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to control blood sugar or to delay the occurrence of DR by 
changing lifestyle, improving insulin resistance and repair-
ing damaged islet cell function, or to treat DR by laser sur-
gery, vitrectomy and other treatments (Deng et al. 2022; Liu 
et al. 2022a, b, c). However, the current treatment results 
of DR are often unsatisfactory, so it is necessary to explore 
more specific and precise molecular mechanisms to deter-
mine more effective prevention and treatment of DR.

Autophagy is a process that ensures the physiological 
turnover of aging and damaged cells under stress condi-
tions, controls cell fate through various crosstalk signals, 
and maintains cellular homeostasis (Cao et al. 2014). Stud-
ies have shown that endoplasmic reticulum stress, oxida-
tive stress, apoptosis and autophagy can induce retinal 
inflammation, leading to retinal angiogenesis and neuronal 
damage. Autophagy, as a major catabolic pathway for the 
degradation and recycling of damaged proteins or organ-
elles, may be involved in the pathogenesis of DR (Wang 
et al. 2022). Autophagy in human retinal pigment epithe-
lial cells (RPE) delays the occurrence of DR by regulating 

Introduction

Diabetic retinopathy (DR) is the most common complica-
tion of diabetes mellitus (DM) and one of the leading causes 
of blindness in the working population worldwide(Wei et 
al. 2022). DR is characterized by hyperglycemia, which 
causes changes in retinal microvascular function and integ-
rity, leading to progressive retinal ischemia and angiogen-
esis (Deng et al. 2022). In the treatment of DR, the first is 
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Abstract
Diabetic retinopathy (DR) is a serious microvascular complication of diabetes. The aim of this study was to explore the 
effect of Sestrin2 on DR through the regulation of autophagy and ferroptosis levels and its mechanism. In vitro and in 
vivo DR models were established by high glucose (HG) and streptozotocin (STZ) induction of ARPE-19 human retinal 
pigment epithelial cells and C57BL/6 mice, respectively. In this study, we demonstrated that after HG treatment, the 
activity of ARPE-19 cells was decreased, the apoptosis rate was increased, endoplasmic reticulum (ER) stress was acti-
vated, autophagy levels were decreased, and ferroptosis levels were increased. Overexpression of Sestrin2 enhanced cell 
viability, reduced apoptosis and ferroptosis, and enhanced autophagy. However, the effect of overexpression of Sestrin2 
was attenuated after the addition of the STAT3 phosphorylation activator Colivelin TFA (C-TFA), the mTOR pathway 
activator MHY1485 or the autophagy inhibitor 3-methyladenine (3-MA). In addition, the effect of Sestrin2 knockdown 
on cells was opposite to the effect of overexpression of Sestrin2, while the effect of Sestrin2 knockdown was attenuated 
after treatment with the ER stress inhibitor 4-phenylbutyric acid (4-PBA). Animal experiments also confirmed the results 
of cell experiments and attenuated the effects of overexpression of Sestrin2 after injection of the ferroptosis activators 
erastin or 3-MA. Our study revealed that Sestrin2 inhibits ferroptosis by inhibiting STAT3 phosphorylation and ER stress 
and promoting autophagy levels, thereby alleviating DR.
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glycolipid metabolism and reducing oxidative stress, thereby 
reducing inflammation and clearing damaged mitochondria 
(Tanaka et al. 2012; Wang et al. 2017). Iron is important 
for the maintenance of homeostasis, and many physiologi-
cal activities of the body can be regulated by regulating iron 
homeostasis (Jiang et al. 2021; Kerins and Ooi 2018). Fer-
roptosis is a novel iron-dependent programmed cell death 
characterized by fatal intracellular accumulation of iron and 
iron-induced lipid reactive oxygen species (ROS). Several 
mediators have been implicated in ferroptosis, including 
ROS accumulation, GSH depletion, and inhibition of GPX4 
activity. In addition, FTH1, HO-1, and xCT also mediate 
ferroptosis (Hu et al. 2023). An increasing number of stud-
ies have shown that ferroptosis is involved in the occurrence 
of blinding diseases and the death process of retinal pigment 
epithelial cells induced by ROS (Chen et al. 2021b; Lee et 
al. 2020). In addition, ferroptosis is the cell death pathway 
of retinal vascular endothelial cells in DR, and inhibiting 
ferroptosis has an alleviating effect on diabetic complica-
tions (Fan et al. 2022; Zhang et al. 2021). Studies have dem-
onstrated that autophagy regulates ferroptosis by regulating 
cellular iron homeostasis and cell ROS production (Gao et 
al. 2016). For example, activation of autophagy mediates 
ferroptosis by degrading the cellular ferriogen protein FTH1 
(Zhang et al. 2020). In the RPE of diabetic rats, abnormali-
ties in the autophagy‒lysosome degradation process lead to 
ACSL4 protein accumulation, which catalyzes the produc-
tion of lethal lipid species and ultimately induces ferropto-
sis in RPE cells (Liu et al. 2022a). These studies suggest 
that autophagy and ferroptosis can affect the occurrence and 
development of DR, and their underlying mechanisms still 
need to be further explored.

Sestrin2, a member of the Sestrin protein family, is a 
highly conserved stress-induced metabolic protein. Sestrin2 
has a dual function, which can directly reduce oxidative 
stress by restoring peroxiredoxin peroxide and indirectly 
reduce oxidative stress by regulating mTOR to enhance 
autophagy activity (Chen et al. 2021a). Sestrin2 plays a key 
role in various cell signal transduction processes, and its 
dysregulation has been linked to various diseases (Che et 
al. 2021). For example, calycosin has an inhibitory effect 
on papillary thyroid cancer by promoting apoptosis and 
autophagy through the Sestrin2/AMPK/mTOR pathway 
(Qu et al. 2022), and studies have shown that Sestrin2 is 
involved in the regulation of ferroptosis. Sestrin2 alleviates 
the development of sepsis by inhibiting ferroptosis of den-
dritic cells in sepsis (Li et al. 2021). In addition, research has 
found that Tricin alleviates DR by regulating Sestrin2/Nrf2 
signaling to inhibit oxidative stress and angiogenesis (Yang 
and Li 2023). In addition, Sestrin2 has important clinical 
functions in a variety of metabolic diseases, such as diabetes 
and its complications, which can reduce insulin resistance 

by regulating glucose and lipid homeostasis, and studies 
have shown that serum Sestrin2 levels are significantly 
reduced in obese children and diabetic nephropathy patients 
(Lee et al. 2012; Mohany and Al Rugaie 2020; Nourbakhsh 
et al. 2017). Based on the above studies, we conclude that 
Sestrin2 may regulate the pathogenesis of DR by regulating 
autophagy and ferroptosis. Therefore, this study will ana-
lyze the effect of Sestrin2 on DR and its mechanism at the 
cellular and animal levels.

Materials and methods

Cell culture

The human retinal pigment epithelial (RPE) cell line ARPE-
19 was purchased from Otwo Biotechnology Co., Ltd. 
(Shenzhen, China). ARPE-19 cells were cultured in Dulbec-
co’s modified Eagle medium (DMEM-F12) (ATCC, Manas-
sas, USA) supplemented with 2 mmol/L glutamine, 10% 
fetal bovine serum and 100 U/mL penicillin/streptomycin 
and incubated in an incubator at 37 °C and 5% CO2. The 
cell culture medium was changed every two days. When 
cells reached 80% confluence, the cells were digested with 
trypsin and then inoculated in porous plates for subsequent 
experiments. Before the experiment, the cells were washed 
once with phosphate buffer (PBS), then ARPE-19 cells were 
induced with a high glucose concentration (HG, 25 mM) 
for 48 h, and the control cells were cultured in a medium 
containing normal glucose (NC, 5.5 mM)(Fan et al. 2022).

Cell transfection

The expression vectors, oe-Sestrin2 and si-Sestrin2 (see 
supplementary file 1 for the sequences), were designed and 
synthesized by GeneChem (Shanghai, China). The cod-
ing sequences for the mRNAs of Sestrin2 were cloned into 
pcDNA3.1. Oe-Sestrin2 and si-Sestrin2 were transfected 
into cells with Lipofectamine®3000 reagent (Invitrogen, 
CA, USA), and transfection efficiency was measured.

Cell viability test

Cell viability was measured using a CCK-8 assay kit as 
previously described (Liu et al. 2020). ARPE-19 cells were 
inoculated into 96-well plates at a density of 1 × 105 cells/
well and placed in a 5% CO2 incubator at 37 °C for 24 h. 
CCK-8 reagent (10 µL/well) was added, and the cells were 
cultured for 2 h. The 96-well plate was then placed on a 
microplate reader, and the absorbance of the cells at 450 nm 
was measured.
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Flow cytometry

In this study, flow cytometry was used to measure apoptosis. 
After cells (EDTA-free 0.25% trypsin-digested) from each 
treatment group were collected, they were washed with PBS 
three times and resuspended in 100 µL of buffer. At 25 °C, 
the cells were coincubated with 5 µL Annexin V-FITC and 
5 µL PI (BD Biosciences) for 10 min. Finally, after adding 
the termination buffer, the apoptosis rate was determined by 
flow cytometry (BD FACSCalibur, USA).

Reactive oxygen species (ROS) detection

The experimental procedure is described in a previous arti-
cle (Gu et al. 2019). ROS levels in the cells were determined 
using an ROS detection kit (Abcam, UK). The cells were 
mixed with 5 µL of DCFH-DA and incubated at 37 °C for 
30 min. The cells were rinsed with fresh medium and imaged 
under a fluorescence microscope (488 nm excitation).

Malondialdehyde (MDA) detection

As described previously (Bahr et al. 2019), we used the 
MDA kit (Beyotime, Shanghai, China) for the detection of 
MDA in sample cells or mouse retinal tissue. The retinal 
tissues and cells were lysed and then centrifuged at 1600 
× g for 10 min, and the supernatant was taken for subse-
quent determination. Then, 0.1 mL of lysate was added to 
the centrifuge tube as a blank control. The samples to be 
tested and the corresponding reagents were added accord-
ing to the instructions, mixed well, heated for 15 min 
using a PCR instrument at 100 °C and cooled at 25 °C in a 
water bath. Subsequently, the samples were centrifuged for 
10 min (1000 g, 25 °C), transferred to 200 µL of supernatant 
in a black 96-well plate, and placed into a 37 °C microplate 
reader for detection of absorbance (excitation wavelength 
532 nm).

Fe2+ detection

In this study, we used an iron assay kit to detect the content 
of Fe2+ in cells (Fan et al. 2022). The solution and samples 
were prepared according to the experimental requirements, 
and the standard and reaction wells were set up (standard 
wells = 100 µL standard dilution, sample wells were added 
with 50 µL samples and diluted to 100 µL/well with iron 
assay buffer). L assay buffer, mixed and incubated (37 °C) 
for 30 min, 100 µL iron probe was added, mixed and incu-
bated again (37 °C, protected from light) for 60 min and 
absorbance at 593 nm was measured in a microplate reader.

Western blot

Western blotting was carried out according to previous stud-
ies (Fan et al. 2022). In this study, total protein was extracted 
from cells and mouse retinal tissue using RIPA lysis buf-
fer containing protease and phosphatase inhibitors, and its 
concentration was determined by BCA (Sangon Biotech, 
Shanghai, China). The protein sample was mixed with the 
loading buffer and denatured at 95 °C for 10 min. Then, the 
same amount of protein (30 µg/lane) was separated using 
10% SDS‒PAGE electrophoresis and transferred to a poly-
vinylidene fluoride (PVDF) membrane. The membrane was 
blocked with 5% BSA in TBS in the presence of Tween-
20 (0.05%) for 1 h. Subsequently, primary antibodies (the 
antibodies were purchased from Abcam, and the antibody 
dilution concentration was 1:1000) were added: Sestrin2, 
GPX4 (1:2000), FTH1, xCT, HO-1, cleaved-caspase3, 
BAX, BCL-2, ATF4, CHOP (Thermo Fisher, USA), XBP-
1, GRP78, p-GRP78, LC3BII/I (1:2000), Beclin1 (1:2000), 
and P62, and incubated overnight at 4 °C. The next day, 
the primary antibody was removed, and the proteins were 
washed three times with membrane wash buffer for 5 min 
each. Secondary antibody (1:1000, Abcam, UK) was added 
and incubated for 2 h at 4 °C, and TBST buffer was used 
to wash the PVDF membranes. The control protein was 
β-actin. Subsequently, chemiluminescent reagents were 
added, and the bands were analyzed for grayscale values 
using ImageJ software.

Immunofluorescence staining

ARPE-19 cells were fixed with 4% paraformaldehyde for 
30 min, permeated with 0.5% Triton X-100 for 20 min, and 
then blocked with 5% bovine serum albumin at room tem-
perature for 1 h. Cells were incubated with primary anti-
bodies against GPX4 (1:100) and LC3 (1:200) overnight 
at 4 °C, washed three times with PBS, and then incubated 
with fluorescein-labeled secondary antibodies (1:1000) for 
2 h. The cells were washed with PBS twice, DAPI (Invit-
rogen, CA, USA) was added, and the cells were incubated 
for 15 min in the dark for re-staining. Finally, the slides 
were sealed with anti-fluorescence quencher. The cells were 
observed by fluorescence microscopy (Eclipse 80i, Nikon, 
Japan).

Laboratory animals

In this study, 70 female C57BL/6 mice aged 7–8 weeks (pur-
chased from the Animal Experimental Center of Kunming 
Medical University) were selected as experimental animals. 
Mice were given free access to food and water under SPF 
conditions, a temperature of 22–26℃, a relative humidity 
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incubated with 50 µL streptavidin-TRITC solution at 37 °C 
for 30 min away from light. After washing with PBS three 
times, the nuclei were re-stained with DAPI staining solu-
tion, and the apoptotic cells were observed by fluorescence 
microscopy after the slides was sealed.

Statistics and analysis

The data were analyzed and plotted using GraphPad Prism 
8. The experimental data are presented as the mean ± 
standard deviation. Student’s t-test was used for compari-
sons between two groups, one-way analysis of variance 
(ANOVA) and Tukey’s post hoc tests were used for com-
parisons among multiple groups with P < 0.05 considered 
as statistically significant.

Result

Sestrin 2 inhibits high glucose-induced ferroptosis 
in ARPE-19 cells

To explore the effect of Sestrin2 on DR, we used HG-
induced ARPE-19 cells to construct a cell model of DR 
and transfected oe-Sestrin2 (overexpression of Sestrin2) 
into HG-induced ARPE-19 cells. Western blot analysis of 
the overexpression efficiency of Sestrin2 showed that com-
pared with the NC group, the expression of Sestrin2 was 
significantly increased after transfection with oe-Sestrin2 
(Fig.S1a). Cell viability was determined by CCK-8, and the 
results showed that HG decreased cell viability. After over-
expression of Sestrin2, the cell viability was significantly 
higher than that in the HG group (Fig. 1a). Flow cytometry 
was used to detect apoptosis, and the apoptosis rate results 
were opposite to the cell viability results (Fig. 1b). DCFH-
DA assay was used to detect ROS content. The ROS con-
tent also showed the same trend as apoptosis (Fig. 1c). In 
addition, western blot detection of ferroptosis-related pro-
teins showed that GPX4, FTH1 and xCT protein levels were 
decreased in the HG-treated group, whereas HO-1 expres-
sion was increased, and transfection of oe-Sestrin2 attenu-
ated the effect of HG (Fig. 1d). Similarly, Fe2+ and MDA 
levels were significantly increased after HG treatment, while 
their levels were significantly decreased after transfection 
with oe-Sestrin2 compared with the HG group (Fig. 1e and 
f). Finally, the expression of GPX4 was detected by immu-
nofluorescence staining, and the number of GPX4-positive 
cells decreased in the HG group and increased after transfec-
tion with oe-Sestrin2 (Fig. 1g). The above results indicated 
that overexpression of Sestrin2 could increase the viability 
of HG-treated ARPE-19 cells, inhibit cell apoptosis, reduce 

of 52–58%, and a light-dark cycle of 12 h/12 h. After one 
week of adaptation, the experiment was carried out. The 
mice were randomly divided into the NC group (the control 
group ate a normal diet without any treatment; n = 10), DM 
group (diabetic group, intraperitoneal injection of STZ into 
mice induced diabetes; n = 15), DM + oe-Sestrin2 group 
(2 µg oe-Sestrin2 was injected into diabetic mice intravit-
really; n = 15), DM + oe-Sestrin2 + erastin group (DM 
+ oe-Sestrin2-treated mice were intraperitoneally injected 
with 20 mg/kg of the ferroptosis activator erastin three times 
a week for 4 weeks (Menon et al. 2022); n = 15) and DM 
+ oe-Sestrin2 + 3-MA group (DM + oe-Sestrin2-treated 
mice were intraperitoneally injected with 15 mg/kg of the 
autophagy inhibitor 3-methyladenine (3-MA) three times a 
week for 4 weeks (Bo et al. 2020); n = 15). Diabetes was 
induced by intraperitoneal injection of 60 mg/kg strepto-
zotocin (STZ) for 5 consecutive days (Suvas et al. 2020; 
Zhang et al. 2009). Blood glucose was monitored on the 7th 
day, and the model was established when blood glucose was 
≥ 16.7 mmol/L, and used for treatment experiments in the 
STZ-treated groups. Two months after the successful estab-
lishment of the diabetes model, the mice were euthanized 
by intraperitoneal injection of pentobarbital sodium, and the 
eyeballs of the mice were collected for subsequent experi-
ments. All animal experimental protocols were approved by 
the Animal Ethics Committee of Kunming Medical Univer-
sity (approval number: kmmu20211334).

HE staining

After killing the mice, the eyeballs of the mice were quickly 
removed and immersed in FAS eyeball fixation solution 
(Servicebio, Wuhan, China) for 24 h. The sections were 
then dehydrated with 75%, 85%, 90% and 95% alcohol and 
anhydrous ethanol. After clearing in xylene, tissues were 
embedded in paraffin wax and sectioned at 4 μm. Sections 
were dewaxed with xylene, re-hydrated with graded etha-
nol, and washed once with distilled water. The samples were 
stained with hematoxylin for 1 min, rinsed with tap water, 
differentiated with 1% hydrochloric acid for 10 s, hydrated 
with 1% ammonia for 5 s, and stained with eosin for 2 min. 
Finally, the tissues were dehydrated and cleared, sealed with 
neutral gum, observed and photographed under an optical 
microscope (BX53, Olympus, Japan).

TUNEL staining

After xylene dewaxing and gradient alcohol hydration, 
mouse retinal sections were incubated at 37 °C with 100 
µL of protease for 30 min. Then, 50 µL of TdT enzymatic 
reaction solution was incubated at 37 °C for 1 h away from 
light. After washing with PBS 3 times, the sections were 
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increase of glycated hemoglobin can promote the frequency 
of DR lesions (Liu et al. 2022c). And the glycated hemoglo-
bin level was also significantly increased in the DM group. 
However, after overexpression of Sestrin2, the blood glu-
cose and glycated hemoglobin levels of mice were signifi-
cantly reduced (Fig. 2a and b). HE staining results showed 
that the retinal tissue structure and cell layer of mice in the 
normal group were complete and clear, and the cells were 
arranged orderly, while the retinal thickness of mice in the 
DM group was thinner, and the cells in the inner and outer 
nuclear layers were arranged sparsely and disordered. After 
overexpression of Sestrin2, the degree of retinopathy was 

ROS accumulation and Fe2+ and MDA levels, and then 
inhibit cell ferroptosis.

Sestrin 2 inhibits STZ-induced DR damage in mice

To confirm the regulatory effects of Sestrin2 on DR dam-
age in vivo we examined STZ-treated mice as a DR animal 
model. The blood glucose level of the mice was detected, 
and compared with the NC group, the blood glucose of 
DM mice increased significantly and was greater than 16.7 
mmol/L. Glycated hemoglobin is an important standard 
for diabetes diagnosis and treatment monitoring, and the 

Fig. 1 Effect of Sestrin 2 on HG-induced ferroptosis in ARPE-19 cells. 
a: ARPE-19 cell viability was measured by CCK-8; b: ARPE-19 apop-
tosis was detected by flow cytometry; c: DCFH-DA assay was used to 
detect ARPE-19 cells ROS content; Scale bar, 100 μm. d: Western blot 
to detect the expression of ferroptosis-related proteins GPX4, FTH1, 
xCT and HO-1; e: Kit assay to detect Fe2+ content; f. MDA level was 

tested; g: The expression of GPX4 was detected by immunofluores-
cence staining. Scale bar, 10 μm. ARPE-19 cells were transfected oe-
Sestrin2 and induced with a high glucose concentration (HG, 25 mM) 
for 48 h. oe-Sestrin2 could increase the viability of ARPE-19 cells and 
inhibit cell ferroptosis.* * *P < 0.001 vs. NC, ##P < 0.01, ###P < 0.001 
vs. HG
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Sestrin2 affects ferroptosis by inhibiting STAT3 
phosphorylation

Activation of transcription 3 (STAT3) has also been impli-
cated in oxidative reactions and may be a potential regulator 
of ferroptosis (Chun et al. 2020). To explore whether Ses-
trin2 affects ferroptosis through STAT3, we overexpressed 
Sestrin2 in HG-treated ARPE-19 cells and treated the cells 
with Colivelin TFA (C-TFA), an activator of STAT3 phos-
phorylation. CCK-8 detected cell viability, and the results 
showed that after transfection with oe-Sestrin2, the cell 
viability was significantly higher than that in the HG group. 
The effect of oe-Sestrin2 was weakened, and the cell viabil-
ity was decreased after treatment with C-TFA (Fig. 3a). By 
contrast, C-TFA increased the apoptosis rate and ROS levels 
(Fig. 3b-c). In addition, western blot analysis of ferroptosis-
related proteins showed that C-TFA reversed the regulatory 

reduced, and the thickness has increased to a certain extent 
(Fig. S2a). To confirm whether Sestrin2 alleviates retinal 
damage by reducing retinal cell apoptosis, TUNEL stain-
ing was performed on mouse retinal tissue, and the results 
showed that compared with the NC group, the number of 
apoptotic cells was increased in the DM group, and overex-
pression of Sestrin2 decreased the number of apoptotic cells 
(Fig. 2c). Further detection of apoptosis-related proteins in 
retinal tissues showed that compared with the NC group, 
the expression of BAX and cleaved-caspase3 proteins in the 
DM group was significantly upregulated, and the expression 
of BCL-2 protein was significantly downregulated. Over-
expression of Sestrin2, appeared to ameliorate the effect of 
STZ (Fig. 2d). In conclusion, Sestrin2 can inhibit apoptosis 
and alleviate retinal damage in diabetic mice.

Fig. 2 Sestrin2 inhibits STZ-induced DR damage in mice. a: Blood 
glucose determination in mice; b: Detection of glycated hemoglobin 
level in mice; c: TUNEL staining to detect apoptosis of retinal tis-
sue cells; Scale bar, 100 μm. d: Western blot to detect the expressions 
of apoptosis-related proteins cleaved-caspase3, BAX and BCL-2. oe-

Sestrin2 was injected into diabetic mice and DR damage was detected 
two months after diabetes induction. oe-Sestrin2 could alleviate retinal 
damage in diabetic mice. * *P < 0.01,* * *P < 0.001 vs. NC; #P < 0.05, 
###P < 0.001 vs. DM
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Sestrin2 deficiency activates ferroptosis levels by 
activating endoplasmic reticulum stress

Studies have demonstrated that ER-associated oxidative 
stress contributes to the induction of ferroptosis (Wu et 
al. 2020). In this study, to explore whether Sestrin2 defi-
ciency activates ferroptosis by activating ER stress, Sestrin2 
expression was knocked down (si-Sestrin2) in HG-induced 
cells, and the cells were treated with 4-phenyl butyric acid 
(4-PBA). 4-PBA is commonly thought to be an “ER stress 
inhibitor” primarily as a chemical chaperone. The major 
mechanism for the action of 4-PBA is that the hydrophobic 
regions of the chaperone interact with exposed hydrophobic 

effect of oe-Sestrin2 on GPX4, FTH1 xCT and HO-1 
(Fig. 3d). Fe2+ and MDA levels were further examined, 
and both levels decreased significantly after transfection 
of oe-Sestrin2 compared with the HG group and increased 
after C-TFA treatment (Fig. 3e and f). Finally, immunoflu-
orescence staining showed that GPX4-positive cells were 
markedly increased after transfection of oe-Sestrin2 com-
pared with the HG group, and GPX4-positive cells were 
decreased after C-TFA treatment (Fig. 3g). These data sug-
gest that Sestrin2 inhibits ferroptosis by inhibiting STAT3 
phosphorylation.

Fig. 3 Sestrin2 inhibits STAT3 phosphorylation and ferroptosis. a: 
CCK-8 to detect ARPE-19 cell viability; b: flow cytometry to detect 
ARPE-19 apoptosis; c: ROS level was detected by DCFH-DA assay; 
Scale bar, 100 μm. d: The expression of GPX4, FTH1, xCT and HO-1 
was detected by western blot; e: MDA levels were detected with the 
kit; f: the level of Fe2+ was detected; g: The expression of GPX4 was 

detected by immunofluorescence staining. Scale bar, 10 μm. ARPE-19 
cells were treated with STAT3 phosphorylation activator C-TFA and 
Sestrin2 inhibited ferroptosis by inhibiting STAT3 phosphorylation. * * 

* P < 0.001 vs. NC; ###P < 0.001 vs. HG; &P < 0.05, && P < 0.01, &&&P 
< 0.001 vs. HG + oe-Sestrin2
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treatment (Fig. 5c). Western blot analysis of autophagy-
related proteins showed that compared with the NC group, 
the expression levels of LC3II/I and Beclin1 in cells treated 
with HG were significantly decreased, while the protein 
levels of p62 were significantly upregulated. Compared 
with the HG group, the expression of LC3II/I and Beclin 
1 proteins was upregulated, and the expression of p62 was 
significantly downregulated after transfection with oe-
Sestrin2, while the effect of oe-Sestrin2 was reversed after 
treatment with MHY1458 (Fig. 5d). The results of immu-
nofluorescence staining showed that LC3-positive puncta 
were significantly increased after oe-Sestrin2 transfection 
compared with the HG group, while LC3-positive puncta 
were decreased after MHY1458 treatment (Fig. 5e). These 
results indicate that Sestrin2 can inhibit the activation of the 
mTOR pathway, promote autophagy and inhibit apoptosis.

Sestrin2 inhibits ferroptosis by promoting 
autophagy

It is well known that ferroptosis is regulated by 
autophagy(Chen et al. 2021b; Lee et al. 2020). In this study, 
to explore whether Sestrin2 inhibits ferroptosis by pro-
moting autophagy, oe-Sestrin2 was transfected into HG-
induced ARPE-19 cells, and the cells were treated with the 
autophagy inhibitor 3-MA. The levels of autophagy and fer-
roptosis were then measured. CCK-8 was used to detect cell 
viability, and the results showed that compared with the HG 
group, cell viability was significantly increased after trans-
fection with oe-Sestrin2. The cell viability was decreased 
after 3-MA treatment (Fig. 6a). Next, apoptosis and ROS 
levels were detected, and the results showed that compared 
with the HG + oe-Sestrin2 group, the apoptosis rate and 
ROS levels were increased after 3-MA treatment (Fig. 6b-
c). Protein detection results showed that compared with the 
HG group, oe-Sestrin2 enhanced the expression of LC3II/I 
and Beclin 1 and decreased the expression of p62, and 
3-MA reversed the effect of oe-Sestrin2 (Fig. 6d). Western 
blot detection of ferroptosis-related proteins showed that 
after transfection of oe-Sestrin2, GPX4, FTH1 and xCT pro-
teins were significantly upregulated, and HO-1 was signifi-
cantly downregulated, while 3-MA treatment reversed the 
effect of oe-Sestrin2 (Fig. 6e). Fe2+ and MDA levels were 
further examined, and levels were significantly decreased 
after transfection of oe-Sestrin2 compared with the HG 
group and increased after 3-MA treatment (Fig. 6f and g). 
For autophagy, LC3-positive puncta were detected again 
by immunofluorescence staining, and the results showed 
that after transfection of oe-Sestrin2, LC3-positive puncta 
increased significantly, and LC3-positive puncta decreased 
after 3-MA treatment (Fig. 6h). These results suggest that 

segments of the unfolded protein. This interaction protects 
the protein from aggregation, promotes the folding of pro-
teins, and reduces ER stress (Pao et al. 2021). Western blot 
analysis of the knockdown efficiency of si-Sestrin2 showed 
that transfection with si-Sestrin2 significantly decreased 
the expression of Sestrin2 compared with the NC group 
(Fig. S1b). CCK-8 detection of cell viability showed that 
HG treatment reduced cell viability, and after knocking 
down Sestrin2, cell viability further decreased, but 4-PBA 
restored cell viability (Fig. 4a). Similarly, si-Sestrin2 fur-
ther increased HG-induced apoptosis and ROS levels, while 
4-PBA reversed the effects of si-Sestrin2 (Fig. 4b-c). West-
ern blot analysis of ferroptosis-related proteins showed that 
after transfection with si-Sestrin2, the expression of GPX4, 
FTH1 and xCT proteins was further downregulated, and 
the expression of HO-1 was further upregulated, while the 
effect of si-Sestrin2 was weakened after 4-PBA treatment 
(Fig. 4d). To confirm the occurrence of ER stress, west-
ern blotting was used to detect ER stress-related proteins. 
The results showed that after transfection of si-Sestrin2, 
the expression of ATF4, CHOP, XBP-1 and p-GRP78 pro-
teins was further upregulated compared with that in the HG 
group, and the expression of GRP78 protein was not sig-
nificantly changed. The effect of si-Sestrin2 was weakened 
after 4-PBA treatment (Fig. 4e). Fe2+ and MDA levels were 
further detected, and both levels were further increased 
after transfection of si-Sestrin2 compared with the HG 
group and decreased after 4-PBA treatment (Fig. 4f and g). 
Finally, immunofluorescence staining showed that the trend 
of GPX4 expression was consistent with the Western blot 
results (Fig. 4h). In summary, reduced Sestrin2 levels can 
activate ER stress, which promotes ferroptosis.

Sestrin2 inhibits the mTOR signaling pathway and 
activates autophagy

A potential mechanism underlying the protective effect of 
Sestrin2 is the induction of autophagy under stress condi-
tions by inhibiting mammalian target of rapamycin (mTOR)
(Kim et al. 2015). To verify this possible protective mecha-
nism, we transfected oe-Sestrin2 into HG-induced ARPE-19 
cells and treated the cells with the mTOR pathway activa-
tor MHY1458. Subsequently, cell viability was measured 
by CCK-8 assay, and the results showed that after transfec-
tion with oe-Sestrin2, the cell viability was significantly 
higher than that of the HG group, while the cell viability 
was decreased after treatment with MHY1458 (Fig. 5a). The 
results of apoptosis were opposite to those of cell viability 
(Fig. 5b). Measurement of ROS levels in cells revealed that 
HG treatment increased cellular ROS levels, which were 
significantly reduced after transfection with oe-Sestrin2, 
and the effect of oe-Sestrin2 was weakened after MHY1458 
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Fig. 4 Sestrin2 deficiency activates ferroptosis levels by activating ER 
stress. a-b: CCK-8 and flow cytometry were used to detect ARPE-
19 cell viability and apoptosis; c: ROS level was detected by DCFH-
DA assay; Scale bar, 100 μm. d-e: Ferroptosis-related proteins and 
ER stress-related proteins levels were detected by western blot; f-g: 
Detection of MDA and Fe2+ levels with the kits; h: The expression 

of GPX4 was evaluated by immunofluorescence staining. Scale bar, 
10 μm. Knockdown Sestrin2 activated ER stress, promoted ferropto-
sis, ER stress inhibitor 4-PBA reversed the effects of si-Sestrin2. * *P 
< 0.01, * * *P < 0.001 vs. NC; ##P < 0.01, ###P < 0.001 vs. HG; &P < 
0.05, &&P < 0.01 and &&&p < 0.001 vs. HG + si-Sestrin2
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Fig. 5 Sestrin2 activates autophagy by inhibiting the mTOR path-
way. a: ARPE-19 cell viability was determined by CCK-8 assay; b: 
ARPE-19 apoptosis was detected by flow cytometry; c: ROS level was 
detected by DCFH-DA assay; Scale bar, 100 μm. d: The expression 
of autophagy-related proteins LC3, Beclin 1 and p62 was detected by 
western blotting; e: The expression of LC3 was detected by immuno-

fluorescence staining. Scale bar, 10 μm. Sestrin2 inhibited the activa-
tion of the mTOR pathway, promoted autophagy and inhibited apopto-
sis, but the effect of oe-Sestrin2 was reversed after treatment with the 
mTOR pathway activator MHY1458. * * *P < 0.001 vs. NC; ###P < 
0.001 vs. HG; &&P < 0.01, &&&P < 0.001 vs. HG + oe-Sestrin2
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Fig. 6 Sestrin2 inhibits ferroptosis by promoting autophagy. a: ARPE-
19 cell viability was determined by CCK-8 assay; b: ARPE-19 apop-
tosis was detected by flow cytometry; c: ROS level was detected by 
DCFH-DA assay; Scale bar, 100 μm. d: The expression levels of LC3, 
Beclin 1 and p62 were detected by western blot; e: The expression 
levels of GPX4, FTH1, xCT and HO-1 were detected by western blot; 

f: MDA level was detected; g: Fe2+ level detection; h: The expres-
sion of LC3 was detected by immunofluorescence staining. Scale bar, 
10 μm. Oe-Sestrin2 can promote autophagy and inhibit cell ferropto-
sis, and the autophagy inhibitor 3-MA treatment reversed the effect of 
oe-Sestrin2. * * *P < 0.001 vs. NC; ##P < 0.01, ###P < 0.001 vs. HG; &P 
< 0.05, &&P < 0.01, &&&P < 0.001 vs. HG + oe-Sestrin2
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cell arrangement, while the outer layer of the retina of mice 
in the DM group was deformed and the retinal thickness 
was significantly reduced compared with that in the NC 
group. This pathological state was obviously alleviated after 
overexpression of Sestrin2, while the effect of oe-Sestrin2 
was weakened after erastin or 3-MA treatment (Fig. S2b). 
Similarly, erastin or 3-MA treatment reversed the effects of 
oe-Sestrin2 on apoptosis, resulting in increased apoptosis 
rates (Fig. 7c). Western blot analysis of the expression of 
autophagy-related proteins in tissues showed that compared 
with the NC group, the expression of p62 protein in the DM 
group was significantly upregulated, the expression of LC3 
II/I and Beclin 1 was significantly downregulated, and the 
expression of p62 protein was significantly downregulated 
after overexpression of Sestrin2. The expression of LC3 II/I 
and Beclin 1 protein was significantly upregulated. 3-MA 

overexpression of Sestrin2 can promote autophagy and 
inhibit cell ferroptosis.

Sestrin2 affects ferroptosis and autophagy to 
mitigate DR progression

DR mice overexpressing Sestrin2 were treated with eras-
tin, an activator of ferroptosis, and 3-MA, an inhibitor of 
autophagy, to verify in vivo the protective mechanism of 
Sestrin2 against DR by affecting ferroptosis and autophagy. 
The blood glucose and glycated hemoglobin levels of mice 
were detected. The overexpression of Sestrin2 reduced the 
levels of blood glucose and glycated hemoglobin in STZ-
induced mice, and erastin or 3-MA reversed the effect of 
oe-Sestrin2 (Fig. 7a and b). HE staining showed that the ret-
ina of mice in the NC group had good structure and orderly 

Fig. 7 Sestrin2 affects ferroptosis and autophagy to mitigate DR pro-
gression. a: Blood glucose determination in mice. b: Detection of gly-
cated hemoglobin in mice. c: Retinal cell apoptosis was detected by 
TUNEL staining. Scale bar, 100 μm. d-e: Western blotting was used to 
detect the expression of autophagy- and ferroptosis-related proteins in 
mouse retinal tissues. f: The MDA level was detected by a kit. g: Fe2+ 

levels were detected with the kit. Diabetic mice were intraperitoneally 
injected with the ferroptosis activator erastin or autophagy inhibitor 
3-MA, and oe-Sestrin2 could alleviate DR progression. * * *P < 0.001 
vs. NC, ##P < 0.01, ###P < 0.001 vs. DM, &P < 0.05, &&P < 0.01, 
&&&P < 0.001, vs. DM + oe-Sestrin2
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which is a natural product of lipid oxidation in organisms. 
Furthermore, the expression of the ferroptosis-related pro-
teins GPX4, FTH1 and xCT was downregulated, but HO-1 
was upregulated. These results indicate that HG induced 
ferroptosis in ARPE-19 cells. Sestrin2 is an important cellu-
lar stress protein, and shown to regulate cellular ferroptosis 
(Park et al. 2019). We showed that overexpression of Ses-
trin2 alleviates HG-induced ferroptosis damage in ARPE-
19 cells, suggesting that Sestrin2 alleviates the progression 
of DR by inhibiting ferroptosis in ARPE-19 cells.

The endoplasmic reticulum (ER), in addition to its impor-
tant roles in protein folding and lipid synthesis, is important 
in regulation of ferroptosis during ER stress (Xie et al. 2016). 
A variety of ER stress markers are significantly upregulated 
in DR and are involved in retinal inflammation and micro-
vascular dysfunction in DR (Elmasry et al. 2018; Li et al. 
2009; Zhang et al. 2011). Thus, we speculated that Sestrin2 
might affect ferroptosis in ARPE-19 cells through ER stress. 
We demonstrated that, in contrast to over-expression of Ses-
trin2, knockdown of Sestrin2 promoted the expression of 
the ER stress-related proteins ATF4, CHOP, XBP-1 and 
p-GRP78 and at the same time promoted ferroptosis, further 
aggravating the damage of HG to ARPE-19 cells. However, 
treatment with the ER stress inhibitor 4-PBA alleviated the 
cell damage caused by Sestrin2 knockdown. These results 
suggest that Sestrin2 inhibits ferroptosis in ARPE-19 cells 
by inhibiting the activation of ER stress. In addition, STAT3 
is an important transcription factor in disease progression. It 
has been found that the activation of STAT3 can inhibit the 
expression of enzymes required for ferroptosis, and increas-
ing evidence has shown its important role in cell ferroptosis 
(Brown et al. 2017; Linher-Melville and Singh 2017; Liu 
and Wang 2019). In addition, phosphorylation of STAT3 
was found to be elevated in DR rats (Xu et al. 2018). We 
postulated that Sestrin2 may trigger cell ferroptosis through 
STAT3 phosphorylation. We found that treating cells with 
C-TFA, a phosphorylated activator of STAT3, weakened the 
protective effect of Sestrin2 on cells, as shown by increased 
the levels of Fe2+, MDA and ROS in cells, and promoted 
cell ferroptosis. This suggests that Sestrin2 inhibits cell fer-
roptosis by inhibiting STAT3 phosphorylation.

Autophagy plays a dual role in DR, playing a role in its 
occurrence and deterioration. Autophagy activity can pro-
mote cell survival under mild stress, while dysregulation of 
autophagy can lead to cell death under severe stress (Deh-
dashtian et al. 2018). Studies have found that autophagy can 
regulate ROS levels, and excessive accumulation of ROS 
leads to oxidative stress and mitochondrial dysfunction, 
thus promoting the initiation of autophagy (Li et al. 2015). 
To identify changes in autophagy levels in DR, we assessed 
changes in expression of autophagy-associated proteins 
and found that the expression of LC3II/I and Beclin1 in 

treatment reversed the effect of oe-Sestrin2, while erastin 
treatment had no significant effect (Fig. 7d). For the expres-
sion of ferroptosis-associated proteins, the expression of 
GPX4, FTH1, and xCT proteins was upregulated and HO-1 
was downregulated after transfection with oe-Sestrin2 com-
pared with the DM group, while the effect of oe-Sestrin2 was 
weakened after erastin or 3-MA treatment (Fig. 7e). MDA 
and Fe2+ levels were further examined, and both levels were 
decreased after transfection of oe-Sestrin2 compared with 
the DM group and increased after erastin or 3-MA treatment 
(Fig. 7f and g). These data suggest that Sestrin2 alleviates 
DR progression by promoting autophagy and inhibiting cell 
ferroptosis.

Discussion

The pathogenesis of DR is very complex and can cause 
blindness and affect the daily life of patients in severe cases. 
As the number of people with diabetes increases, the inci-
dence of DR will gradually increase, which places a heavy 
burden on the health care system, and current treatments 
have limited efficacy for patients with DR (Clevers 2006). 
Therefore, more new targets for the treatment of DR need to 
be sought. An increasing number of studies have shown that 
autophagy and ferroptosis are involved in the progression of 
DR (Tang et al. 2022; Ye et al. 2021). Therefore, this study 
further investigated how autophagy and ferroptosis play a 
role in DR, which may provide a potential avenue for the 
treatment of DR. In this study we used both high glucose-
treated ARPE cells and STZ-treated mice to model diabetic 
conditions and demonstrated that these inhibit autophagy 
and promote ferroptosis.

Ferroptosis is a recently recognized form of regulatory 
cell death, and it has been found that inhibiting ferropto-
sis in age-related macular degeneration is more effective 
in slowing disease progression than inhibiting apoptosis 
and necrosis (Sun et al. 2018; Totsuka et al. 2019). Exces-
sive Fe2+ in cells exerts a toxic effect and generates a large 
amount of ROS in vivo through the Fenton reaction, which 
in turn oxidizes cell membrane lipids and causes ferropto-
sis (Shen et al. 2018). During ferroptosis, glutathione per-
oxidase (GPX4) activity is reduced, and GPX4 is the only 
enzyme in the body that effectively reduces lipid peroxides 
in biofilms (Chen et al. 2023). In addition, ferritin heavy 
chain 1 (FTH1), cysteine/glutamate transporter (xCT), and 
heme oxygenase-1 (HO-1) play important roles in maintain-
ing cellular iron balance during ferroptosis(Ryter 2021; Tian 
et al. 2020). Consistent with a potential role for ferroptosis 
in DR, this study found significantly upregulated levels of 
Fe2+ and ROS in HG-induced ARPE-19 cells. HG-treated 
ARPE-19 cells also showed increased levels of MDA, 
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