Table 6. Results of the proposed SVO & SVOX methods on the USPS dataset with different values of k.
k | Reduced (ratio) | Training Speedup | Testing Speedup | Accuracy | Number of SVs | Jaccard similarity | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Whole dataset | 1.00 | 1.00 | 1.00 | 0.922 | 790 | 1.00 | ||||||
SVO | SVOX | SVO | SVOX | SVO | SVOX | SVO | SVOX | SVO | SVOX | SVO | SVOX | |
1 | 0.12 | 0.08 | 12.22 | 40.87 | 1.20 | 4.39 | 0.884 | 0.917 | 629 | 164 | 0.39 | 0.11 |
2 | 0.13 | 0.10 | 10.51 | 34.48 | 1.13 | 4.18 | 0.905 | 0.918 | 679 | 176 | 0.40 | 0.12 |
3 | 0.15 | 0.11 | 9.33 | 31.47 | 1.21 | 4.05 | 0.913 | 0.919 | 690 | 189 | 0.40 | 0.13 |
4 | 0.17 | 0.13 | 8.25 | 28.34 | 1.05 | 3.88 | 0.917 | 0.919 | 720 | 190 | 0.41 | 0.13 |
5 | 0.18 | 0.14 | 7.76 | 27.24 | 1.05 | 4.01 | 0.918 | 0.919 | 725 | 183 | 0.41 | 0.13 |
10 | 0.25 | 0.21 | 5.26 | 18.01 | 1.08 | 3.83 | 0.917 | 0.920 | 718 | 194 | 0.46 | 0.14 |
15 | 0.31 | 0.26 | 4.22 | 14.86 | 1.02 | 3.68 | 0.919 | 0.920 | 724 | 202 | 0.49 | 0.15 |
20 | 0.36 | 0.31 | 3.59 | 12.86 | 0.99 | 3.77 | 0.920 | 0.920 | 741 | 202 | 0.50 | 0.15 |
30 | 0.44 | 0.39 | 2.87 | 10.60 | 1.01 | 3.75 | 0.921 | 0.920 | 746 | 191 | 0.53 | 0.15 |
40 | 0.51 | 0.46 | 2.41 | 9.06 | 0.98 | 3.66 | 0.920 | 0.921 | 743 | 190 | 0.57 | 0.16 |
50 | 0.57 | 0.51 | 2.10 | 7.66 | 1.00 | 3.87 | 0.921 | 0.921 | 750 | 182 | 0.58 | 0.15 |
Each row compares performance metrics of the methods for a different value (1 to 50) of the parameter k of the SVO & SVOX methods. The first row represents the metrics measured after training on the whole dataset. “Reduced (ratio)” is the ratio of the size of the resulting reduced dataset to the size of the whole dataset.