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Abstract
Fibrotic scars play important roles in tissue reconstruction and functional recovery in the late stage of nervous system injury. 
However, the mechanisms underlying fibrotic scar formation and regulation remain unclear. Casein kinase II (CK2) is a 
protein kinase that regulates a variety of cellular functions through the phosphorylation of proteins, including bromodomain-
containing protein 4 (BRD4). CK2 and BRD4 participate in fibrosis formation in a variety of tissues. However, whether CK2 
affects fibrotic scar formation remains unclear, as do the mechanisms of signal regulation after cerebral ischemic injury. In 
this study, we assessed whether CK2 could modulate fibrotic scar formation after cerebral ischemic injury through BRD4. 
Primary meningeal fibroblasts were isolated from neonatal rats and treated with transforming growth factor-β1 (TGF-β1), 
SB431542 (a TGF-β1 receptor kinase inhibitor) or TBB (a highly potent CK2 inhibitor). Adult SD rats were intraperitoneally 
injected with TBB to inhibit CK2 after MCAO/R. We found that CK2 expression was increased in vitro in the TGF-β1-
induced fibrosis model and in vivo in the MCAO/R injury model. The TGF-β1 receptor kinase inhibitor SB431542 decreased 
CK2 expression in fibroblasts. The CK2 inhibitor TBB reduced the increases in proliferation, migration and activation of 
fibroblasts caused by TGF-β1 in vitro, and it inhibited fibrotic scar formation, ameliorated histopathological damage, pro-
tected Nissl bodies, decreased infarct volume and alleviated neurological deficits after MCAO/R injury in vivo. Furthermore, 
CK2 inhibition decreased BRD4 phosphorylation both in vitro and in vivo. The findings of the present study suggested that 
CK2 may control BRD4 phosphorylation to regulate fibrotic scar formation, to affecting outcomes after ischemic stroke.
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Abbreviations
BRD4	� Bromodomain-containing protein 4
CK2	� Casein kinase II
HE	� Hematoxylin–eosin
TRKI	� TGF-β receptor kinase inhibitor
TGF-β1	� Transforming growth factor-β1
PP2A	� Protein phosphatase type 2A
SD	� Sprague–Dawley
TNBC	� Triple-negative breast cancer
MCAO/R	� Middle cerebral artery occlusion/reperfusion
NADPH	� Nicotinamide adenine dinucleotide phosphate

BET	� Bromodomain and extraterminal domain
ICAM-1	� Intercellular cell adhesion molecule-1
α-SMA	� α-Smooth muscle actin
p-BRD4	� Phosphorylated bromodomain-containing 

protein 4
DMSO	� Dimethyl sulfoxide
TBB	� 4,5,6,7-Tetrabromobenzotriazole
FN	� Fibronectin
EdU	� 5-Ethynyl-2ʹ-deoxyuridine
ANOVA	� One-way analysis of variance
mNSS	� Modified neurological severity score

Introduction

After nervous system injury, the inflammatory response is 
activated, new tissue forms and tissue remodeling occurs 
[1]. Fibrotic scar formation is involved in tissue repair and 
reconstruction in the late stage of brain injury. Scars in 
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the CNS include glial and fibrotic scars [1, 2]. Glial scars, 
located around the injury site, play a role in preventing 
neuronal degeneration, inhibiting axonal regeneration, and 
reconstructing the blood‒brain barrier [3, 4]. Fibrotic scars, 
located at the center of the injury, are composed of a variety 
of cells with different characteristics and origins (such as the 
meninges and peripheral blood vessels) [5–7]. These cells 
migrate to the injury site, transform into myofibroblasts, and 
secrete extracellular matrix components such as collagen, 
laminin and fibronectin to form fibrotic scars [8–11]. At pre-
sent, the role of fibrotic scars in tissue repair and remodeling 
after CNS injury is unclear. A few studies have shown that 
fibrotic scars prevent synaptogenesis and aggravate neu-
rological deficits during the remodeling period after brain 
injury [6, 9, 12]. However, recent studies have shown that 
complete prevention of fibrotic scarring can lead to cavity 
formation and hinder functional recovery after spinal injury 
[13]. Therefore, it is important to elucidate the mechanism 
of fibrotic scar formation after cerebral ischemic injury to 
improve patient prognosis.

Casein kinase II (CK2), a messenger-independent serine/
threonine protein kinase, is widely present in the cytoplasm 
and nucleus of eukaryotic cells [14]. CK2 comprises two 
catalytic subunits (α and/or α′) and two regulatory subunits 
(β), and it phosphorylates a variety of substrates and partici-
pates in cell growth, proliferation, apoptosis, carcinogenesis 
and other processes [15, 16]. 4,5,6,7-Tetrabromobenzotria-
zole (TBB) is an efficient and selective ATP competitive 
inhibitor of CK2, which has a smaller hydrophobic pocket 
adjacent to the ATP/GTP binding site than do the majority 
of other protein kinases [17]. TBB enters cells readily and 
appears not to be cytotoxic in the short term, which makes 
it useful for experiments [18]. Many studies have shown that 
CK2 regulates the occurrence and development of fibrosis, 
inflammation, metabolic diseases, nervous system diseases 
and tumors [19–23]. CK2 phosphorylates a variety of sub-
strates and regulates fibrosis in peripheral tissues, such as 
the liver, lung, kidney, and skin [14, 24–26]. Moreover, CK2 
is widely expressed in the central nervous system, such as 
in neurons, microglia, and astrocytes, and regulates neu-
ronal survival, glial cell regeneration, synaptic regeneration 
and remodeling after stroke [27–30]. However, it remains 
unclear whether and how CK2 affects fibrotic scar formation 
after cerebral ischemia injury.

Bromodomain-containing protein 4 (BRD4), a member 
of the bromodomain and extraterminal domain (BET) fam-
ily, binds to transcription factors and acetylated histones 
to recruit multiple transcriptional regulators to control 
inflammation, chromatin assembly, oxidative stress injury, 
and cell proliferation [31–33]. BRD4 is highly clustered at 
gene enhancer sites of genes and regulates fibrosis in a vari-
ety of tissues and organs [34–39]. CK2 and protein phos-
phatase type 2A (PP2A) regulate BRD4 phosphorylation 

and dephosphorylation, respectively. There are two CK2 
phosphorylation sites (NPS and CPS) in the BRD4 domain 
[40, 41]. CK2 binds to phosphorylation sites to produce 
phosphorylated BRD4, which binds to acetylated chroma-
tin and specific transcription factors to regulate site-specific 
gene transcription [40–43]. Our previous results showed 
that BRD4 participates in fibrotic scar formation after brain 
injury [44]. However, whether CK2 regulates fibrotic scar 
formation after cerebral ischemia by phosphorylating BRD4 
has not been determined.

Here, we hypothesized that CK2 inhibition could reduce 
the activation of fibroblasts induced by TGF-β1 and attenu-
ate fibrosis after cerebral ischemic injury by reducing BRD4 
phosphorylation. We found that in vitro, CK2 expression 
was upregulated in a TGF-β1-induced meningeal fibroblast 
fibrosis model, and in vivo, CK2 expression was upregulated 
in a middle cerebral artery occlusion/reperfusion (MCAO/R) 
injury model. Treatment with SB431542, a TGF-β1 receptor 
kinase inhibitor, decreased CK2 expression in fibroblasts. 
The highly potent CK2 inhibitor TBB decreased the pro-
liferation, migration and activation of fibroblasts caused 
by TGF-β1 in vitro, inhibited fibrotic scarring, ameliorated 
histopathological damage, reduced Nissl body damage 
and improved neurological function after MCAO/R injury 
in vivo. Moreover, CK2 inhibition decreased BRD4 phos-
phorylation both in vitro and in vivo. This study is the first 
to indicate that CK2 may control BRD4 phosphorylation to 
regulate fibrotic scar formation and affect outcomes after 
MCAO/R injury.

Materials and Methods

Reagents

4,5,6,7-Tetrabromobenzotriazole (TBB) (HY-14394), 
transforming growth factor-β1 (TGF-β1) (HY-P70543) and 
SB431542 (HY-10431) were obtained from MedChem-
Express (USA). Dimethyl sulfoxide (DMSO; D2650) was 
obtained from Sigma (USA). A rabbit polyclonal anti-BRD4 
primary antibody (DF2905) was obtained from Affinity 
Company (USA). A rabbit polyclonal anti-phospho-BRD4 
(Ser492/Ser494) primary antibody (ABE1453) was obtained 
from Merck Millipore Company (USA). A polyclonal rabbit 
anti-CK2α primary antibody (GTX107897) was obtained 
from GeneTex International Corporation (USA). Alexa 
Fluor 594-conjugated goat anti-mouse (550042) and Alexa 
Fluor 488-conjugated goat anti-rabbit (550037) secondary 
antibodies were obtained from Zen Bioscience (Cheng Du, 
China). Polyclonal mouse anti-α-SMA (α-SMA; 55135-
1-AP), rabbit anti-GAPDH (10494-1-AP), polyclonal 
mouse anti-FN (66042-1-Ig), HRP-conjugated AffiniPure 
goat anti-mouse (SA00001-1) and goat anti-rabbit IgG 
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(SA00001-2) antibodies were obtained from Proteintech 
(Wuhan, China). Monoclonal rabbit anti-CK2β (ab76025) 
and a Picrosirius red staining kit (ab150681) were obtained 
from Abcam (USA). The hematoxylin–eosin (HE) stain-
ing kit (G1120), 2,3,5-triphenyltetrazolium chloride (TTC) 
solution (G3005), Nissl staining kit (methyl violet method) 
(G1432) and 4% paraformaldehyde (P1110) were obtained 
from Beijing Solarbio Science & Technology (Beijing, 
China). A 5-ethynyl-2ʹ-deoxyuridine (EdU) cell proliferation 
kit with Alexa Fluor 488 (C0071S) and a BCA protein assay 
kit (P0012S) were obtained from Beyotime Biotechnology 
Company (Shanghai, China). DMEM/F12 (C11330500BT) 
was obtained from Gibco (USA). The PCR primers used 
were obtained from Sangon Biotech (Shanghai, China). Fetal 
bovine serum (FBS; P30-2602) was obtained from PAN-
Biotech (Germany).

Experimental Animals

Neonatal (1–2 days old) and adult male (weight, 200–300 g) 
Sprague–Dawley (SD) rats were purchased from the Depart-
ment of Animal Experiments, Chongqing Medical Univer-
sity (Chongqing, China). All adult rats were housed in a 
temperature-controlled room at a humidity of 40–70% and a 
temperature of 24–26 °C on a 12 h light/dark cycle and pro-
vided free access to food and water. This study was approved 
by the Animal Experimental Committee of Chongqing 
Medical University (Ethics Committee Code: 2021-560) 
and complied with relevant laws such as the IMPROVE and 
ARRIVE guidelines [45, 46]. The number of rats in each 
group was predetermined based on previously published 
studies. Furthermore, researchers blinded to the experimen-
tal setup evaluated the outcomes.

Cell Culture

Meningeal fibroblasts from neonatal SD rats were isolated 
and cultured as previously described by Li et al. [44]. Briefly, 
the meninges were separated and digested into single-cell 
suspensions with IV collagenase (1 mg/ml). Fibroblasts 
were cultured in DMEM/F-12 medium supplemented with 
1% penicillin/streptomycin and 10% fetal bovine serum and 
passaged after they reached confluence. Second- to fourth-
generation fibroblasts were used for subsequent studies.

MCAO/R Model

Focal cerebral ischemia was induced by middle cerebral 
artery occlusion/reperfusion (MCAO/R) in adult SD rats 
via the insertion of filaments into the artery to occlude 
blood for 120 min, as described by Longa et al. [47]. Rats 
that underwent the same surgical procedure but without 
the insertion of fibrous filaments into the lumen were used 

for comparison. Rats that developed subarachnoid hem-
orrhage, died, or had no neurological impairment after 
surgery were not included in the study.

Drug Treatment

The profibrotic factor TGF-β1 (10 ng/ml) [24, 48–50], the 
TGF-β1 receptor kinase inhibitor SB431542 (20 µM) [51, 
52], and the CK2 inhibitor TBB (5 µmol/l) [24, 53] are 
commonly used for in vitro studies of fibrosis in a variety 
of tissues. In our previous research, BRD4 protein expres-
sion in primary meningeal fibroblasts was significantly 
upregulated by 10 ng/ml TGF-β1 and downregulated by 
20 µM SB431542 in vitro [44, 52]. TBB (2.5 mg/kg/d 
and 10 mg/kg/d) administered by intraperitoneal injection 
inhibited fibrosis in a dose-dependent manner in vivo [14, 
24].

Therefore cells were  incubated in  vitro with TGF-
β1 (10 ng/ml), SB431542 (20 µM), dimethyl sulfoxide 
(DMSO) or TBB (5 µmol/l) for 3 days to evaluate the 
expression of CK2α and CK2β and the activation of fibro-
blasts. The solvent SB431542, DMSO or TBB was added 
to the medium 1 h before TGF-β1 treatment.

In vivo, TBB (5 mg/kg/d) was injected intraperitoneally 
in volumes of 50 μL or less per rat once a day starting on 
the day after ischemia‒reperfusion. CK2 expression and 
its effects on fibrotic scar formation were evaluated after 
MCAO/R injury.

Neurological Deficit Score

Neurological deficit scores were evaluated at 1, 7 and 
14 days after MCAO/R via the modified neurological 
severity score (mNSS) [54], Bederson score [55], and 
Longa score [47] by an independent investigator. The 
higher the score is, the more severe the neurological 
deficit.

The mNSS was used for comprehensive assessment of 
motor, sensory, reflex, and balance functions. A higher 
mNSS (0 points, normal; 18 points, loss of consciousness 
or death) indicates more severe neurological deficits.

The Bederson score was used to measure the forelimb 
flexion of rats suspended 10 cm, as follows: forelimb exten-
sion (0 points); forelimb flexion (1 point); decreased resist-
ance to lateral push (2 points); spontaneous rotation (3 
points); circling behavior, decreased activity (4 points).

The Longa score was used to evaluate motor function as 
follows: normal (0 points); limited left limb movement (1 
point); paralysis, walking in circles or rear-end collision (2 
points); paralysis, falls or rolls, unable to stand (3 points); 
and no activity or disorder of consciousness (4 points).
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RT‒PCR Analysis

The mRNA levels of CK2α, CK2α’ and CK2β in TGF-
β1-treated meningeal fibroblasts were analyzed at 72 h via 
RT‒PCR. Cultured meningeal fibroblasts were washed and 
collected. Total RNA was extracted from fibroblasts with 
TRIzol. Table 1 shows the CK2α, CK2α’, CK2β and β-actin 
primer sequences. Quantitative PCR (qPCR) was carried 
out on a CFX96 Touch Real-Time PCR Detection System 
(Bio-Rad, Hercules, USA). The 2−ΔΔCt method, in which 
β-actin was used for normalization, was used to estimate 
the amount of target mRNA in the samples. All the samples 
were analyzed in triplicate.

EdU Assay

The proliferation of meningeal fibroblasts was examined 
with a 5-ethynyl-2’-deoxyuridine (EdU) cell proliferation 
kit. First, fibroblasts were seeded in 96-well plates and 
treated as described above. Second, EdU solution was 
added to each well, and the cells were incubated for 2 h at 
37 °C. Then, the cells were fixed in 4% paraformaldehyde 
for 15 min and subsequently washed with PBS. Afterward, 
the cells were stained with Click solution for 30 min at room 
temperature and DAPI for 15 min at 37 °C. The cells were 
analyzed with a fluorescence microscope (Olympus, Japan). 
The cell proliferation rate was detected by the ratio of EdU-
positive cells to total cells. The experiments were repeated 
3 times.

Scratch Wound Assay

Cell migration was measured with a scratch assay. The 
meningeal fibroblast monolayer was scratched and incubated 
with different media for 48 h. Three random fields of the 
scratch at different time points (0 and 48 h) were observed 
with a microscope, and the percentage of the wound-healed 
areas was analyzed by ImageJ software. The experiments 
were repeated 3 times.

TTC Staining

The infarct volumes in the MCAO/R model rats were exam-
ined via TTC staining. Rats were euthanized at 7 days after 
reperfusion (n = 3). The brains were chilled at − 20 °C for 

20 min to slightly harden the tissue. Six 2 mm coronal sec-
tions were cut with a brain matrix (model number 68700; 
RWD Life Science, Shenzheng, China) on ice and stained 
with 1.0% TTC solution at 37 °C for 30 min. The infarcts 
generated by MCAO/R were observed in the striatum and the 
dorsolateral cortex. The striatum was found to be more sen-
sitive to ischemia than the cerebral cortex [56]. The infarct 
area was white, whereas the normal tissue was stained red. 
The stained brain sections were imaged with a digital cam-
era. The infarct volumes were quantified by ImageJ soft-
ware analysis and calculated by the formula: Infarct volume 
(%) = (contralateral volume—ipsilateral noninfarct volume)/
contralateral volume × 100 [57].

HE Staining

Rat brain samples were embedded into paraffin blocks and 
serially sectioned into 4 µm coronal sections. Three noncon-
secutive brain slices per rat were randomly selected for each 
subsequent staining.

A hematoxylin–eosin (HE) staining kit was used to assess 
the histological structure of the brain. Briefly, brain sec-
tions were sequentially stained with hematoxylin solution for 
5 min and differentiated with ethanol hydrochloride solution 
for 3 s and eosin solution for 3 min at room temperature. 
Three randomly selected regions of interest in the ischemic 
core of the striatum and the cerebral cortex in each brain 
slice were photographed under a microscope with blinding 
at a magnification of ×200. Brain damage after MCAO/R 
was evaluated by observing the ischemic core structures of 
the striatum and the cerebral cortex, such as the nucleus 
(purple‒blue), cytoplasm and extracellular matrix (pink). 
All the experiments were repeated 3 times.

Nissl Staining

A Nissl staining kit (with the methyl violet method) was 
used to assess the Nissl bodies in cerebral ischemia in rats. 
The brain sections were treated with methyl violet staining 
solution for 20 min and washed with Nissl differentiation 
medium for approximately 8 s. Three randomly selected 
regions of interest in the ischemic core of the striatum and 
the cerebral cortex in each brain slice were photographed 
under a microscope at a magnification of ×200. Dark pur-
ple‒blue indicates Nissl bodies. Normal neurons had large 

Table 1   Primers for RT‒PCR Gene name Sense (5ʹ–3ʹ) Antisense (3ʹ–5ʹ)

Csnk2α1 CTG​GAC​AAG​CTG​CTG​CGA​TACG​ CTG​CCA​TGC​CAG​CCG​AAC​TC
Csnk2α2 CTT​CTT​GAC​AAG​CTC​CTG​CGG​TAC​ AGG​CTG​GGA​CTG​CTC​CTT​CAC​
Csnk2β CTT​CGG​CAC​TGG​TTT​CCC​TCAC​ TTG​AAG​TTG​CTG​GCG​GCT​TGG​
β-actin GGC​ACC​CAG​CAC​AAT​GAA​G CCG​ATC​CAC​ACG​GAG​TAC​TTG​
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cell bodies with abundant cytoplasm and obvious Nissl bod-
ies. Pyknosis or blurring of Nissl bodies suggested neuronal 
damage. The number of Nissl bodies was calculated as the 
area ratio of the Nissl bodies to the image. The results of 
each section were averaged and statistically analyzed with 
ImageJ software. All the experiments were repeated 3 times.

Sirius Red Staining

The brain sections were incubated with Picrosirius red solu-
tion for 60 min at room temperature and washed with an ace-
tic acid solution. Three randomly selected regions of interest 
in the ischemic core of the striatum and the cerebral cortex 
in each brain slice were photographed under a microscope 
at a magnification of ×200. Collagen fibers were stained 
red with Sirius red solution. The area of collagen fibers was 
calculated as the percentage of the image area occupied by 
collagen fibers. The results for each section were averaged 
and statistically analyzed with ImageJ software. All the 
experiments were repeated 3 times.

Immunocytochemistry and Immunofluorescence

Fibroblasts were fixed with paraformaldehyde (4%). The 
brain sections were microwaved to retrieve the antigen. 
Afterward, the brain sections or cells were blocked with goat 
serum (10%) and treated with polyclonal rabbit anti-CK2α 
antibody (1:100), polyclonal mouse anti-α-SMA antibody 
(1:100), monoclonal rabbit anti-CK2β antibody (1:100), or 
polyclonal mouse anti-FN antibody (1:100). For negative 
controls, PBS was used instead of antibody. After being 
washed with PBS, the sections or cells were incubated with 
Alexa Fluor 594-conjugated goat anti-mouse IgG (1:100) 
and/or Alexa Fluor 488-conjugated goat anti-rabbit IgG 
(1:100) for 1 h at 37 °C. DAPI staining solution was used 
to stain the cell nuclei. Finally, the cells were observed and 
photographed under an A1 + R laser confocal microscope 
(Nikon, Tokyo, Japan). Three random fields of the central 
infarct area were selected from each slice. All immunocy-
tochemistry and immunofluorescence assays were repeated 
three times.

Western Blot Analysis

Protein was extracted from cells or brain tissues from the 
ischemic core according to the manufacturer’s instructions. 
The protein concentrations of the extracts were assessed by a 
BCA protein assay kit. Equal amounts of protein from differ-
ent groups were separated via SDS–PAGE and subsequently 
transferred to PVDF membranes. After blocking with nonfat 
milk (5%), the PVDF membranes were treated with rabbit 
anti-p-BRD4 antibody (1:2000), rabbit anti-BRD4 anti-
body (1:2000), rabbit anti-CK2α antibody (1:1000), rabbit 

anti-CK2β antibody (1:1000), mouse anti-α-SMA antibody 
(1:2000), rabbit anti-GAPDH antibody (1:10,000) or mouse 
anti-FN antibody (1:4000). Then, the membranes were incu-
bated with HRP-conjugated AffiniPure goat anti-mouse IgG 
(1:5000) or goat anti-rabbit IgG (1:5000) secondary antibod-
ies for 1 h. A Bio-Rad instrument was used to quantify the 
protein bands. Fusion software was used for semiquantitative 
analysis of protein expression. The gray ratio of the target 
protein to GAPDH was used to normalize the expression 
level of the target protein. All the samples were analyzed 
in triplicate.

Statistical Analysis

SPSS 20.0 for Windows was used to perform the sta-
tistical analyses. Quantitative data are presented as the 
means ± standard deviations (SDs). The results were ana-
lyzed with Bonferroni’s or Tukey’s post hoc test after one-
way or two-way analysis of variance (ANOVA). Single 
comparisons were analyzed by Student’s t test. Neurological 
deficit scores are expressed as medians and ranges and were 
analyzed with the Kruskal‒Wallis test followed by Dunn’s 
post hoc test. P < 0.05 was considered to indicate statistical 
significance.

Results

CK2α and CK2β Expression is Increased 
in a TGF‑β1‑Induced Fibrosis Model In Vitro 
and an MCAO/R‑Induced Fibrotic Scar Formation 
Model In Vivo

TGF-β1 is an important contributor to fibrosis. We first 
investigated whether CK2 expression is altered in a TGF-
β1-induced meningeal fibroblast fibrosis model in vitro. 
RT‒PCR analysis revealed that the expression levels of 
CK2α, CK2α' and CK2β mRNAs in the TGF-β1 and TGF-
β1 + DMSO groups were significantly greater than those in 
the Con and TGF-β1 + SB431542 groups (Fig. 1B–D). In 
addition, Western blotting analysis showed that the protein 
expression levels of CK2α and CK2β in the TGF-β1 and 
TGF-β1 + DMSO groups were significantly greater than 
those in the Con and SB431542 groups (Fig. 1E–G). The 
results suggested that CK2 expression was upregulated by 
TGF-β1 and downregulated by SB431542 in meningeal 
fibroblasts, which indicated that CK2 may play a role in 
TGF-β1-induced meningeal fibroblast fibrosis.

Next, we investigated whether fibrotic scar formation 
and CK2 expression were affected after MCAO/R injury. 
Immunofluorescence and Western blotting demonstrated 
that the expression of CK2α, CK2β and fibronectin (FN; 
a marker of fibrotic scarring) in the infarct core at 7 and 
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14 days after MCAO/R was significantly greater than that in 
the sham group (Fig. 1J–Q). Moreover, the protein expres-
sion of CK2α and FN in the I/R7d group was significantly 
greater than that in the I/R14d group (Fig. 1J–Q). These 
results indicated that cerebral ischemic injury significantly 
induced fibrosis and upregulated the expression of CK2α 
and CK2β in the infarct core at 7 days. Therefore, in the 
subsequent study, observation was performed 7 days after 
MCAO/R.

Our study showed that the expression of CK2α and CK2β 
was upregulated in the TGF-β1-induced fibrosis model and 
MCAO/R injury model.

TBB Inhibits the Proliferation, Migration 
and Activation of Meningeal Fibroblasts In Vitro

The above findings indicate that CK2 expression was upreg-
ulated in fibrosis models both in vitro and in vivo. We fur-
ther investigated whether CK2 inhibition by TBB, a selective 
ATP-competitive inhibitor of CK2, affects the proliferation, 
migration and activation of meningeal fibroblasts caused by 
TGF-β1 in vitro.

The proliferation, migration and secretion of extracellular 
matrix from fibroblasts are involved in fibrous scar forma-
tion. EdU and scratch wound assays showed that cell prolif-
eration and migration were significantly upregulated in the 
TGF-β1 and TGF-β1 + DMSO groups and downregulated 
in the TGF-β1 + TBB group (Fig. 2B–C, D–E). α-SMA 
is a marker of fibroblast activation, and FN is an extracel-
lular matrix component secreted by activated fibroblasts. 
Immunofluorescence analysis demonstrated that α-SMA 
and FN protein expression was significantly upregulated in 
the TGF-β1 and TGF-β1 + DMSO groups and downregu-
lated in the TGF-β1 + TBB group compared with the control 

group (Fig. 2F–H). Western blotting analysis also showed 
that TGF-β1 up-regulated the expression of the α-SMA and 
FN proteins, and TBB had the opposite effect (Fig. 2I–K).

These results indicated that CK2 could regulate the pro-
liferation, migration and activation of fibroblasts induced 
by TGF-β1.

TBB Inhibits Fibrosis, Ameliorates Damage, Protects 
Nissl Bodies, and Improves Outcomes After MCAO/R 
Injury

TBB inhibited TGF-β1-induced fibroblast activation in vitro. 
We further investigated whether CK2 inhibition by TBB 
affects fibrotic scar formation and outcomes after MCAO/R 
injury in vivo.

Collagen fibers, FN and α-SMA are markers of fibrotic 
scar formation. Collagen fibers are fibrous components that 
consist primarily of collagen and amino acids. Under a light 
microscope, the collagen fibers were stained red with a 
yellow background by Sirius red staining. Sirius red stain-
ing, immunofluorescence and Western blotting revealed 
significantly more collagen fibers and significantly higher 
α-SMA and FN protein expression in the infarct core in the 
Ctrl, vehicle and TBB groups than in the sham group and 
lower in the TBB group than in the Ctrl and vehicle groups 
(Fig. 3C–K). These results suggested that TBB inhibited 
fibrous scar formation in the ischemic core after MCAO/R 
injury.

Hematoxylin and eosin (H&E) staining was performed to 
assess histopathological damage after MCAO/R injury. The 
results showed that the structure of the striatum and the cer-
ebral cortex in the sham group was normal. In these rats, the 
neurons were densely and evenly arranged, with a normal 
structure and morphology, clear cell contours, and clearly 
visible and intact nucleoli. In contrast, the histological struc-
ture of the brain was disrupted after MCAO/R injury, with 
tissue necrosis, neuronal loss and marked glial cell infil-
tration in the ischemic core. However, the morphological 
changes in the TBB group were less severe than those in the 
Ctrl and vehicle groups (Fig. 4C).

Nissl bodies are basophilic masses and granules com-
posed of rough endoplasmic reticulum and free ribosomes 
in the cell body or dendrites of neurons and are markers of 
neurons. The Nissl body staining results showed neurons 
with large cell bodies, abundant cytoplasm and obvious 
Nissl bodies in the sham group and neurons with pyknosis 
or blurred Nissl bodies in the Ctrl, vehicle and TBB groups. 
Moreover, the number of Nissl bodies in the infarct core was 
significantly lower in the Ctrl and vehicle groups than in the 
sham group and greater in the TBB group than in the Ctrl 
and vehicle groups (Fig. 4D, E).

The infarct volume was evaluated via TTC staining to 
assess brain injury at 7 days after MCAO/R. As shown in 

Fig. 1   CK2α and CK2β expression was increased in vitro in the TGF-
β1-induced fibrosis model and in vivo in the MCAO/R injury model. 
A Timeline of fibroblast treatment. B–D RT‒PCR analysis of CK2α, 
CK2α′ and CK2β mRNA expression in each group of fibroblasts 
treated with TGF-β1 for 72  h (n = 3). E–G Representative protein 
expression and quantification data for CK2α and CK2β in each group 
of fibroblasts were obtained by Western blotting (n = 3). *P < 0.05 
vs. the Con group; △P < 0.05 vs. the TGF-β1 group; #P < 0.05 vs. 
the TGF-β1 + DMSO group. H Timeline and group diagram of 
the rats. I Schematic diagram of the coronal plane of the brain. 
The ischemic core is represented by the yellow area. The observed 
regions are shown as square boxes. J Immunofluorescence staining 
of FN+/CK2α+ and FN+/CK2β+ cells and images of merged signals 
in the ischemic  core after cerebral ischemia (n = 3). Red represents 
tissue immunostained with antibodies against FN, and green repre-
sents cells immunostained with antibodies against CK2α or CK2β. 
Scale bars: 50 μm. K–M Representative quantitative analysis of 
FN-positive areas and CK2α-positive and CK2β-positive cells. N–Q 
Protein expression and quantification of FN, CK2α and CK2β levels 
in the ischemic core after cerebral ischemia caused by MCAO/R, as 
detected by Western blotting (n = 3). *P < 0.05 vs. the sham group; 
△P < 0.05 vs. the I/R 7 d group

◂
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Fig. 4F and G, there was no cerebral infarction in the sham 
group. The infarct volume was significantly lower in the 
TBB group than in the Ctrl and vehicle groups. The results 

showed that TBB significantly decreased the infarct volume 
after MCAO/R.

Neurological deficits in the rats were evaluated with the 
mNSS, Bederson score, and Longa score at 1, 7 and 14 days 

Fig. 2   Effects of TBB on the proliferation, migration and activa-
tion of fibroblasts induced by TGF-β1 in vitro. A Timeline of fibro-
blast treatment. B, C Fibroblast proliferation in each group induced 
by TGF-β1 for 72 h was detected by EdU analysis. Green and blue 
represent EdU-positive cells and nuclei, respectively (n = 3). Scale 
bars: 50 μm. D, E The migration of fibroblasts in each group was 
detected by the scratch wound assay (n = 3). Scale bars: 200 μm. F–H 
The activation of fibroblasts in each group was detected by immuno-

fluorescence staining with antibodies against α-SMA and FN. Green 
indicates the α-SMA, and red indicates the FN. (n = 3). Scale bars: 50 
µm. I–K Representative protein expression and quantification analy-
sis of α-SMA and FN protein levels in fibroblasts induced by TGF-
β1 for 72 h, as detected by Western blotting (n = 3). *P < 0.05 vs. the 
Con group; △P < 0.05 vs. the TGF-β1 group; #P < 0.05 vs. the TGF-
β1 + DMSO group
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after MCAO/R injury (Fig. 4H–J). There was no neurologi-
cal deficit in the sham group. The rats in the Ctrl, vehicle 
and TBB groups exhibited obvious neurological deficits 
after MCAO/R, which were gradually alleviated over time. 

There were significantly fewer neurological deficits in the 
TBB group than in the Ctrl and vehicle groups at 7 and 
14 days, but there was no significant difference at 1 day after 
MCAO/R. The results showed that neurological deficits after 

Fig. 3   TBB reduces fibrosis after MCAO/R injury. A Timeline and 
group diagram of the rats. B Schematic diagram of the coronal plane 
of the brain. The ischemic core is represented by the yellow area. The 
regions of interest are shown as square boxes. C, D Expression and 
quantitative analysis of collagen fibers with Sirius red staining at 7 
days after MCAO/R (n = 3). Red represents collagen fibers. Scale 
bars: 1 µm. E–H Protein expression levels and quantitative analysis 
of FN and α-SMA at 7 days after cerebral ischemic injury determined 

by immunofluorescence staining (n = 3). Red represents FN-positive 
areas. Green represents α-SMA-positive cells. Blue represents nuclei. 
Scale bars: 40 μm. I–K Protein expression levels and quantita-
tive analysis of α-SMA and FN in the ischemic core at 7 days after 
MCAO/R injury determined by Western blotting (n = 3). *P < 0.05 vs. 
the sham group; △P < 0.05 vs. the Ctrl group; #P < 0.05 vs. the vehi-
cle group
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stroke were gradually alleviated in a time-dependent manner. 
TBB significantly improved stroke outcomes, with better 
outcomes observed at 14 days than at 7 days.

These results showed that the CK2 inhibitor TBB 
decreased fibrotic scar formation, reduced brain damage 
and Nissl body loss, and improved neurological outcomes 
after MCAO/R.

TBB Inhibits BRD4 Phosphorylation 
in a TGF‑β1‑Induced Fibrosis Model In Vitro 
and an MCAO/R Injury Model In Vivo

The above studies showed that CK2 is involved in the TGF-
β1-induced activation of meningeal fibroblasts in vitro and 
in fibrotic scar formation after MCAO/R injury in vivo. 
We further investigated whether CK2 regulates fibrosis by 
affecting BRD4 phosphorylation.

Western blotting revealed that the protein levels of BRD4 
and p-BRD4 were increased in the in vitro TGF-β1-induced 
fibrosis model and in the in vivo MCAO/R injury model 
(Fig. 5A–H). The CK2 inhibitor TBB decreased the level 
of p-BRD4 but not the BRD4 protein in vitro (Fig. 5A–D). 
Moreover, TBB had a similar effect on the ischemic core 
after MCAO/R (Fig. 5E–H). These results showed that the 
CK2 inhibitor TBB reduced BRD4 phosphorylation both 
in vitro in a TGF-β1-induced fibrosis model and in vivo dur-
ing MCAO/R injury-induced fibrotic scar formation, which 
suggested that CK2 regulates fibrosis by phosphorylating 
BRD4 in vitro and in vivo.

Discussion

The present study showed that CK2 expression was upreg-
ulated in vitro in a TGF-β1-induced meningeal fibroblast 
fibrosis model and in vivo in a middle cerebral artery occlu-
sion (MCAO)/reperfusion (R) injury model. Treatment with 
SB431542, a TGF-β1 receptor kinase inhibitor, decreased 

CK2 expression in fibroblasts. The highly potent CK2 inhibi-
tor TBB decreased the proliferation, migration and activa-
tion of fibroblasts caused by TGF-β1 in vitro, inhibited 
fibrotic scarring, ameliorated histopathological damage, 
reduced Nissl body damage and improved neurological func-
tion after MCAO/R injury in vivo. Moreover, CK2 inhibition 
decreased BRD4 phosphorylation in vitro and in vivo. This 
study is the first to indicate that CK2 may control BRD4 
phosphorylation to regulate fibrotic scar formation and affect 
outcomes after MCAO/R injury.

CK2 is a protein kinase that occurs widely in eukaryotic 
cells and participates in cell growth, proliferation, apoptosis 
and other processes. CK2 is composed of two catalytic subu-
nits (α and/or αʹ) and regulatory subunits (β). Several stud-
ies suggest that the α catalytic subunit has important kinase 
activity and is the primary functional subunit for disease 
treatment [14, 58, 59]. The β subunit is likely responsible for 
the oncogenic potential of CK2. In epithelial–mesenchymal 
transition (EMT), TGF-β signaling increases CK2 activity 
by decreasing the protein level of CK2β without affecting 
the protein level of CK2α [48]. Many studies have shown 
CK2 participates in liver, lung, skin and kidney fibrosis [24, 
26, 60]. In systemic sclerosis fibroblasts, CK2α and CK2β 
expression was also increased. Here, we found that CK2α 
and CK2β expression was upregulated during fibrotic scar-
ring after stroke and in a TGF-β1-induced fibrosis model, 
respectively. These findings suggest CK2 may participate 
in the regulation of fibrotic scarring after cerebral ischemia, 
which is consistent with previous findings.

CK2 regulates tissue fibrosis through a variety of signal-
ing pathways, such as the TGF-β1/Smad3, p-NF-κB [25], 
Wnt/β-catenin [26], IKK/NF-κB [14], and JAK2/STAT3 
pathways [24] and non-Smad signaling pathways (Akt and 
Erk) [61]. CK2 also controls tissue and cellular functions by 
phosphorylating a variety of substrates. For example, CK2 
regulates BRD4 function by binding to phosphate sites (NPS 
and CPS) in the BRD4 domain [40]. CK2-mediated BRD4 
phosphorylation promotes resistance to BET inhibitors in 
lung adenocarcinoma, while CK2 inhibitors reduce resist-
ance [62]. In drug-resistant triple-negative breast cancer 
cells, decreased PP2A activity causes hyperphosphorylation 
of BRD4 [63]. In addition, the CK2 inhibitor TBB or CK2 
knockout reduces neuronal immediate early gene expres-
sion and inhibits synaptic remodeling and memory genera-
tion by controlling BRD4 phosphorylation [64]. Here, our 
results showed that CK2 regulates fibrous scar formation 
after MCAO/R injury by affecting BRD4 phosphorylation. 
Therefore, CK2 may play multiple roles through multiple 
signaling pathways or through the phosphorylation of mul-
tiple substances in different organs.

CK2 occurs widely in neurons, astrocytes and myelin 
sheaths and participates in a variety of functions in the cen-
tral nervous system [27, 28]. For example, CK2 inhibited 

Fig. 4   TBB ameliorates histopathological damage, protects Nissl 
bodies, decreases infarct volume and ameliorates neurological deficits 
after MCAO/R injury. A Timeline and group diagram of the rats. B 
Schematic diagram of the coronal plane of the brain. The ischemic 
core is represented by the yellow area. The observed regions are 
shown as square boxes. C, D Representative histological struc-
ture assessed by HE staining and Nissl body (bluish violet) expres-
sion assessed by Nissl staining of the ischemic  core at 7 days after 
MCAO/R injury (n = 3). Scale bars: 2 µm. E Quantitative analysis 
of Nissl bodies expressed as the area ratio of the Nissl bodies to the 
image. F, G Representative images and quantitative analysis of the 
infarct volume in brain slices after MCAO/R determined by TTC 
staining (n = 3). White indicates infarction, while red indicates nor-
mal tissue. Analysis of neurological function according to the mNSS 
(H), Bederson score (I), and Longa score (J) at 1, 7 and 14 days after 
MCAO/R injury (n = 12). *P < 0.05 vs. the sham group; △P < 0.05 vs. 
the Ctrl group; #P < 0.05 vs. the vehicle group

◂
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NADPH oxidase-triggered oxidative stress injury and 
reduced neuronal death 24 h after brain injury [30]. CK2 
regulated the activation and migration of microglia induced 
by ischemia and hypoxia and controlled glial scar forma-
tion [65]. CK2 inhibition could promote oligodendrocyte 
survival, protect axonal structure and axonal mitochondrial 
function, and improve neurological function after cerebral 
ischemia [53, 66, 67]. Moreover, CK2 regulates platelet 
synthesis, activation and thrombosis, and CK2β knockout 
significantly reduces cerebral infarct volume, alleviates neu-
rological deficits and improves the prognosis in rats with 
cerebral ischemia [68]. Similarly, our findings showed that 
CK2 controlled fibroblast activation and fibrosis at 7 days 
after cerebral infarction. These studies suggest that CK2 
plays different or even opposing roles in different tissues.

In addition, the study had several limitations. For exam-
ple, CK2 is expressed in almost all mammalian cells. We 
intraperitoneally injected the CK2 inhibitor TBB to detect 
fibrous scar formation after cerebral infarction in vivo. 
Whether intraperitoneal TBB acted on other cells, such as 
platelets, endothelial cells and immune cells, and thereby 
indirectly affected the repair of cerebral infarction is 
unknown. Therefore, lateral intraventricular administration 
of TBB will be used to reduce the effect of TBB on periph-
eral tissues and cells in future research. In addition, fibrous 
scar formation after stroke involves a variety of cells, such as 
meningeal fibroblasts, pericytes and stromal cells. Whether 
and how these cells interact with each other needs to be 
further investigated.

Conclusion

Our present data demonstrate that CK2 may control BRD4 
phosphorylation to regulate fibrotic scar formation and 
affect outcomes after ischemic stroke. Our findings provide 
important insights into the role of CK2 in fibrotic scarring 
after cerebral ischemic injury and may open new avenues 
for stroke treatment. However, we will further investigate 
how p-BRD4 affects fibroblast activation and fibrotic scar-
ring in vivo and in vitro.
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