Skip to main content
. 2024 Apr 3;19(4):e0300641. doi: 10.1371/journal.pone.0300641

Table 5. Results of the proposed methods (DBI, BRI & BRIX) on the USPS dataset with different reduction ratios.

Ratio Training Speedup Testing Speedup Accuracy Number of SVs Jaccard similarity
Whole dataset 1.00 1.00 0.922 790 1.00
DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX DBI BRI BRIX
0.01 88.81 90.70 98.19 6.24 8.81 9.44 0.488 0.305 0.786 82 58 52 0.08 0.07 0.02
0.02 66.88 64.54 72.90 4.37 5.06 6.77 0.548 0.701 0.896 139 113 80 0.12 0.09 0.04
0.03 58.51 62.66 63.79 3.92 4.22 5.85 0.564 0.802 0.909 178 161 102 0.15 0.10 0.04
0.04 54.48 50.28 62.17 3.29 3.41 5.78 0.622 0.871 0.915 217 199 109 0.18 0.12 0.05
0.05 39.06 45.14 51.77 2.52 3.20 5.12 0.684 0.891 0.917 254 227 123 0.20 0.12 0.05
0.1 24.22 27.71 33.35 1.70 2.38 4.84 0.850 0.917 0.920 405 306 142 0.25 0.15 0.07
0.2 13.03 14.96 18.85 1.79 2.38 4.38 0.911 0.921 0.921 412 309 159 0.29 0.19 0.09
0.3 9.08 9.15 12.87 1.76 2.19 4.15 0.917 0.921 0.921 415 326 179 0.33 0.23 0.12
0.4 6.73 6.57 8.20 1.85 2.16 3.20 0.919 0.921 0.921 421 345 225 0.34 0.26 0.17
0.5 4.99 5.14 6.57 1.80 2.17 3.00 0.920 0.922 0.921 418 362 248 0.35 0.29 0.20
0.6 4.21 4.38 5.05 1.81 2.09 2.77 0.920 0.922 0.922 406 374 272 0.36 0.32 0.23
0.7 3.44 3.31 3.75 1.83 1.90 2.39 0.921 0.922 0.921 403 388 307 0.38 0.35 0.27
0.8 2.72 3.01 2.84 1.78 1.87 2.09 0.921 0.922 0.922 407 397 345 0.39 0.37 0.32
0.9 2.34 2.52 2.37 1.74 1.78 1.97 0.922 0.922 0.922 411 405 383 0.41 0.40 0.38

Each row compares performance metrics of the proposed methods for a different value (0.01 to 0.05 and 0.1 to 0.9) of the reduction ratio parameter r (the user-defined desired proportion of the training set to retain). The first row represents the metrics measured after training on the whole dataset.