Skip to main content
. 2024 Apr 3;19(4):e0300641. doi: 10.1371/journal.pone.0300641

Table 2. Results of the proposed SVO & SVOX methods on the Banana dataset with different values of k.

k Reduced (ratio) Training Speedup Testing Speedup Accuracy Number of SVs Jaccard similarity
Whole dataset 1.00 1.00 1.00 0.896 940 1.00
SVO SVOX SVO SVOX SVO SVOX SVO SVOX SVO SVOX SVO SVOX
1 0.22 0.13 5.23 17.14 0.97 3.28 0.898 0.902 937 244 1.00 0.26
2 0.24 0.15 4.00 15.53 0.96 2.98 0.895 0.901 939 245 0.98 0.26
3 0.26 0.17 3.44 12.85 0.97 2.45 0.895 0.901 938 333 0.98 0.35
4 0.27 0.19 4.08 10.78 0.96 1.95 0.901 0.901 973 334 0.95 0.35
5 0.29 0.20 3.79 11.67 0.94 2.42 0.901 0.901 973 334 0.95 0.35
10 0.35 0.27 2.96 8.66 0.96 2.44 0.901 0.899 975 340 0.94 0.35
15 0.40 0.32 2.62 7.86 0.96 2.38 0.901 0.900 977 344 0.94 0.36
20 0.44 0.36 2.41 6.92 0.96 2.40 0.900 0.901 977 346 0.94 0.36
30 0.51 0.43 2.11 5.87 0.98 2.44 0.901 0.898 977 347 0.94 0.36
40 0.57 0.50 1.80 5.04 0.93 2.33 0.901 0.898 980 348 0.94 0.36
50 0.62 0.55 1.73 4.67 0.92 2.49 0.901 0.898 982 345 0.94 0.36

Each row compares performance metrics of the methods for a different value (1 to 50) of the parameter k of the SVO & SVOX methods. The first row represents the metrics measured after training on the whole dataset. “Reduced (ratio)” is the ratio of the size of the resulting reduced dataset to the size of the whole dataset.