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Abstract
Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physi-
ological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is 
the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized 
protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation 
and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence 
that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. 
In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding 
to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one 
of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of 
the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. 
This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant 
enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding 
domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including 
binding specificities, localization, abundance and composition.
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Introduction

Cell surface receptors sense, transform and relay the pan-
demonium of extracellular signals through intracellular 
enzyme cascades. In many cases this involves the activation 
and inactivation of signaling complexes which are com-
posed of compartmentalized protein kinase units [1–3]. The 
dynamic modulation of these signaling cascades requires 
precise molecular interactions (i.e. protein–protein, protein-
RNA/DNA and protein-small molecule-interactions) which 
are tightly regulated and localized to explicit subcellular 
compartments to control the cellular responses [4, 5]. Input 
signals received at the cell surface are converted to intracel-
lular second messenger fluxes [6, 7]. These second messen-
ger pulses modulate the activities of the signaling enzymes 
spatiotemporally by relaying post-translational modifications 
(PTMs) and altering the formation of protein-complexes [8, 
9].

The 3′, 5′-cyclic adenosine monophosphate (cAMP) is a 
ubiquitous cellular second messenger molecule at multiple 
convergence points of intracellular signaling pathways [10, 
11]. cAMP pools are generated upon activation of G protein-
coupled receptors (GPCRs) which are coupled to the adeny-
lyl cyclase (AC) stimulatory (Gs) or inhibitory (Gi) G-pro-
teins, respectively [8, 12–15]. ACs catalyze the conversion 
of ATP to cAMP. The increase of intracellular cAMP levels 
leads to the activation of its main effector protein complex, 
the protein kinase A (PKA) [16]. Inactive PKA forms a tetra-
meric complex, composed of two regulatory and two cata-
lytic subunits. Binding of cAMP to the regulatory subunits 
leads to release and activation of the catalytic subunits and 
subsequent phosphorylation of substrate proteins [17, 18]. 
Phosphodiesterase enzymes hydrolize cAMP and thereby 
limit its zone of influence to distinct and highly localized 
microdomains, which constitute the frame wherein PKA 
substrate phosphorylation occurs [19]. A-kinase anchoring 
proteins (AKAPs) form the backbone of PKA mediated sig-
nal propagation by binding to the regulatory subunits and 
tethering the PKA holoenzyme in the vicinity of its sub-
strates [20–23]. PKA targets a broad variety of substrates, 
and represents one of the best studied examples for dynamic 
protein–protein and protein-small molecule-interactions. 
The cAMP-PKA pathway plays a key role in different physi-
ological processes such as cell-proliferation, differentiation, 
and metabolism [24]. On the cellular level, PKA is centrally 
involved in glucose and lipid metabolism, and mitochondrial 
functions [25, 26]. Deregulation of different layers of the 
cAMP-PKA signaling axis is associated with a variety of 
diseases as it has been recently summarized [15]. Hence, a 
deeper understanding of the physiological and pathological 
compartmentalized PKA signal propagation is needed.

Post-transcriptional gene regulation is essential to main-
tain cellular metabolism, coordinate maturation, transport, 
and degradation of all classes of RNAs. RNAs in cells are 
associated with RNA-binding proteins (RBPs or RNA-
binders) to form ribonucleoprotein (RNP) complexes. RBPs 
influence the structure and interactions of the RNAs and play 
critical roles in their biogenesis, stability, function, transport 
and cellular localization [27–30]. RBPs are often subjected 
to post-translational modifications, enabling them to receive 
input signals which regulate RNA-binding affinity, signal 
transduction properties or intracellular distribution of the 
RBPs [31, 32]. Kinases regulate functions and dynamics of 
RBPs by influencing protein–protein or RNA–protein inter-
actions in RBP macromolecular complexes [33, 34], or by 
shuttling between cell compartments [35].

In this work, we provide evidence that the RBP TAF15 
is a novel substrate of PKA. PKA phosphorylates one of the 
TAF15 RNA-binding domains, thereby affecting the bind-
ing pattern of RNA species. To delineate the engagement of 
novel PKA substrate proteins in aberrant cell signaling, our 
objective was to determine the composition of macromo-
lecular PKA complexes. We identified various RNA-binding 
and processing proteins as components of macromolecular 
PKA complexes isolated from colon cancer cell lines which 
display genetic aberrations leading to cell transformation 
and uncontrolled cell growth. Our findings suggest that 
the modulation of RNA–protein interactions, exemplified 
by TAF15, could represent a novel mechanism by which 
kinase activities controlled by second messengers can alter 
post-transcriptional gene regulation.

Materials and methods

Cell culture, reagents and antibodies

HEK293T, HEK293 β2AR [36] cells and U87-MG cells 
(ATCC​® HTB-14) were grown in Dulbecco’s Modified Eagle 
Medium (DMEM) supplemented with 10% fetal bovine 
serum (FBS). The colon cancer cell lines SW480 (ATCC​® 
CCL-228) and SW620 (ATCC​® CCL-227) were grown in 
RPMI-1640 media supplemented with 10% FBS. Cells were 
grown in water-saturated, 5% CO2 atmosphere. Transient 
transfections were performed with Transfectin reagent (Bio-
Rad, #1703352). Forskolin was purchased from MCE Med 
Chem Express (#HY-15371), Isoproterenol was purchased 
from Sigma (#I6504), KT5720 was purchase from Enzo Life 
Sciences (BML-EI199-0100), and employed with indicated 
concentrations and time frames. Primary antibodies used 
were the mouse anti-GFP antibody (Roche, #11814460001, 
Germany), the rabbit polyclonal Phospho-PKA Substrate 
(RRXS*/T*) antibody (Cell Signaling, #9624), the rabbit 
polyclonal TAF15 antibody (Cell Signaling, #13150), the 
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mouse monoclonal (mAb) Anti- PKA RIα (D54D9) anti-
body (BD Biosciences, #610166), and the mouse monoclo-
nal Anti-PKAc antibody (BD Biosciences, #610981). Lamin 
A/C (Cell Signaling, #4777) Mouse mAb, GAPDH (Cell 
Signaling, #2118) Rabbit mAb, Phospho-VASP (Ser157) 
(Cell Signaling, #84519) Rabbit mAb.

Expression constructs

For TAF15 transient overexpression in mammalian cells, 
the TAF15 cDNA sequence (NG_023279.1) was inserted 
as BsrGI/NotI fragment into the plasmid pcDNA3.1 ( +) 
(Invitrogen) containing the YFP tag cloned as BamHI/
BsrGI creating a N-terminal transcriptional fusion and 
with a 12-aminoacid linker in between. Point mutations 
at the TAF15 PKA phosphorylation site (S375A, S375E) 
and partial deletions (ΔRRM, ΔZnF, ΔPY) were introduce 
by site-directed mutagenesis using the Q5® Site-Directed 
Mutagenesis Kit (NEB, # E0554). For TAF15 bacterial 
protein expression, the fusion GST-TAF15 wild-type (wt), 
S375A and S375E coding sequences were PCR-amplified 
and cloned into the pGEX-5X-1 vector (Sigma) as EcoRI/
XhoI fragments. PKAc-mCherry [37] was used for immu-
noprecipitation experiments and cell live imaging. All con-
struct were verified by Sanger sequencing. Primer list is 
shown in Supplementary Table S1.

Immunoprecipitation

Following 48 h of transient overexpression of indicated 
YFP-tagged expression constructs, cells were treated with 
20  µM forskolin for 15  min, 100  nM Isoproterenol for 
15 min or with 5 µM KT5720 for 1 h and then cells were 
washed with PBS and lysed (standard lysis buffer: 10 mM 
sodium phosphate (pH 7.2), 150 mM NaCl, 0.5% Triton 
X-100 supplemented with standard protease inhibitors and 
phosphatase inhibitors). Cellular debris was homogenized, 
with 15 strikes of a syringe. The lysate was clarified via 
centrifugation (13,000 rpm, 20 min) and IPs were performed 
using Protein A/G mixtures (Invitrogen) and 2 µg of control, 
anti–flag, or GFP antibodies for 3 h at 4 °C. Resin-associated 
proteins were washed four times with standard lysis buffer 
and eluted with Laemmli buffer for Western blot analysis.

Recombinant protein purificaiton and in vitro 
phosphorylation assay

GST-TAF15 recombinant proteins were expressed in the 
Escherichia coli strain BL21-DE3-RIL (Novagen) and 
expression was induced with 0.8  mM isopropyl-β-D-
thiogalactopyranoside (IPTG, Sigma #PHG0010) for 16 h 
at 16 °C. Cells were collected by centrifugation, resuspended 
in in PBS-0.5% Triton and lysed at 1300 psi using a French 

press device. Clarified lysates were subjected to GST purifi-
cations using Glutathione-sepharose beads (GE Healthcare) 
following the supplier’s instructions. His6-PKAc expression 
was carried out in the Escherichia coli strain Rosetta pLysS 
(Novagen) containing the plasmid pET11d-his6-PKAc [38]. 
Protein expression was induced with 1 mM IPTG for 3 h 
at 37 °C. Cells were collected by centrifugation and pel-
lets were resuspended in 50 mM sodium phosphate pH 8.0, 
300 mM NaCl and 10 mM Imidazol. Clarified lysates were 
subjected to Ni–NTA agarose purification (Invitrogen) fol-
lowing manufacturer’s instructions. For the phosphorylation 
reaction, equal amounts of GST-TAF15 protein beads were 
incubated with recombinant His6-PKAc in phosphorylation 
buffer (40 mM Tris at pH 7.5, 0.1 mM EGTA, 10 mM ATP 
and 10 mM MgCl2) for 20 min at 30 °C at 1000 rpm. Beads 
were washed four times with PBS-0.5% Triton, subjected 
to SDS-PAGE and immunoblotting using an anti-phospho-
PKA substrate antibody.

cAMP‑agarose protein precipitation assay

Endogenous PKA protein complexes from SW620/SW480/
HEK293 cells were affinity-purified as described before 
[37]. In short, PKA complexes were isolated under stand-
ard conditions without stimulation for baseline binding. 
Cells were homogenized using a Potter S (B. Braun Biotech 
International) with 15 strikes (standard lysis buffer: 10 mM 
sodium phosphate pH 7.2, 150  mM NaCl, 0.5% Triton 
X-100 supplemented with standard protease inhibitors [PI] 
and phosphatase inhibitors [PPI]). Cell lysates were clari-
fied (13,000 rpm, 15 min) and endogenous PKA-associated 
protein complexes were precipitated with PKA-selective Rp-
8-AHA-cAMP agarose resin (Biolog, #A012) for 2 h at 4 °C. 
As negative control experiment, we added excess of cAMP 
(1 mM) to the lysates to mask the cAMP binding sites in the 
PKA regulatory subunits for precipitation. Resin-associated 
proteins were washed four times with standard lysis buffer 
and eluted with 1% SDS. Finally, resin-associated proteins 
were subjected to SDS/PAGE followed by immunoblotting, 
or mass-spectrometry(MS) analysis.

Phospho‑proteome analysis

To determine the composition of affinity isolated macromo-
lecular PKA complexes and characterize the phospho-pro-
teomic contingent, we performed single discovery experi-
ments from samples, which were split in a 80/20 ratio. 20% 
of the sample was eluted under denaturing conditions (Lae-
mmli Buffer), separated via SDS PAGE and subjected to 
in-gel tryptic digestion prior to LC–MS/MS analysis. The 
remaining 80% of the sample were subjected to on-bead 
tryptic digestion followed by phospho-peptide enrichment 
using titanium dioxide, prior to LC–MS/MS measurements 
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as described in [39]. Raw MS data was processed and ana-
lysed as described in [40]. MS measurements were perform 
in a Q Exactive HF mass spectrometer (Thermo Scientific, 
USA). Raw MS data were processed and analysed using 
Proteome Discoverer 2.1 (Thermo Scientific) with search 
engine Sequest. The raw files were searched against the uni-
prot homo sapiens database. Precursor and fragment mass 
tolerance was set to 10 ppm and 0.02 Da, respectively, and 
up to two missed cleavages were allowed. Carbamidometh-
ylation of cysteine was set as static modification, oxidation 
of methionine and phosphorylation of serine threonine and 
tryptophane as variable modifications. Peptide identifica-
tions were filtered at 1% false discovery rate. Mass spec-
trometry data were generated in DDA mode avoiding any 
reliable label-free quantification therefore, our approach is 
largely qualitative and because we carried out single dis-
covery experiments, no classical statistical evaluation was 
possible.

Protein network analysis

To create a PPI network of the identified PKA complexes, 
we superimposed the identified hits on a global interac-
tome library using the STRING database [41] and visual-
ized with Cytoscape 3.0. The network was broken down in 
multi-protein clusters using an MCL algorithm [42]. These 
were analyzed for functional enrichment using STRING and 
grouped accordingly.

Localization experiments

HEK293 β2AR or HEK293T cells were seeded in a cham-
bered coverslip µ-slide 8-well high (Ibidi, #80806) and 
transfected with the YFP-TAF15 contructs for 48 h at 37 °C, 
5% CO2. Live-cell imaging was performed using a Leica 
TCS SP5 II inverse laser scanning microscope. The settings 
for colocalization experiments were as followed: GFP was 
excited at 488 nm using an argon laser and a PMT detector 
with a spectral range of 500–550 nm. Images were analyzed 
with the Leica® Imaging Sofware.

Subcellular fractionation

Cellular fractionation was performed similar to the pro-
tocol established in [43]. Briefly, HEK293T and SW480 
cells were split into 10 cm dishes and after reaching 80% 
confluence the cells were treated with 20 µM forskolin for 
15 min. Cells were washed in PBS, resuspended in 600 µl 
hypotonic buffer (20 mM Tris–HCl (pH 7.4), 10 mM KCl, 
2 mM MgCl2, 1 mM EGTA, 0.5 mM DTT, 0.5 mM PMSF) 
containing 0.1% NP-40 and incubated on ice for 5 min. After 
centrifugation (1000 rcf; 4 °C; 5 min) the supernatant (cyto-
plasmic fraction) was removed and re-centrifuged (15,000 

rcf; 4 °C; 3 min) to remove cell debris. The nuclei were 
washed twice in isotonic buffer (20 mM Tris–HCl (pH 7.4), 
150 mM KCl, 2 mM MgCl2, 1 mM EGTA, 0.5 mM DTT, 
0.5 mM PMSF) containing 0.2% NP-40 and incubated on ice 
both times for 7 min. After centrifugation (1000 rcf; 4 °C; 
5 min) the nuclei were incubated in 100 µl RIPA buffer 
(50 mM Tris–HCl (pH 7.4), 120 mM NaCl, 1 mM EDTA, 
1% NP-40, 0.25% Na-Deoxycholate) for 20 min and then 
centrifuged (15,000 rcf; 4 °C; 3 min). The supernatant was 
treated as the nuclear fraction. Laemmli buffer was added to 
the cytoplasmic and nuclear fractions to subject the samples 
to Western blot analysis.

Individual‑nucleotide resolution UV crosslinking 
and immunoprecipitation (iCLIP)

The protocol was performed according to from [44]. HEK293 
β2AR cells were plated and transiently transfected with the dif-
ferent TAF15 constructs. After 48 h cells were either exposed 
to 100 nM isoproterenol for 15 min or directly subjected to cell 
harvesting. Cells were washed with cold PBS (137 mM NaCl, 
2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) and place 
on ice to be irradiated with 200 mJ/cm2 in a UV Stratalinker 
2400 (Stratagene). Afterwards, cells were harvested by scrap-
ing, centrifuged at 1000 rcf for 1 min at 4 °C, and cell pellets 
were finally snap frozen on dry ice and stored at − 80 °C till 
cell lysis. For each sample, 100 μl of protein G Dynabeads 
(Life Technologies, #161-023) were washed with Lysis Buffer 
(50 mM Tris–Hcl, pH 7.4, 100 mM NaCl, 1% Igepal CA-630, 
0.1% SDS, 0.5% sodium deoxycholate) without protease (PI) 
and phosphatase inhibitors (PPI), resuspended in 100 μl Lysis 
Buffer supplemented with PI and PPI and 7.5 μl of GFP anti-
body (Roche, #11814460001) were added the pre-washed 
beads, excepting the negative control with no antibody. Tubes 
were rotated at 4 °C, and afterwards beads were washed with 
High-Salt Wash Buffer (50 mM Tris–HCl, pH 7.4, 1 M NaCl, 
1 mM EDTA, 1% Igepal CA-630, 0.1% SDS, 0.5% sodium 
deoxycholate), and finally washed twice with Lysis Buffer 
until the samples were ready. In paralell, cells pellets were 
resuspended in in 1 ml Lysis Buffer and transfer to a new 
1.5 ml RNase-Free microfuge tube (Invitrogen, #AM12450). 
To digest the cross-linked RNAs, a dilution of either 1:50 or 
1:500 RNase I (Invitrogen, #AM2295) was made in Lysis 
Buffer with futher addition of 10 μl to the lysate together with 
2 μl Turbo DNase (Invitrogen, #AM2239) per sample. Then 
samples were incubated for exactly 3 min at 37 °C shaking at 
1100 rpm in a thermomixer and further incubated for 3 min 
on ice. Lysates were clarified using a Proteus Mini Clarifica-
tion Spin Column (Serva Electrophoresis, #Gen-MSF500) and 
subjected to immuprecipitation. For this purpose, the already 
prepared beads were incubated with the cell lysates for 3 h 
at 4 °C with constant rotation. Afterwards, the beads were 
washed twice with High-Salt Wash Buffer, followed by one 
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final wash with PNK Wash Buffer (20 mM Tris–HCl, pH 7.4, 
10 mM MgCl2, 0.2% Tween-20), and subjected to RNA 3′ 
end dephosphorylation. To do so, a PNK mix for each sample 
was prepared with 15 μl water; 4 μl 5X PNK buffer pH 6.5 
(350 mM Tris–HCl, pH 6.5, 50 mM MgCl2, 5 mM dithiothrei-
tol); 0.5 μl Polynucleotide kinase (PNK, New England Biolab, 
#M0201L) and 0.5 μl RNasin (Promega, #N2615) and 20 μl 
of the PNK mix were incubated with the beads at 37 °C for 
20 min in a thermomixer at 1100 rpm. Then, samples were 
washed once with PNK Wash Buffer, another time with High-
Salt Wash Buffer and finally washed again twice with PNK 
Wash Buffer to proceed with the L3 linker ligation. For the 
linker ligation, beads were resuspended in 20 μl of the fol-
lowing mix per sample: 8 μl water; 5 μl 4X Ligation Buffer 
(200 mM Tris–HCl, pH 7.8, 40 mM MgCl2, 4 mM dithiothre-
ito); 1 μl T4 RNA ligase (New England Biolab, #M0204L); 
0.5 μl RNasin; 1.5 μl L3-App linker[44] [20 μM] (IDT); 4 μl 
PEG 400 (Sigma Aldrich, #81172) and incubated overnight at 
16 °C in a thermomixer at 1100 rpm. Next day, samples were 
washed once with PNK Wash Buffer and twice with High-
Salt Wash Buffer. The 5′ end radioactive RNA labelling was 
performed by adding to the beads 8 μl of PNK mix (6 μl water; 
0.4 μl PNK, 0.8 μl 10X PNK buffer, and 0.8 μl 32P-γ-ATP [Per-
kin Elmer, #NEG502A100UC]) with further incubation for 
15 min at 37 °C in a thermomixer at 1100 rpm. Visualization 
of the TAF15:RNA complexes was performed by electropho-
retic separation of the samples using NuPAGE and transfer 
to nitrocellulose membrane. Blots were expose overnight and 
analysed by Typhoon FLA laser scanner. Afterwards, RNA-
TAF15 complexes were isolated by cutting out the region of 
interest of the nitrocellulose membrane and further digested 
with Proteinase K (Roche, #311904325) for 20 min at 37 °C 
in a thermomixer at 1100 rpm. To extract the RNA, samples 
were incubated with PK buffer-7 M urea (100 mM Tris–HCl, 
pH 7.4, 50 mM NaCl, 10 mM EDTA, 7 M urea) for 20 min at 
37 °C and 1100 rpm and phenol/chloroform extracted using 
Phase Lock Gel Heavy tubes (VWR, #713-2536) for 5 min 
at 30 °C shaking at 1100 rpm and separate the phases by 
centrifugation for 5 min at 16,000 rcf at room temperature. 
RNA was precipitated using 0.75 μl GlycoBlue (Invitrogen, 
#AM9515), 40 μl 3 M sodium acetate pH 5.5 and 1 ml 100% 
ethanol (Merck KGaA, #64-17-5) overnight at −20 °C. RNA 
pellet was obtained by centrifugation at 21,000 rcf for 20 min 
at 4 °C, air-dried and further subjected to reverse transcription 
(RT). RNA was copied into cDNA using Superscript III (Invit-
rogen, #18080058). Afterwards, RNA alkalyne hydrolysis and 
precipitation was performed and cDNA was gel-purified in a 
6% TBE-urea gel (Invitrogen, #EC6865BOX) to select cDNA 
library size and eliminate RT primers, further isolated, phenol-
extracted and precipitated. The next step was the cDNA cir-
cularization, using the CircLigase II (Epicentre, #CL9025K). 
Then, circularized cDNA was digested with BamHI (NEB, 
#B7204) and further precipated using GlycoBlue at −20 °C 

overnight. Finally, cDNA libraries were amplied using Q5 
Polymerase (NEB, #M0491) and P3/P5 Solexa primers with 
specific cycling conditions to ensure proper amplification 
and PCR products were visualized in 8% TBE-gels. Ampli-
fied cDNA libraries were subjected to Illumina Solexa High-
Throughput Sequencing (Microsynth, Switzerland).

iCLIP data analysis

iCLIP reads coming from each experimental group (N = 3 
independent biological replicates) were phiX-removed, 
umi-extracted, demultiplexed into samples (4-base inline 
barcodes), and trimmed (library adaptor removal) using Pic-
ard tools (http://​broad​insti​tute.​github.​io/​picard/). Trimmed 
reads were mapped into the human genome, PCR duplicates 
were removed, umi deduplicated and counted of uniquely 
mapped reads and further subjected to normalization as pre-
viously described [45]. Differential gene binding sites were 
extracted from the iCLIP reads of three replicates in each 
experimental group and statistically assessed to determine 
fold-change enrichments and p-values. Final iCLIP library 
read counts were merged by TAF15 phosphorylation motif 
(S375 and S375A cDNA libraries) or Isoproterenol treat-
ment and analyzed for differential gene expression calcu-
lating fold-change enrichments and p-values. RNA feature 
distribution was assessed using the tool CollectRnaSeq-
Metrics fromPicard (http://​broad​insti​tute.​github.​io/​picard/). 
Genomic distribution of mapped reads was visualized using 
Integrated Genome Browser software [46]. GO biological 
process analysis was performed using the AmiGO analysis 
software [47].

Statistical analysis

Data was tested for Gaussian distribution using the Kol-
mogorov–Smirnov normality test. Non-Gaussian-distributed 
data was analyzed using the non-parametric Mann–Whitney 
U test. For Gaussian-distributed data unpaired Student’s t 
test was used to evaluate statistical significance. Values are 
plotted as means ± SEM. Significance was set at the 95% 
confidence level and ranked as * (p < 0.05), ** (p < 0.01), 
and *** (p < 0.001).

Results

TAF15 is a novel PKA substrate

In a previous study by our group, we determined a PKA-
centered protein–protein interaction network following 
affinity isolation of macromolecular PKA complexes from 
the osteosarcoma cell line U-2 OS. In this study we have 
identified amongst a novel binary interaction partner and 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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AKAP (GPR161) a collection of feasible PKA interactors 
and substrates which have been linked to RNA metabolism 
or mRNA processing [37]. Notably, we detected numerous 
RNA-binding proteins from the FET protein family, with one 
prominent member being the TATA-box binding protein-
associated factor 15 (TAF15, TAF2N), a crucial regulator 
of gene expression (Fig. 1a). In this phospho-proteomic 
analysis, we identified multiple phosphopeptides for the 
PKA phosphorylation site (S375) in TAF15 representing a 
PKA consensus site for phosphorylation [37]. Building upon 
this initial observation, we hypothesized that TAF15 repre-
sents a novel PKA substrate. TAF15 belongs to the FET pro-
tein family, which, in vertebrates, consists of TAF15, FUS 
(TLS) and EWSR1 (EWS). They interact with a plethora 
of transcripts, affecting multiple steps in mRNA biogen-
esis [48]. All members share a conserved modular domain 
organization (Fig.  1b). They contain a low-complexity 
domain or prion-like domain (PrLD) relevant for intermo-
lecular complex assemblies. Further, FET proteins display 
an intrinsically disordered region (RGG domains) acting as 
regulator of FET nucleotide-protein interactions. In addi-
tion, two RNA-binding domains are present, the RRM and 
Zinc-finger (ZnF) respectively, which mediate the interac-
tion with their RNA targets [48, 49]. Abnormalities of FET 
protein functions are linked to cancer progression and their 
nuclear-cytoplasmic shuttling is frequently associated with 
neurogenerative diseases such as amyotrophic lateral scle-
rosis (ALS) (Fig. 1b) [48–51]. Our findings underline that 
PKA may participate in exerting regulatory functions related 
to RBP-mediated mRNA processing and/or maturation.

First, we aimed to corroborate the coexistence of endog-
enous TAF15 and PKA in the same macromolecular com-
plex. For this purpose, we repeated precipitations of the 
endogenous PKA holoenzyme using cAMP analogs (Rp8-
AHA cAMP precipitation) in HEK293 cells. We confirmed 
co-isolations of TAF15 with regulatory and catalytic PKA 
subunits (Fig. 1c).

Next, we set out to confirm whether TAF15 is phos-
phorylated by PKA at the phosphorylation motif with the 
putative phospho-Serine at the position 375, located in the 
middle of the Zinc-finger domain, one of the RNA-binding 
domains of TAF15 (Fig. 1d). We conducted IP experiments 
of transiently overexpressed TAF15 variants in HEK293 
cells. We isolated, besides YFP-tagged wild-type TAF15, 
the non-phosphorylated S375A and phosphomimetic S375E 
mutants and performed Western blot analyses using an anti-
body directed against phosphorylated PKA substrate motifs. 
Our data showed that TAF15 phosphorylation significantly 
increases upon PKA activation via the cAMP elevat-
ing agent forskolin within a short-time frame of exposure 
(20 µM, 15 min). None of the TAF15 mutants (S375A/E 
substitutions) were recognized by the antibody, confirm-
ing that cAMP-PKA triggers phosphorylation of S375 in 

TAF15 (Fig. 1d). We further confirmed these observations 
by in vitro phosphorylation experiments using recombinant 
proteins. Results showed the respective phosphorylation sig-
nal exclusively in the wild-type TAF15 protein in the pres-
ence of the PKA catalytic subunit (Supplementary Fig. S1a, 
b). Furthermore, to confirm the physiological specificity of 
the PKA phosphorylation on TAF15, we chemically blocked 
endogenous PKA activity with the selective PKA inhibitor 
KT5720 prior to inducing cAMP production via the cAMP-
elevating agent forskolin (Fig. 1e). The results showed that 
the elevation of cAMP-mediated phosphorylation was sig-
nificantly reduced upon KT5720 pre-treatment. Addition-
ally, we analyzed TAF15-S375 phosphorylation upon co-
expression of the catalytic subunit of PKA (PKAc) (Fig. 1f). 
Similar to activation of endogenous PKA, over-expression 
of exogenous PKAc elevated the phosphorylation of TAF15. 
Here we also observed that a minor fraction of PKAc co-
precipitated with TAF15 (Fig. 1f). Co-precipitation persisted 
in the PKA substrate-site mutants S375A/E (Supplementary 
Fig. S1c), suggesting that the interaction is not dependent 
on the phosphorylation state of TAF15. In summary, our 
data corroborates that PKA phosphorylates TAF15 at the 
position S375.

Finally, a sequence comparison of the TAF15 orthologues 
in other vertebrates showed that the S375 phosphorylation 
site is well conserved. Surprisingly, it was not present in the 
other members of the FET protein family FUS and EWSR1. 
Instead this PKA phosphorylation site is replaced with a glu-
tamic acid (Fig. 1g). We hypothesize that the negative charge 
of the phospho-serine in TAF15 or the glutamic acid in FUS 
and EWSR1 could play an important role in the function 
of FET protein family members. In the case of TAF15, the 
PKA phosphorylation of S375, located in one of the TAF15 
RNA-binding domains, could represent a regulatory mecha-
nism which does not extend to other FET protein members.

PKA activities alter RNA‑binding properties of TAF15

To start to elucidate the functional implications of PKA-
mediated TAF15 phosphorylation, we investigated whether 
the phosphorylation status of TAF15 affects its subcellular 
localization. Confocal microscopy results showed that nei-
ther mutation of the PKA phosphorylation site (S375A/E), 
nor the complete deletion of the Zinc-finger domain affected 
the subcellular localization of TAF15 (Supplementary 
Fig. S2). Similarly, a subcellular fractionation approach 
showed no alteration of TAF15 localization upon cAMP 
elevation, in two different cell lines, HEK293T and SW480 
respectively (Supplementary Fig. S3).

Since the PKA phosphorylation site is located in one of 
the RNA-binding modules of TAF15, we hypothesized that 
PKA phosphorylation might alter the affinity of TAF15 for 
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its RNA targets. The TAF15 ZnF is a RanBP2-type zinc-
finger which recognizes single-stranded RNA, which gen-
erally represents an important aspect of gene regulation 

[52–54]. For this purpose, and to identify the TAF15-bound 
RNA species affected by PKA phosphorylation, we per-
formed individual-nucleotide resolution UV cross-linking 

Fig. 1   TAF15 is a novel PKA substrate. a Left: schematic depiction 
of the central components of the GPCR-cAMP-PKA signaling axis. 
Right: PKA interactor sub-network displaying RNA-binding pro-
teins and proteins involved in transcription identified in Bachmann, 
et al. [37]. The phosphosites are indicated and the PKA motif RxxS-
containing sites are highlighted in red. b Domain organization of the 
FET protein family members TAF15, FUS and EWSR1 and major 
functions in physiological and pathological conditions. PrLD: prion-
like low-complexity domain; RGG: arginine-glycine rich domain; 
RRM: RNA-binding domain; ZnF: Zinc-finger domain; NLS: nuclear 
localization signal. c Western blot analysis of the endogenous PKA 
macromolecular complexes using Rp8-AHA cAMP precipitation in 
HEK293 cells. Excess of cAMP (1 mM) was used as negative con-
trol. d Upper panel: TAF15 domain organization of the two RNA-
binding domains (RRM and Zinc-finger, ZnF) and showing the puta-
tive PKA phosphorylation site located at the Zinc-finger domain with 
the phospho-Serine highlighted in red. Middle panel: Western blot 
analysis of TAF15 phosphorylation using the RRx-S/T phospho-PKA 
antibody. WCL: whole cell lysate (1% IP input). IP control: IP with 
Flag antibody. Lower panel: quantification of the phospho-TAF15 
signals adjusted to the GFP levels and normalized against the wild-
type TAF15 values. Mean ± SEM are shown from five independent 

experiments (N = 5). e Upper panel: Western blot analysis following 
transient expression of TAF15 (wild-type) in HEK293 cells and stim-
ulation with forskolin and pre-treatment with the KT5720 inhibitor 
(5 µM, 1 h) using the RRx-S/T phospho-PKA antibody. WCL: whole 
cell lysate (1% IP input). IP control: IP with Flag antibody. Lower 
panel: quantification of the phospho-TAF15 signals adjusted to GFP 
levels and normalized against the non-treated control. Mean ± SEM 
are shown from three independent experiments (N = 3). f Immuno-
precipitation and Western blot analysis of the transient co-expression 
of TAF15 (YFP-tagged) and PKAc (mCherry-tagged). Quantification 
of the TAF15 phosphorylation signal is depicted in the correspond-
ing blot, where signals were normalized against the GFP levels and 
in case of phospho-TAF15 against the mock transfected samples. 
Values showed are mean ± SEM from three independent experiments 
(N = 3). g Protein sequence  alignment of the Zinc-finger sequences 
of the FET protein family members TAF15, FUS and EWSR1. The 
conserved amino acids are highlighted in grey and the TAF15 phos-
pho-Serine 375 is squared in red showing a replacement for Glutamic 
acid in FUS and EWS. Hs Homo sapiens, Xl Xenopus laevis, Xt 
Xenopus tropicalis, Rn Ratus norvegicus, Mm Mus musculus, Ss Sus 
scrofa. Statistical significance was assessed using an unpaired t-test * 
p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001
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and immunoprecipitation (iCLIP) experiments [44, 55]. 
This method allows to analyze protein-RNA interactions 
on a genome-wide scale for identifying the RNA motif for 
RNA–protein interactions at nucleotide resolution. The 
underlying strategy is summarized in Fig. 2a.

To determine changes in the RNA-binding pat-
tern of TAF15 after phosphorylation by PKA, we tran-
siently  expressed the YFP-tagged and full-length 
TAF15 constructs (wild-type and the phospho-mutant 
TAF15S375A) in HEK293 cells. To exclude possible syn-
ergistic effects with the other TAF15 RNA-binding domain 
(RRM), we included also the TAF15ΔRRM deletion 
mutants containing the mutation at the PKA phosphoryla-
tion site TAF15ΔRRMS375A. Furthermore, to ensure that 
PKA activation is the driving force of RNA-binding and to 
get closer physiological context, we exposed the cells to iso-
proterenol resulting in β-adrenergic-receptor-driven cAMP 
elevation and activation of PKA. First, to analyze PKA acti-
vation we checked the phosphorylation levels of the TAF15 
constructs by Western blot analyses (Fig. 2b). We observed 
the expected increase of TAF15 phosphorylation upon iso-
proterenol treatment exclusively in the full-length wild-type 
TAF15, but not in the A-mutant. Unexpectedly, we observed 
that the ΔRRM mutant exhibited high basal phosphorylation 
levels when compared to the wild-type full-length, which 
did not increase significantly upon isoproterenol treatment. 
Deletion of the RRM domain seems to boost basal TAF15 
S375 phosphorylation and renders it insensitive to PKA acti-
vation. However, the exact mechanism is unclear.

Subsequently, we initiated the iCLIP experiments. After 
the UV-crosslinking of TAF15 and their RNA targets in 
HEK293 cells, we lysed the cells, performed a partial RNase 
I digestion and isolated TAF15 and its bound RNA species 
by immunoprecipitation. Crosslinking conditions and RNase 
digestions have been previously optimized for TAF15 (Sup-
plementary Fig. S4a, b). We labelled the 5′ end of the RNA 
with radioactive phospho- isotopes, which allowed us to 
visualize the TAF15-RNA complexes after SDS-PAGE and 
transfer to nitrocellulose membrane. In contrast to protein-
RNA complexes for all TAF15 samples the precipitation 
using the GFP control did not show as expected any isola-
tions of RNA–protein complexes (Fig. 2c). Major differences 
of TAF15-RNA complex profiles between TAF15 variants 
in presence and absence of isoproterenol were not evident. 
This indicates that neither PKA phosphorylation nor RRM 
deletion strongly affect the TAF15 RNA-binding capabil-
ity. Next, we isolated high-molecular weight TAF15-RNA 
complexes from the membrane and recovered the RNA from 
the nitrocellulose membrane by digesting the proteins with 
proteinase K. After RNA isolation we reverse-transcribed 
the TAF15-bound RNAs into cDNA and we performed a 
cDNA size selection using gel electrophoresis. We then cir-
cularized the purified cDNA and linearized them to finally 

amplify the linearized cDNA by PCR using 5′-and 3′-Sol-
exa primers. The amplified cDNA libraries were checked 
by gel electrophoresis (Supplementary Fig. S4c) and were 
subjected to Illumina deep sequencing.

Analysis of the read counts of the TAF15 cDNA libraries 
of the S375 wild-type PKA phosphorylation site samples 
and the mutated S375A samples were filtered and merged 
to finally get 3334 uniquely mapped reads. Due to the fact 
that we did not find strong differences between the TAF15 
full-length and ΔRMM in the TAF15-RNA complex signals 
(Fig. 2c), we decided to merge the reads of the PKA phos-
phorylation sample to finally generate the S375 and S375A 
iCLIP libraries. After combination, 1307 counts were found 
exclusively in the TAF15 S375 wild-type libraries, 1306 in 
the TAF15 S375A and 721 were found in both (Supple-
mentary Fig. S4d), indicating that TAF15 phosphorylation 
indeed affected the binding specificity and profile of interact-
ing TAF15 RNA populations.

Finally, we analyzed whether the mutation of the PKA 
phosphorylation site affects RNA coverage distribution. 
Our data revealed that the S375A mutation sample showed 
increased binding of TAF15 to RNA targets of intronic 
regions and decreased the affinities for binding sites in 
exonic-coding and non-translated regions (UTRs) (Figs. 2d, 
S4e). Additionally, we compared the binding distribution of 
the RNA targets in the TAF15 iCLIP libraries containing 
the S375 wild-type motif and upon cAMP elevation by iso-
proterenol (Figs. 2d, S4e). Results showed similar distribu-
tion of the TAF15 S375 with isoproterenol-treated libraries 
and S375A with non-stimulated libraries, further validating 
the approach. Overall, our findings indicate that PKA phos-
phorylation modulates the binding pattern of TAF15 with 
its RNA targets by shifting TAF15-RNA interaction sites 
mostly from intronic to coding regions and, albeit to a lesser 
degree, UTRs. A GO-enrichment analysis of TAF15-bound 
transcripts revealed that RNAs with a binding pattern regu-
lated by PKA phosphorylation, are related to RNA matura-
tion, mRNA splicing (poly(A) RNA-binding, mRNA splic-
ing via spliceosome), protein binding and cell–cell-adhesion 
(Fig. 2e).

TAF15 RNA targets regulated by PKA

After analysis of the TAF15-bound RNAs which are modu-
lated by PKA phosphorylation, we analyzed the enrichment 
of the normalized RNA read counts on S375 cDNA libraries 
with the S375A (Supplementary Table S2). Interestingly, we 
found that differentially enriched TAF15 targets, in wild-
type vs. S375A libraries, are transcripts of genes involved 
in regulation of transcription (i.e. BCLAF1, TOP2A, 
PNISR), FET family protein members (i.e. FUS, EWSR1, 
TAF15) and transcripts related with stress granule proteins 
(i.e. DDX3X, HNRNPK, G3BP1) (Fig. 3a, Supplementary 
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Fig. 2   Identification of TAF15 target transcripts regulated by PKA 
phosphorylation. a Schematic depiction of the iCLIP protocol per-
formed in this study [44]. b Western blot analysis of the TAF15 con-
structs subjected to iCLIP. c Autoradiograph image of one repre-
sentative experiment of the TAF15-32P-5′ labeled RNA-crosslinked 
complexes resolved by NuPAGE electrophoresis, blotted on a nitrocel-
lulose membrane, exposed using a Fujifilm radioactive-sensitive film 
and detected by a phospho-image scanner. Specific complexes above 
the TAF15 protein molecular weight were excised from the membrane 
as it is indicated by squares. Western blot analysis of the same samples 
with α-GFP antibody is shown below the autoradiograph membrane. d 
Genomic distribution of the TAF15-bound targets in TAF15 S375 and 

S375A (upper panels) and TAF15 S375 − / + isoproterenol (lower pan-
els) iCLIP libraries. Mapped reads were analyzed with Picard to assign 
the transcript features (CDS, coding sequences; UTR: 5′-3′unstrans-
lated regions; intergenic: other). The comparison of the TAF15 iCLIP 
libraries is displayed for each case (right panels) and a short depiction 
of the phosphorylation state of TAF15 on those libraries (above) is 
shown. e Gene Ontology categories of the TAF15 iCLIP read counts 
significantly impacted by biological process, cellular component and 
molecular function [47]. Autoradiograph and blots are representative 
results from N = 3 independent experiments
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Table S3). These findings support the idea that PKA reg-
ulates RNA binding pattern of TAF15, switching to tran-
scripts of genes associated with regulation of gene expres-
sion and mRNA maturation/splicing. Furthermore, we 
identified long non-coding RNAs (i.e. NEAT1, MALAT1, 
XIST), which are described to specifically localize at active 
transcription sites [56]. Around 22% of the TAF15-bound 

RNAs we identified in our iCLIP approach were also previ-
ously described as targets of TAF15 [57–60].

Afterwards, we closely looked at the distribution of the 
average peaks across the binding events (RBS) in the TAF15 
S375 and S375A iCLIP libraries, to identify reoccurring 
patterns (Fig. 3b–d). In some cases, we observed that the 
binding pattern to exons was abolished in transcripts associ-
ated with the TAF15S375A mutation (i.e. RPL5, SMC1A, 

Fig. 3   PKA phosphorylation affects RNA-binding patterns of TAF15. 
a Cluster analysis of the most-enriched TAF15 RNA targets of 
TAF15 S375 (wt) and S375A iCLIP libraries. Z-Scores were calcu-
lated and represented using the Heatmapper software [61]. b Genome 
distribution of several examples of TAF15 iCLIP RNA-binding 
events influenced by PKA phosphorylation. Read count distribution 
is shown from the TAF15 S375/S375A iCLIP libraries using the 
Integrated Genome Browser, IGB [46]. Genomic position, annota-
tion and direction of the gene transcription are shown (E; exons, I; 

introns). Quantification of mapped read counts is shown in brackets 
in each case. c Genome distribution of the read counts from TAF15 
S375/S375A iCLIP libraries of FET protein family members using 
the IGB. d Genome distribution of the read counts from TAF15 
S375/S375A iCLIP libraries of RNA granule RBPs TAF15 targets 
influenced by PKA phosphorylation and visualized using the IGB. 
e Genome distribution of the TAF15 iCLIP RNA-binding events in 
S375 iCLIP libraries under non-cAMP/cAMP elevation by Isoproter-
enol treatment and visualized by IGB
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HSP90B1) (Fig. 3b, left panel), indicating that these RBS 
were enriched by PKA phosphorylation. However, in other 
cases the binding sites were depleted in the S375 libraries 
(i.e. XIST, MALAT1, BCLAF1), indicating that PKA phos-
phorylation depletes these RBS (Fig. 3b, right panel). These 
observations suggest that PKA might control the affinity of 
TAF15 for its RNA targets. Interestingly, we could identify 
that TAF15-bound transcripts of FET protein family mem-
bers were differentially affected by PKA phosphorylation. 
In the iCLIP coverage distribution, we observed different 
binding patterns of TAF15, FUS, EWSR1 and TARDBP 
in the cDNA libraries (Fig. 3c), suggesting that PKA can 
also be a key regulator of the binding affinities of TAF15 
with other FET mRNAs. Finally, we found transcripts from 
key stress granules factors (i.e. DDX3, HNRNPK, G3BP1, 
PUM2) in the PKA regulated TAF15-bound transcript frac-
tion (Fig. 3d). Here, many binding events were shifted from 
exons to introns in S375A libraries (i.e. HNRNPK), depleted 
in exon-binding sites (i.e. G3BP1, PUM2), or increased in 
some regions as observed in DDX3X. Finally, the analysis 
of the RBS following cAMP elevation conditions corrobo-
rated that PKA phosphorylation enhanced the TAF15 bind-
ing to exons (i.e. TAF15 and TOP2A mRNAs) and UTR (i.e. 
eIF3A), and reduced the affinities to non-coding regions) 
(i.e. NEAT1) (Fig. 3e).

In summary, analysis of binding coverage of the iCLIP 
libraries shows that PKA phosphorylation modifies binding-
pattern and affinities of TAF15 to the majority of its identi-
fied RNA targets.

Phospho‑proteome analysis reveals physical links 
between PKA complexes and RNA metabolism 
in colorectal cancer (CRC) cell lines

To explore whether other RNA-binding proteins are linked 
to PKA signaling we determined the macromolecular com-
positions of PKA complexes from different cell resources. 
We performed a bottom-up proteomics screening approach, 
including phospho-proteomic analyses, following label-free 
affinity-isolation of endogenous PKA complexes from the 
primary colorectal adenocarcinoma SW480 and its lymph 
node metastasis-derived derivative the SW620 cell line. We 
chose CRC cells, as deregulation of the GNAS-cAMP-PKA 
signaling axis is particularly common in this type of cancer 
[15, 62, 63]. Similarly as our previous screening, we used 
the cAMP-analogous Rp-8-AHA-cAMPs agarose affinity 
resin to isolate macromolecular PKA complexes, followed 
by liquid chromatography-mass spectrometry (LC–MS/
MS) analyses [37], (Fig. 4a, Supplementary File S4). To 
exclude unspecific binding proteins, we used an excess of 
cAMP as control condition (Fig. 4b). cAMP competes with 
the affinity resin for cAMP binding sites and specifically 
extrudes cAMP binders from the control condition, which 

is reflected by the peptide count (Fig. 4c). cAMP binding 
proteins are specifically depleted in the control condition, 
whereas unspecific binding proteins are not affected. For 
the detection of phosphorylated peptide entities, we used 
titanium dioxide enrichment prior to LC–MS/MS measure-
ments. We detected in SW480 cells a total of 607 proteins 
(166/285 in the cAMP, 156/285 protein binder samples), 
and in SW620 a total of 454 proteins (226/175 in the cAMP, 
53/175 protein binder samples).We matched the identified 
peptides to the proteome and subtracted unspecific binders 
to obtain a total of 267 specifically enriched proteins. To 
generate an integrated PKA-centered protein–protein inter-
action (PPI) network, we used curated physical interaction 
information obtained from the STRING database [41]. To 
improve readability of the resulting network, we segregated 
the network into clusters via MCL cluster algorithm [42]. 
Subsequently, clusters were screened for functional enrich-
ment and grouped accordingly, excluding clusters without 
significant enrichment (Fig. 4d). Again, TAF15 was iden-
tified as enriched protein in SW480 cells. We found that 
clusters enriched for RNA binding and RNA splicing pre-
sent the largest groups identified, followed by the core PKA 
complex components. A gene ontology analysis of all 267 
proteins shows the highest degree of enrichment for proteins 
associated with RNA binding, even above protein kinase A 
binding (Fig. 4e). Lists of all identified peptides, proteins 
and spectral counts (SPCs) are presented in Supplementary 
File S4. Several of the obtained hits contained specific RNA-
binding domains and are highlighted in Fig. 4d. Besides 
several members of the arginine/serine-rich splicing factor 
protein family (SRSF), RNA-binding motif (RBM) proteins 
family (RBM14, RBM15, RBMX2), mRNA transcription/
translation regulators (SCAF8, POLDIP3), and mRNA splic-
ing (SRSF1/SRSF11, TRA2B).

A sequence logo of the identified phosphosites shows 
that, in line with the well-known target site specificity of 
PKA [64], we enriched especially arginine-rich sequence 
stretches (Fig. 4f). Serine was the preferred phosphogroup 
acceptor with 663 unique phosphorylated sites, followed by 
threonine with 65 unique sites. Tyrosine phosphorylation 
was found only marginally, with 6 unique sites. Unexpect-
edly, we found an enrichment of phosphorylation sites with 
a proline residue at the + 1 position. While this is a favored 
target site proline-directed kinase, the typical PKA consen-
sus site contains hydrophobic residues like leucine or pheny-
lalanine at the + 1 position, and proline being strongly disfa-
vored. This might indicate that a large fraction of identified 
phosphopeptides, present in the isolated macromolecular 
PKA complexes, could be additionally subjects to phospho-
rylation by proline-directed kinases [65, 66].
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Fig. 4   Macromolecular PKA complexes are enriched for RNA-bind-
ing proteins in CRC cell lines. a Workflow of the applied LC–MS 
and PPI network analysis. b Expected composition of macromolecu-
lar PKA complexes isolated via a for both, purification- and control 
condition (excess of cAMP). c Comparison of the two conditions 
for specific binders (highly abundant PKA subunits, black font) and 
unspecific binders (arbitrarily selected, red font) in both cell lines. d 
Network clusters obtained via workflow shown in a. Clusters were 
tested for functional enrichment and grouped accordingly. Node color 
indicates cell line specificity, node size indicates the number of iden-

tified peptides. Identified phosphorylation of sites matching the PKA 
consensus motif (RxxS in light grey, RRxS in dark grey and RxxSP 
in white) are indicated with rings encircling the nodes and labeled 
with the respective amino acid position. Red labels denote proteins 
containing RNA-binding domains. e Gene ontology (GO) analysis 
showing selected enriched molecular function terms of affinity iso-
lated proteins. Analysis performed via STRING [41]. f Phosphomotif 
analysis of all detected phosphosites, generated via PhosphoSitePlus 
[67]
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PKA links to RNA interactions

Additionally, we cross-compared the PKA binders we identi-
fied in our approach to the PKA protein substrates identified 
in a recent report [68] and to proteins annotated as RBPs, 
in the RNA-binding protein DataBase [69]. This analysis 
showed that six of the proteins which were identified as 
PKA substrates, and two of which we also identified in our 
approach, show RNA-binding features (Fig. 5a). Interest-
ingly, most of these candidates are involved in translation 
regulating functions such as the eukaryotic translation ini-
tiation factor 4B (EIF4B), the Pumilio RNA-binding fam-
ily members 1 and 2 (PUM1, PUM2), and the La ribonu-
cleoprotein 4B (LARP4B). Furthermore, both our studies 
found the RNA-binding motif protein 14 (RBM14) which 
is involved in RNA splicing, and finally AKAP1, a classical 
A-kinase anchor protein. It has been described to recruit the 
PKA holoenzyme to mitochondria, but is also involved in 
directing RNAs subcellular compartments [70].

Lastly, analyses of the protein interaction network of 
these candidates show that most of the identified candidates 
are interconnected sharing functions related with RNA trans-
lation regulation (Fig. 5b), further consolidating the hypoth-
esis that compartmentalized PKA activities are involved in 
modulating RNA-binding specificities through phosphoryla-
tion of RNA-interacting proteins.

Discussion

Protein kinases are the largest family of evolutionary-con-
served proteins acting as key regulators of a plethora of cel-
lular functions such as cell proliferation, metabolism and 
gene expression. Besides their regulatory functions in cel-
lular signaling, deregulated kinase pathways are frequently 
associated with several human diseases, particularly can-
cer, developmental and metabolic disorders [3, 71]. PKA 
is the prototypical serine/threonine kinase which is widely 
expressed in all cellular systems and human tissues and 

represents the classical example of regulation of molecular 
interactions by phosphorylation of its protein targets.

In this study, we have identified TAF15 as a novel PKA 
substrate. TAF15 belongs to the FET protein family, which 
comprises abundant RNA- and DNA-binding proteins that 
interact with thousands of transcripts and affect multiple 
steps in mRNA biogenesis. Additionally, they are also 
involved in the cellular stress response, forming part of the 
stress granules and the spreading initiation centers [48, 50]. 
FET proteins are relevant in several different cancers [72] 
and point mutations in either FUS or TAF15, some of which 
affect their nuclear–cytoplasmic shuttling, can cause neuro-
degenerative diseases such as amyotrophic lateral sclerosis 
(ALS) and frontotemporal lobar dementia (FTD) [73, 74]. 
The presence of a canonical PKA phosphorylation motif 
RRxS [75] in TAF15 serves as a unique site of modulation 
by the kinase. Interestingly, the site is not conserved in the 
other FET members but is replaced by a negatively charged 
amino acid (i.e. glutamate), indicating that the local charge 
in this region might be relevant for the RNA-binding protein 
function. The possibility to introduce this local charge via 
phosphorylation of the serine residue might grant TAF15 an 
additional regulatory layer for fine-tuning of RNA–protein 
interactions.

The functional implications of reversible protein phos-
phorylation in fine-tuning mRNA processing are well-estab-
lished. Phosphorylation of spliceosomal complexes have 
been described as response to certain cellular stimuli, which 
cause changes in protein–protein-, RNA–protein interac-
tions, and subcellular localization of ribonucleoproteins 
[31, 76–78]. We have unveiled that TAF15 phosphoryla-
tion by PKA modifies the affinities for several of its RNA 
targets, suggesting that this modification results in changes 
of either the conformational landscape or steric interac-
tions between its RNA-binding domains. Surprisingly, 
deletion of the RRM domain did not have a strong impact 
in the TAF15:RNA complexes in our iCLIP experiments 
but changed the phospho-status (Fig. 2c) indicating that its 
RNA-binding properties are not strictly dependent on the 

Fig. 5   PKA links to RNA-binders involved in mRNA splicing and 
control of the translation machinery. a Venn diagram showing the 
overlap of PKA targets identified here (green) or in a recent study 

[68] (blue) with proteins GO-annotated as RNA-binders. b Associa-
tion STRING network [41] of the overlap proteins in a 
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RRM domain. These observations would be consistent with 
those for FUS, where both RNA-binding domains, RRM and 
the RGG-ZnF-RGG, bind RNA with similar affinities as the 
full-length protein [79].

Beyond altering the transcript targeting properties of 
TAF15, mutation of the PKA site shifts binding towards 
more intronic regions and cAMP elevation shifts TAF15 
RNA-binding to coding regions (Fig. 2d), indicating that 
PKA phosphorylation might cause TAF15 to preferably bind 
matured RNAs. This is in line with reports showing that 
TAF15 mainly binds pre-mRNAs in its basal state [57, 58]. 
Thus, our data further supports the idea that PKA phospho-
rylation alters TAF15 RNA binding patterns.

Mutations in the NLS-PY motif have been shown to be 
present in FET-related diseases such as ALS [80–82]. Cyto-
plasmic shuttle of FET proteins is a physiological mechanism 
which is used to regulate stacked mRNAs in stress granules, 
but these ALS mutations trigger pathologic gains-of-functions 
of these proteins, resulting in aggregates that are related with 
progression of the disease [48, 51]. We have further identified 
that PKA specifically phosphorylates the cytoplasmic TAF15 
variant in standard cell lines (e.g. HEK293T cells) and an 
ALS disease-relevant cell line (e.g. glioblastoma brain cell 
line) (Supplementary Fig. S5), indicating that this additional 
regulation layer may be present in ALS pathological condi-
tions. Further analysis of the TAF15 RNAs regulated by PKA 
in ALS-pathological models would be relevant to identify new 
molecular mechanisms operating in aberrant TAF15 func-
tions that might provide new insights how kinases control 
gene expression in neurogenerative diseases. Furthermore, 
we identified additional, previously reported PKA substrates 
that are described as RNA-binders (Fig. 5) further support-
ing the idea that PKA can act as a regulator of RNA-binding 
specificities. Interestingly, our approach identified another 19 
RBP, beyond TAF15, as PKA interactors, several of which 
contain conserved RRxS PKA target motifs and are feasible 
PKA candidate substrates.

Initially we identified several connections between PKA 
and RNA signaling (Fig. 1a, [37]). This observation was 
further extended in network analyses of endogenous kinase 
complexes isolated from two CRC cell lines. We have 
selected two standard CRC cell lines (SW480 and its meta-
static counterpart SW620) which are well-studied examples 
for the activation of the KRAS gene and/or the inactivation 
of the p53 gene and recently it has been revealed an involve-
ment of mutated trimeric G-proteins in cancer cell progres-
sion [62]. Our data shows that PKA might have physical 
connections with, among others, elements of the transcrip-
tional machinery, spliceosomal proteins and poly(A) mRNA 
binding, where molecular interactions between RNAs and 
proteins elements are key mechanisms to control gene 
expression [83, 84]. Other kinases have been described to 
coordinate RNA–protein interactions in macromolecular 

complexes, like CMGC kinases, a well-known example of 
regulators of RNA–protein complexes by phosphorylating 
and controlling dynamics of adaptor proteins [85]. In our 
PKA-centered network, we have identified several proteins 
well-known to be modulated by PKA, such as the glycogen 
synthase kinase (GSK), the Ca2+/calmodulin-dependent 
protein kinase II (CAMK2), and elements of the ciliary and 
centriole complex (i.e. OFD1 and STUB1) [86, 87]. Fur-
thermore, the strong presence of the PKA complex com-
ponents  in our network beyond regulatory and catalytic 
subunits, like several AKAPs, adds merit to our approach. 
Our strategy is conceived to systematically identify novel 
protein–protein interactions and/or compartmentalized sub-
strates emanating from macromolecular PKA complexes. 
Some kinase-substrate interactions may dissociate upon 
kinase activation (kiss-and-run) others stay compartmental-
ized. We used PKA-selective cAMP resin to precipitate the 
macromolecular PKA holoenzyme to identify compartmen-
talized PKA substrates that stay physically in the PKA mac-
romolecular complex. However, our strategy appears to also 
enrich phosphoproteins which might be phosphorylated by 
proline-directed kinases [66, 88] besides PKA-phosphopep-
tides, suggesting that both kinase families could be involved. 
This could also explain the absence of TAF15 as phosphohit 
in our dataset and might suggest that our approach is better 
suited to identify specific PKA interactors only at the prot-
eomic, rather than the phospho-proteomic level.

In conclusion, we have identified that the RBP TAF15 
is a novel PKA substrate. Our results show that PKA phos-
phorylation at the TAF15 zinc-finger domain modifies the 
binding affinities of TAF15 with its RNA targets control-
ling functions related to mRNA maturation, splicing, 
protein-binding and other FET mRNAs. Our subsequent 
search for additional RBPs applicable for this type of regu-
lation revealed several candidate proteins which could be 
similarly regulated to TAF15. We hypothesize that this 
finding represents a new mechanism of PKA-mediated 
regulation of RNA–protein interactions, which could 
constitute a layer of regulation of gene expression signa-
tures through kinase mediated fine-tuning of RNA–protein 
binding.
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