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ABSTRACT

The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric 
acid and its derivatives is an alternative tactic. This review summarizes the literature on the role 
of butyric acid in the body and provides further prospects for the clinical use of its derivatives 
and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of 
butyric acid in the body and the effectiveness of its derivatives when used as animal medicines 
and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing 
microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects 
occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, 
and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone 
deacetylase activity is associated with the development of certain types of cancer in humans. 
Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. 
They improve the functional status of the intestine and accelerate animal growth and 
development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of 
epithelial cells and disrupt the intestinal barrier function. This review highlights the biological 
activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in 
the treatment of various animal and human diseases. This paper also discussed the possibility 
of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new 
drugs with bifunctional action.
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INTRODUCTION

Animal husbandry is a staple of global agriculture that aims to provide the population with 
food. Economic growth, urbanization, and changing food consumption models in low- and 
middle-income countries will increase the demand for foods of animal origin by more than 
twofold in the next twenty years [1]. According to forecasts, South Asian and sub-Saharan 
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African countries will show the highest growth rates of demand for animal products [2]. 
Nevertheless, more attention must be paid to the quantitative and qualitative indicators of 
food, including those related to food safety, to meet the global demand for food products. 
A significant problem is the accumulation of medicinal drugs and various toxicants or their 
metabolites in animal products [3-5]. Such substances can migrate along various food chains, 
which poses a real threat to humans and animals [6-8]. The ubiquitous use of antimicrobial 
medicines causes antibiotic resistance in bacteria. Thus, it is necessary to develop strategies 
for combating the resistance of pathogens to the applied drugs [9-14]. Moreover, it is 
important to develop new medicines and feed additives that regulate a microbiome and 
increase the natural resistance of animals.

Butyric acid and its derivatives are an alternative tactic in intensive animal farming [15-18]. 
In this regard, this review summarizes the literature on the role of butyric acid in the body 
and provides further prospects for the clinical use of its derivatives and methods of their 
delivery to an animal body. Previous reviews presented methods for producing butyric acid 
and its derivatives, including using microorganisms [17]. The feasibility of their use for 
the functional development of the gastrointestinal tract, increasing productivity [19,20], 
and preventing damage to the intestinal mucosa has been shown [21]. Banasiewicz et al. 
[22] discussed the physiological requirements of butyrate in animals and the possibility of 
increasing the doses used. The reviews presented do not focus on the issues related to the 
possibility of expanding the clinical use of butyric acid and its derivatives as part of complex 
preparations. The development of such preparations based on sorbents appears important 
in the context of a sharply increased environmental load on animals and humans. The action 
of these sorbents is based on the absorption of exotoxins and endotoxins, microorganisms, 
and potential allergens in the intestine. This also helps normalize the enzyme and bacterial 
composition of the gastrointestinal tract and changes the concentration of many biologically 
active substances in the intestinal tissues [23].

ROLE OF BUTYRIC ACID IN A BODY

Butyric acid is a monobasic carboxylic acid (butanoic acid, CH3-(CH2)2-COOH; molar mass, 
81 g/mol). At room temperature, it is a colorless liquid with the pungent odor of rancid oil. 
The acid is volatile, unstable in aqueous solutions, and decomposes rapidly. The melting and 
boiling points are −5°C and 163°C, respectively [24,25].

Butyric acid has a special place among short-chain fatty acids [26]. In animals and humans, 
it is formed in the large intestine due to intestinal microflora activity, which ferments 
dietary fiber and indigestible carbohydrates. Bifidobacteria and lactobacilli are not the 
primary butyric acid producers. It is mainly produced by anaerobic bacteria, such as 
Eubacterium, Roseburia, Faecalibacterium, and Coprococcus, as well as Fusobacterium and 
non-pathogenic clostridium species [27-29]. Butyric acid is the main source of nutrition 
for epithelial cells (colonocytes) and supports intestinal homeostasis. The acid improves 
metabolism, enhances protective functions, and prevents various intestinal diseases by 
supplying epithelial cells of the intestinal mucosa with energy [30,31].

Butyric acid easily penetrates the cell membranes of enterocytes (colonocytes) and oxidizes to 
aldehyde and ATP molecules because it is a fat- and water-soluble compound with a relatively 
small molar mass [32,33]. Fig. 1 describes the absorption of butyric acid and its derivatives.
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During oxidation, protons are released, and the pH balance of the cell decreases. Sodium enters 
a cell, and protons enter the intestinal lumen and affect the formation of an acidic environment 
because of the sodium–hydrogen exchange mechanism. This produces unfavorable conditions 
for the existence and development of opportunistic pathogens [24,34,35].

Butyric acid directly affects various metabolic processes in enterocytes, which contribute to 
the growth of the intestinal villi [36]. Bigger villi have a larger suction area, improving the 
digestion and assimilation of nutrients. All of these effects of butyric acid help increase the 
productivity of livestock [37].

Butyric acid stimulates a specific immune response and retards inflammation by suppressing 
the activation of nuclear factor. It reduces the formation of proinflammatory cytokines and 
nitric oxide. In addition, it activates the cholinergic anti-inflammatory pathway by acting 
through specific receptors [38,39]. The application of pure butyric acid is ineffective because 
most of it is inactivated in the stomach [40].

Pure butyric acid is volatile, resulting in active substance loss during feed storage. Another 
disadvantage is the extremely sharp, unpleasant odor that irritates the respiratory tract 
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Fig. 1. Scheme of the absorption of butyric acid and its derivatives.



and provokes allergic reactions [25]. High-quality silage must not contain butyric acid. 
Its presence in silage indicates it was contaminated at the preparation stage, and protein 
breakdown processes have already begun. A large amount of butyric acid in cow diets causes 
severe ketosis. Therefore, silage containing more than 1% butyric acid in dry matter is 
undesirable and utterly unsuitable for feeding animals if there is 2%–3% [41].

BUTYRIC ACID DERIVATIVES AND THEIR 
PHYSICOCHEMICAL AND BIOLOGICAL PROPERTIES
Butyric acid salts (butyrates) and glycerin and butyric acid esters (butyrins) are used in animal 
husbandry [17,42-44]. Fig. 2 presents the structural formulae of butyric acid derivatives: 
sodium (calcium) butyrate and tributyrin. Calcium butyrate has two anions, and sodium 
butyrate has only one (Fig. 2A). These differences significantly impact the interactions with 
water molecules and the dissociation rates.

Sodium butyrate has pronounced hygroscopicity and an extremely high dissolution rate in a 
liquid medium [45,46]. Unlike the calcium salt, the sodium salt has higher biological activity 
because it interacts with the body cells directly in the active substance site of contact, and the 
solubility of sodium butyrate does not depend on the acidity of the medium. Sodium butyrate 
strongly affects pathogenic microflora because of the greater penetration of butyric acid 
into the cell membrane and a decrease in the pH of the internal environment. Sodium ions 
improve the absorption of amino acids and glucose in the intestine [47]. The reactivity and 
biological activity of the calcium salt are less pronounced because it is less soluble than the 
sodium salt, and it is directly dependent on the pH of the medium [46,48].
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A B
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Fig. 2. Structural formulae of sodium (calcium) butyrate (A) and tributyrin (B) and the form of the carbon intestinal 
sorbent Zoocarb (C) and an adsorbent pellet under a scanning electron microscope (D). Scale bar: 200 μm.



As bacterial resistance to antibiotics is widespread, the use of natural alternatives may be a 
promising option. Butyric acid derivatives induce the expression of antimicrobial peptides, 
the first line of defense of the mucous membranes against various microorganisms [49]. 
Butyrates reduce bacterial colonization and suppress inflammation [50] by modulating the 
expression and release of anti-inflammatory and proinflammatory cytokines [51]. Previous 
studies have shown the high efficiency of sodium and calcium salts of butyric acid. The 
choice of the active substance depends on the production tasks to be solved, the technology 
of feed production, and the personal preferences of experts in animal nutrition [24,45-48].

Butyrins are short–chain glycerides or lipids. Short-chain glycerides do not require a complex 
emulsion process. They are absorbed readily in the intestine, enter the portal vein, and 
move to the liver, bypassing the transformations in the intestinal wall [38]. Their typical 
representative is tributyrin, a structured trimolecular lipid of butyrate esterified with glycerol 
(Fig. 2B). In the stomach and small intestine, lipase hydrolyzes tributyrin to butyrate and 
glycerol (Fig. 1) [52]. Optimal hydrolysis occurs at pH 7.5–8 [53,54].

Tributyrin exhibits antibacterial and antifungal properties; it prevents thrombosis and 
accelerates wound-healing processes [55-58]. Experimental studies have shown that 
introducing tributyrin into the intestinal lumen increases the butyrate concentration in the 
portal vein and has a hepatoprotective effect [57]. In addition, the electrical activities of the 
duodenum and jejunum are stimulated when enteric administration is applied [21,59]. The 
antibacterial effectiveness of tributyrin against gram-negative bacteria is stronger than that 
of butyric acid itself [56]. Tributyrin has no adverse effects associated with the premature 
destruction and absorption of butyric acid in the anterior parts of the digestive system [60]. 
Tributyrin conditionally refers to low-toxic compounds (substance hazard category 4) [61].

Tributyrin production is based on the azeotropic esterification of glycerin and butanoic acid, 
where toluene acts as an azeotropic agent and orthophosphoric acid is the process catalyst. 
Excess butanoic acid must be distilled from the reaction under air pressure. The resulting product 
(tributyrin) is purified by vacuum distillation, achieving a tributyrin yield of 97–98 wt. % [62].

When choosing feed additives containing butyric acid derivatives, it is necessary to consider 
the amount of butyric acid that can reach the intestine. The dose of a feed additive and its 
effectiveness directly depends on the activity of the active substance.

APPLICATION OF BUTYRIC ACID DERIVATIVES IN 
ANIMAL HUSBANDRY AND CLINICAL PRACTICE
Many authors have indicated that organic acids affect the growth of poultry, its productivity, 
carcass yield, and digestibility of nutrients [63-67]. In one study, broiler chickens were fed 
a basic diet with or without the addition of protected calcium butyrate (0.2, 0.3, or 0.4 g/kg 
of prepared feed). Regardless of the dose, the feed conversion ratio improved [68]. Butyric 
acid is of particular interest because of its effect on animal physiology [69]. It is the preferred 
energy source for enterocytes and stimulates the proliferation of intestinal cells [70]. In this 
regard, it can be used as a component of diets for young pigs [71]. In that study [71], 160 
weaned piglets ([Landrace × Yorkshire] × Duroc, 28 days old) received feed additives with 
different coated sodium butyrate contents (0.5 g/kg of feed; 1.5 g/kg of feed for the first 
three weeks, followed by a reduction to 0.75 g/kg of feed and 3 g/kg of feed during the next 
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three weeks with a subsequent reduction to 1.5 g/kg of feed) [71]. Adding sodium butyrate 
increased the final body weight in a “gain: feed” ratio-dependent manner. At the same time, 
the amount of E. coli in the contents of the duodenum decreased, and the length of villi in the 
intestine increased. The research results confirmed the beneficial role of sodium butyrate in 
increasing the productivity and feed digestibility in weaned piglets.

Walia et al. [72] examined the role of feed additives containing sodium butyrate (3 kg/t) that 
had been administered to fattening pigs for four weeks before slaughter to reduce the bacterial 
transmission of salmonella in animals. The carriage of bacteria is characterized by prolonged 
persistence of the pathogen in the body without clinical manifestations of a disease but with 
the possibility of its manifestation under the influence of various factors [73]. The following 
plays an important role in the formation of bacterial carriage: genetic features of animals, 
antibacterial resistance of the pathogen, its anti-lysozyme activity and ability to destroy 
complement, and the features of the interaction of the pathogen with the immune system 
cells. Liver and gallbladder diseases contribute to the formation of a long-term bacterial 
carriage of salmonella because bile is a good nutrient medium for it. Salmonella can persist 
in the epithelium of the gallbladder and form biofilms that contribute to the chronification 
of infectious processes. When biofilms interact with bile components, their colloidal state is 
disturbed [74]. Animals carrying salmonella without symptoms are a serious concern because 
foods of animal origin often trigger salmonellosis in humans. Certain measures to control and 
prevent bacterial transmission are important for reducing the prevalence of this pathogen. The 
fecal excretion of salmonella decreased when feed additives with sodium butyrate were used, 
corresponding to lower seroprevalence in this group [72].

Feeding ruminants with butyrate plays an important role in rumen development. When 
administered to one-week-old calves, it triggers rumen papillae growth and increases 
pancreas secretion (especially chymotrypsin and lipase). This contributes to better 
absorption of nutrients and an increase in average daily weight gain [19,20]. Górka et al. 
[75-77] reported that adding butyrate to the milk substitute and the starter feed increased the 
rumen mass and stimulated papillae development. The butyrate-containing milk substitute 
had a more pronounced effect on the development of the small intestine, improved cell 
regeneration, and increased enzyme activity in the small intestine. Adding butyrate to the 
starter feed for calves before weaning prevented the development of diarrhea.

In the case of small pets, butyric acid has an energy-providing function and an anti-
inflammatory effect in the intestines. Butyrates effectively prevent infectious and ulcerative 
colitis and irritable bowel syndrome and have oncoprotective properties [78]. When sodium 
butyrate unused by colonocytes enters the bloodstream, it has systemic effects, including 
increased tissue sensitivity to insulin [79].

Some authors reported that butyrate has cancer-protective properties [80-82]. On the other 
hand, the short biological half-life (six minutes) impedes its clinical use [83,84]. The use of 
tributyrin made it possible to overcome the pharmacokinetic disadvantages of butyrate. Kang 
et al. [85] reported the antitumor activity of tributyrin emulsion. They intended to produce 
an emulsion of tributyrin as a celecoxib carrier, a poorly water-soluble COX-2 inhibitor with 
antitumor effects. Currently, the use of celecoxib to prevent oncological disease development 
and progression has been validated theoretically. Tumor cells actively express COX-2, and 
prostaglandins synthesized by this enzyme play an essential role at all stages of oncogenesis.
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Neoangiogenesis, a compulsory condition for the rapid proliferation of tumor tissue and its 
invasive growth, is also a COX-2-dependent process. The overexpression of COX-2 is associated 
with the active synthesis of thromboxane A2 by tumor cells, which plays an important role in 
metastasis and fixation of tumor thrombi in healthy tissues [86-90]. The use of a tributyrin 
emulsion can reduce the concentration of celecoxib necessary to suppress cancer cells by 
50%, approximately 2–3 fold, possibly through the solubilizing ability and anticancer activity 
[85]. Earlier studies reported that both celecoxib and tributyrin inhibit the proliferation of 
cancer cells by inducing apoptosis [55,58]. This explains their additive effect and suggests 
the increased effectiveness of celecoxib/tributyrin in cancer treatment. In addition, butyric 
acid derivatives are histone deacetylase (HDAC) inhibitors. The aberrant activity of histone 
deacetylase is associated with the development of certain types of cancer in humans. In this 
regard, regulating aberrant genes via HDAC inhibitors is promising for preventing and treating 
cancers [91]. Recently, HDAC inhibitors have also been considered for use in the targeted 
therapy of mental disorders. Therefore, HDAC inhibitors, including butyric acid derivatives, can 
be used in the treatment of neuropsychiatric and neurodegenerative disorders [92,93].

Good performance in breeding poultry, which depends largely on the functional state of 
the digestive and reproductive systems, must be ensured for the successful development 
of poultry farming. Wang et al. [94] reported that feed additives containing tributyrin 
increase the quality of egg whites and reduce the expression of genes associated with ovarian 
proapoptosis, which improves reproductive function. On the other hand, a deterioration 
in ovarian function was noted in breeding individuals with lower egg production. This 
was confirmed by the lower antioxidant capacity and increased cell apoptosis rate. The 
concentration of reproductive hormones in the blood serum does not change significantly 
when tributyrin is added to the diet. Tributyrin reduces the cellular apoptosis rates and 
increases Bcl-2 gene expression associated with antiapoptosis. On the other hand, a diet 
containing tributyrin has a negligible effect on the concentration of reproductive hormones 
(estrogen, FSH, and progesterone) in the blood serum of birds. An increase in egg weight 
with a higher protein content is associated with the effect of tributyrin on the functional 
state of the intestine and the balance of the microbiota, which is extremely important for 
the sound absorption of nutrients and improving digestion. When tributyrin was used in 
pig breeding, piglets grew better after weaning, and there were fewer cases of diarrhea after 
transferring piglets to a nursery group without any additional medication [95].

Previous studies have shown that butyrins are effective in treating chickens infected 
with eimeriosis [96]. At the same time, they exhibit immunomodulatory activity amid 
the intensive growth of chickens. Moreover, a decrease in the severity of infection and 
suppression of oocyst formation were reported [96].

A decrease in the production of endogenous butyrate due to microbiome disruption and 
the development of various pathological conditions necessitates an increase in the intake of 
butyric acid to 30% of the daily requirements [22]. On the other hand, high concentrations of 
butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function 
[97]. Nevertheless, one of the nine preclinical studies on the colitis model in mice showed no 
significant reduction in colon inflammation when using oral butyrate supplements [98]. At 
doses greater than 150 mmol/L, butyrate damages the mucous membrane of the colon and 
distal ileum in newborn rats [99]. The paradoxical effects on the intestine are that low butyrate 
concentrations increase the intestinal barrier function, and its excess provokes pronounced 
apoptosis of epithelial cells and destroys the intestinal barrier [97].
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Butyric acid derivatives are also used as biologically active substances for treating various 
pathological conditions in humans. Positive effects have been noted in the treatment of 
inflammatory bowel diseases [100], colorectal cancer [101], eradication therapy of infection 
caused by Helicobacter pylori [102], irritable bowel syndrome [103], and functional constipation 
[104]. In addition, butyric acid and its derivatives have positive extraintestinal effects against 
the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral 
ischemia [105]. A randomized clinical trial confirmed the therapeutic effects of butyrate 
in childhood obesity [106]. At the same time, some studies reported a lack of pronounced 
effectiveness or conflicting results using butyric acid to treat several diseases [107-109].

The effect of butyrate on viral infections and the antiviral response has not been sufficiently 
studied. On the other hand, butyrate increases cell infection by viruses, including influenza virus, 
reovirus, HIV-1, human metapneumovirus, and vesicular stomatitis virus. This may be due to 
the inhibitory effect of butyrate on specific antiviral interferon-stimulated genes in human and 
mouse cells [110]. At the same time, there is evidence of changes in the intestinal microbiome 
and decreased butyrate production in patients with severe acute respiratory syndrome caused by 
coronavirus 2 (SARS-CoV-2) [111]. The butyrate-releasing drug (N-(1-carbamoyl-2-phenyl-ethyl)  
butyramide (FBA) positively modulates the most important aspects of infection in human small 
intestine biopsies and enterocytes. It reduces the expression of proinflammatory cytokines 
(interleukin-15, monocyte chemoattractant protein-1, and tumor necrosis factor-α) and regulates 
several genes involved in the antiviral response. The preventive effect of butyrate-releasing 
FBA against SARS-CoV-2 infections can be considered a possible strategy to limit the spread 
of coronavirus disease 2019 [112]. Nevertheless, further studies are needed on the clinical 
effectiveness of butyric acid and its derivatives in humans, necessitating comprehensive animal 
studies to determine the optimal doses, treatment duration, and delivery methods.

Microencapsulation during enzymatic synthesis of cyclodextrin has been proposed 
to increase the sensory qualities and bioavailability of butyric acid derivatives [113]. 
Cyclodextrins are obtained from starch or its derivatives using an enzymatic process catalyzed 
by cycledextringlycosyltransferase [114]. On the other hand, the product of enzymatic 
synthesis is a mixture of α-, β- and γ- cyclodextrins with unformed residues. Therefore, 
subsequent separation steps are necessary to obtain a specific cyclodextrin. This complex 
manufacturing process increases the cost of individual cyclodextrins and restricts their use 
range [115]. Li et al. [113] proposed to encapsulate tributyrin directly during the enzymatic 
synthesis of cyclodextrin. This approach eliminates complex isolation processes and allows 
using mixtures of reaction products as a potentially new material for making microcapsules.

Augustin et al. [116] proposed microencapsulation to transport a bioactive composition containing 
tributyrin to target organs quickly. At the same time, radioactive labels ([14C]-trilinolenin or 
[14C]-tributyrin and [3H]-resveratrol) were added to the bioactive composition to study their 
distribution in the digestive system, blood, and individual tissues of rats. Oral administration 
was used. Oil-in-water emulsions were stabilized with a heated mixture of milk protein, 
glucose, and modified starch. Microencapsulation led to an increase in the level of biologically 
active substances in the blood and liver and increased the bioavailability of the agents.

In recent years, developing long-acting veterinary medicines has become a relevant direction. 
Carbon sorbents are of particular interest in this field. The Department of Materials Science 
and Physicochemical Research Methods of the Center of New Chemical Technologies of the 
Federal Research Center Boreskov Institute of Catalysis of the Siberian Branch of the Russian 
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Academy of Science (Center of New Chemical Technologies BIC, Russia) conducted long-
term research on the production of carbon sorbent-based functional materials with preset 
biospecific properties for healthcare and veterinary medicine [117,118]. Organic acids hold 
a special place among modifiers. Nanoporous carbon sorbents modified with oligomers of 
lactic and glycolic acids were obtained [119]. The dependence of their detoxifying action on 
the nature of the modifier was proven experimentally [120].

The use of butyric acid derivatives as surface modifiers of the carbon intestinal sorbent 
Zoocarb (TU 9318-003-71069834-2016) is a promising approach. Fig. 2C and D present the 
carbon intestinal sorbent Zoocarb.

The advantages of this matrix include high chemical purity (at least 99.5% carbon), smooth 
surface relief, and spherical granules (size of 0.1–0.5 mm) to prevent injury to the mucous 
membrane of the gastrointestinal tract. The technology of sorbent production ensures 
an almost complete absence of dust on its surface and in the pores and guarantees high 
robustness of the granules. The mesoporous structure of the carbon sorbent contributes to 
its good low and medium molecular weight substances adsorption capacity, including that of 
butyric acid derivatives, which is necessary for the local delivery of active substances into the 
intestine and prolongation of the pharmacological effect.

Modification of the sorbent surface with oxygen-containing hydrophilic functional groups 
of butyrates and butyrins will allow highly effective preparations with improved sensory 
properties. These preparations can preserve the useful properties of the modifiers.

Research has been conducted to develop a method for modifying a carbon sorbent with 
butyric acid derivatives [121]. In particular, according to the results of adsorption studies, 
the optimal conditions were chosen for carbon sorbent modification with tributyrin. The 
sorbent/modifier ratio was 1/10; the duration of impregnation with ethanol solutions of 
tributyrin was 24 h at room temperature under static conditions. The sorbent was dried in air 
for 24 h and then in an inert atmosphere for 2 h at 105°C to remove ethanol vapor completely 
[121]. Physicochemical studies showed that the sorbent modified with the ethanol solution 
of tributyrin with an initial concentration of 227 g/L was of the greatest interest. A ~28 wt. 
% modifier was deposited onto this sorbent. This modified sample was characterized by a 
specific surface area of 16 m2/g and contained carboxylic and phenolic oxygen-containing 
groups on its surface (0.243 mmol/g). Desorption research has shown that upon contact with 
the physiological solution (0.9% aqueous solution of sodium chloride) and ethanol solution 
(96%), tributyrin deposited on the carbon support is gradually desorbed within 6 h. In this 
process, the pH of the model solutions decreased by 3–4 units within 30 min, and the amount 
of deposited modifier decreased from 28 to 6 wt. %. The specific surface area of the sample 
increased regularly from 16 to 195 m2/g [121]. Future studies will examine in more detail the 
desorption of the modifier from the samples of carbon sorbents in biorelevant media and 
describe the mechanisms of this process. The efficient and safe use of these modified carbon 
sorbents in animal husbandry and veterinary medicine will also be examined.

DISCUSSION

Butyric acid and its derivatives can improve the morpho-functional state of the intestine, 
activate digestive processes by increasing the size of the intestinal villi, strengthening the 
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intestinal mucosal barrier, stimulating cellular immunity, and developing optimal conditions 
for beneficial microflora, which reduces the risk of infectious and invasive diseases 
significantly. This opens up great outlooks for developing new medicines based on butyrates 
and butyrins.
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