Fig 19. Pareto set for the Adult9a dataset. The Pareto set is composed of 17 elements selected out of 68 possible candidate solutions.

https://doi.org/10.1371/journal.pone.0300641.g019

PLOS ONE Data reduction for SVM training using density-based border identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0300641 April 3, 2024 36 / 40

https://doi.org/10.1371/journal.pone.0300641.g019
https://doi.org/10.1371/journal.pone.0300641


all reduced density-based variants. This suggests that support vector counts are guaranteed to

drop by at least 50% for this dataset, regardless of the extent of reduction applied by the den-

sity-based selection algorithms. This observation warrants further investigation.

These findings demonstrate the feasibility of applying density-based techniques to signifi-

cantly reduce training data sizes for SVMs to achieve substantial speed advantages. Moreover,

the findings indicate that lower-dimensional embeddings produced by manifold-learning

techniques can potentially help analyze the neighborhood properties of high-dimensional

datasets and facilitate instance selection. The findings also emphasize the importance of care-

fully considering the trade-off between size reduction and accuracy to ensure optimal model

performance for specific tasks and application contexts. The study also highlights the utility of

controlling the reduced dataset ratio as a parameter to cover the trade-off space between

speedup and accuracy. Furthermore, the evaluation methodology employed in this study,

which considered multiple objectives simultaneously, helped reveal the diverse trade-offs

among methods and provide a comprehensive comparison.

However, the study has some limitations, such as: the proposed methods were evaluated on

a limited number of datasets; the proposed density-based methods assume that classes are

densest at their centers, which may not hold for some datasets; and they are sensitive to the

choice of the ε and minPts parameters, although this sensitivity is assumed to have been

Fig 20. Comparison of methods on the Adult9a dataset. The distribution of the different methods in the solution space of the three optimization

objectives, in addition to the ratio of the reduced dataset, is shown for each pair of objectives. BRIX and Gaffari’s method are the closest to the optimal

point. SVO and SVOX are more clustered in the solution space than the other methods.

https://doi.org/10.1371/journal.pone.0300641.g020
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reduced by UMAP embeddings. Additionally, the performance of the proposed methods for

high-dimensional datasets depends on the quality of the UMAP embeddings, which may vary

for different datasets. Moreover, fixed parameters were used across classes for density-based

methods, which may not be optimal for all classes.

Therefore, further research may include evaluating the proposed methods on a wider range

of datasets, investigating the effect of the ε and minPts parameters on the performance of the

proposed methods, and optimizing the parameters individually for each class. Additionally,

the effectiveness of instance selection in lower-dimensional embeddings produced by other

manifold-learning techniques may be investigated. Furthermore, the automatic selection of

parameters for the proposed methods may be explored. Finally, the impact of data reduction

on various types of SVM kernels may be analyzed.

6 Conclusion

In this research, we proposed a new density-based method for reducing SVM training data to

speed up SVM training of large datasets in higher dimensions. Our approach uses UMAP to

produce a lower-dimensional embedding of the data, where it extracts a subset in the form of a

layer of border points based on scores calculated by analyzing their neighborhood properties.

Subsets can be repeatedly mapped, using their indices, to the original dataset or any other

higher-dimensional embedding for SVM training. We also introduced a modified k-fold

cross-validation method that adapts to training on a subset of the dataset with a different dis-

tribution. Experimental findings on the selected datasets demonstrate that our approach vari-

ants BRIX and SVOX show the most promising results, achieving significant training and

prediction speedups and considerable reductions in the size of the training set and the number

of identified support vectors while maintaining almost similar accuracy levels compared to

training the SVM on the full dataset. Comparisons to other methods in the literature support

the effectiveness of our approach, particularly in terms of training and testing speedups and

the number of identified support vectors. These findings suggest that our approaches for

instance selection in lower-dimensional spaces, are relevant and thus beneficial for high-

dimensional datasets.
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