Skip to main content
. 2024 Apr 3;19(4):e0300641. doi: 10.1371/journal.pone.0300641

Table 6. Results of the proposed SVO & SVOX methods on the USPS dataset with different values of k.

k Reduced (ratio) Training Speedup Testing Speedup Accuracy Number of SVs Jaccard similarity
Whole dataset 1.00 1.00 1.00 0.922 790 1.00
SVO SVOX SVO SVOX SVO SVOX SVO SVOX SVO SVOX SVO SVOX
1 0.12 0.08 12.22 40.87 1.20 4.39 0.884 0.917 629 164 0.39 0.11
2 0.13 0.10 10.51 34.48 1.13 4.18 0.905 0.918 679 176 0.40 0.12
3 0.15 0.11 9.33 31.47 1.21 4.05 0.913 0.919 690 189 0.40 0.13
4 0.17 0.13 8.25 28.34 1.05 3.88 0.917 0.919 720 190 0.41 0.13
5 0.18 0.14 7.76 27.24 1.05 4.01 0.918 0.919 725 183 0.41 0.13
10 0.25 0.21 5.26 18.01 1.08 3.83 0.917 0.920 718 194 0.46 0.14
15 0.31 0.26 4.22 14.86 1.02 3.68 0.919 0.920 724 202 0.49 0.15
20 0.36 0.31 3.59 12.86 0.99 3.77 0.920 0.920 741 202 0.50 0.15
30 0.44 0.39 2.87 10.60 1.01 3.75 0.921 0.920 746 191 0.53 0.15
40 0.51 0.46 2.41 9.06 0.98 3.66 0.920 0.921 743 190 0.57 0.16
50 0.57 0.51 2.10 7.66 1.00 3.87 0.921 0.921 750 182 0.58 0.15

Each row compares performance metrics of the methods for a different value (1 to 50) of the parameter k of the SVO & SVOX methods. The first row represents the metrics measured after training on the whole dataset. “Reduced (ratio)” is the ratio of the size of the resulting reduced dataset to the size of the whole dataset.