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Abstract
Background The tumor microenvironment is an emerging biomarker of underlying genomic heterogeneity and response 
to immunotherapy-based treatment regimens in solid malignancies. How tumor mutational burden influences the density, 
distribution, and presence of a localized immune response in meningiomas is unknown.
Methods Representative hematoxylin and eosin slides were reviewed at 40X to assess for the density of inflammatory cells. 
Lymphocytes and macrophages were quantified in the following ordinal manner: 0 = not present, 1 = 1–25 cells present, and 
2 = greater than 26 cells present. Immune cell infiltrate grade was scored for both scattered and aggregated distributions. 
Next generation targeted sequencing was performed on all meningiomas included in this study.
Results One hundred and forty-five meningiomas were evaluated in this study. Lymphocytes were observed in both scattered 
(95.9%) and aggregated (21.4%) distributions. A total of 115 (79.3%) meningiomas had 1–25 scattered lymphocytes, and 24 
(16.6%) had > 25 scattered lymphocytes, and 6 (4.1%) had no scattered lymphocytes. Twenty (13.8%) meningiomas had 1–25 
aggregated lymphocytes. Eleven (7.6%) had > 25 aggregated lymphocytes and 114 (78.6%) had no aggregated lymphocytes. 
Six (4.1%) meningiomas had 1–25 aggregated macrophages, 5 (3.4%) had > 25 aggregated macrophages, and 134 (92.4%) 
had no aggregated macrophages. Density of aggregated lymphocytes and aggregated macrophages were associated with 
higher tumor grade, P = 0.0071 and P = 0.0068, respectively. Scattered lymphocyte density was not associated with menin-
gioma grade. The presence of scattered lymphocytes was associated with increased tumor mutational burden. Meningiomas 
that did not have scattered lymphocytes had a mean number of single mutations of 2.3 ± 2.9, compared with meningiomas 
that had scattered lymphocytes, 6.9 ± 20.3, P = 0.03. NF2 mutations were identified in 59 (40.7%) meningiomas and were 
associated with increased density of scattered lymphocytes. NF2 mutations were seen in 0 (0%) meningiomas that did not 
have scattered lymphocytes, 46 (40.0%) meningiomas that had 1–25 scattered lymphocytes, and 13 (54.2%) meningiomas 
that had > 25 scattered lymphocytes, P = 0.046.
Conclusions Our findings suggest that distribution of immune cell infiltration in meningiomas is associated with tumor 
mutational burden. NF2 mutational status was associated with an increasing density of scattered lymphocytes. As the role 
of immunotherapy in meningiomas continues to be elucidated with clinical trials that are currently underway, these results 
may serve as a novel biomarker of tumor mutational burden in meningiomas.
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Introduction

Meningiomas are extra-axial brain tumors with an esti-
mated prevalence of approximately 2–7.5 in 100,000 [1–3]. 
While the majority of meningiomas are WHO grade I and 
are classically associated with a benign outcome, 5–7% 
of meningiomas are atypical (WHO grade II), and 1–3% 
are classified as anaplastic (WHO grade III). A typical and 
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anaplastic meningioma grades are associated with worse 
clinical courses with reported 10-year survival rates of 79% 
and 34.5%, respectively [4]. However, while patients with 
Grade I meningiomas typically experience favorable onco-
logical outcomes compared with higher grade tumors, Grade 
I meningiomas recur for a subset of patients, warranting fur-
ther examination of histopathological features of low-grade 
meningiomas that may be associated with recurrence [5]. 
Higher-grade meningiomas may also be treated with adju-
vant radiotherapy depending upon neuropathological fea-
tures of the tumor such as brain invasion. Emerging insight 
into the underlying genomic heterogeneity of meningiomas 
is valuable to develop novel treatment paradigms for lesions 
that portend dismal clinical sequela.

Accumulating evidence suggest that the immune micro-
environment mediates tumorigenesis and cancer progres-
sion [6–8]. For example, macrophage infiltration has been 
reported in all three grades of meningiomas with higher 
grade tumors expressing more numerous macrophages [9]. 
Interestingly, M1 macrophages have shown to exhibit anti-
tumoral effects with low M1:M2 ratios reported in higher 
grade and recurrent meningiomas [10]. To further under-
stand immune cell microenvironment in meningiomas, we 
quantified pathological evidence of macrophage and lym-
phocyte infiltration and examined the association between 
underlying mutational status and inflammatory response 
in meningiomas. Further understanding of how mutational 
influences immune response may augment our understand-
ing of the pathogenesis of high-grade meningiomas, as 
well as help guide the emerging role of immunotherapy in 
meningiomas.

Methods

Study cohort

This study was reviewed and approved by the human sub-
jects institutional review board and complied with HIPAA 
(Health Insurance Portability and Accountability Act 
of 1996) guidelines. Informed consent was waived. We 
reviewed the electronic health record for patients diagnosed 
with a meningioma who underwent neurosurgical resection 
at our institution between the years of 1995 and 2017. We 
identified 145 patients with available archival formalin-fixed, 
paraffin-embedded (FFPE) tissue. A board-certified neuro-
pathologist reviewed histopathological diagnosis, grade, and 
purity of each case according to 2016 WHO guidelines [11].

Next‑generation targeted sequencing

We performed next-generation targeted sequencing in a 
large series of 145 meningiomas. DNA was extracted from 

representative FFPE tissue using Maxwell FFPE Plus DNA 
Purification Kit (Promega, Madison, WI). DNA libraries 
were generated from tissue using the AmpliSeq Oncomine 
Comprehensive research panel versions 2.0 and 3.0 (Ther-
moFisher Scientific, Waltham, MA) as described previously 
[12]. Sequencing data analysis was performed using Torrent 
Suite (versions 5.6.0. and 5.8.0.) (ThermoFisher Scientific, 
Waltham, MA) and Ion Reporter (versions 5.2, 5.6, and 5.8) 
(ThermoFisher Scientific, Waltham, MA).

Histopathologic analysis of immune infiltration

WHO grade was determined by review of at least five board 
certified neuropathologist. A single board-certified neuro-
pathologist with over 20 years of experience performed the 
quantification of immune cells. Representative hematoxylin 
and eosin (H&E) slides were reviewed at 40X for the density 
of inflammatory cells. Lymphocytes and macrophages were 
quantified using an ordinal scale: 0 = not present, 1 = 1–25 
cells, and 2 = greater than 26 cells (Fig. 1). Immune cell 
infiltrate grade was assessed for both scattered and aggre-
gated distributions (Fig. 2).

Statistical analysis

Statistical analysis performed using JMP Pro 14.2 (SAS 
Institute Inc., Cary, NC). Fisher’s exact test used to detect 
statistical differences in categorical variables; t test used 
for continuous variables. P ≤ 0.05 used for statistical 
significance.

Results

Clinical characteristics of 145 meningiomas included in 
Table 1. Data on a sub-set of these tumors have been previ-
ously reported; however, none of these studies included data 
on immune characterization [13–16]. We were limited to the 
content of our targeted sequencing panel and were not able 
to assess known meningioma driver genes, such as TRAF, 
KLF4, and POLR2A [17, 18]. The genes included in this 
study are shown in Supplementary Table 1.

Lymphocytes were observed in both scattered (95.9%) 
and aggregated (21.4%) distributions, Fig. 1. A total of 115 
(79.3%) meningiomas had 1–25 scattered lymphocytes, 
whereas 24 (16.6%) had > 25 scattered lymphocytes, Fig. 2a. 
A total of 20 (13.8%) meningiomas had 1–25 aggregated 
lymphocytes, whereas 11 (7.6%) had > 25 aggregated lym-
phocytes, Fig. 2b. There were 77 cases that were primary 
and 68 cases that were recurrent (Table 1). There were no 
significant differences in scattered lymphocytes, aggregated 
lymphocytes, or aggregated macrophages between primary 
and recurrent tumors (P > 0.05, for all).
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No meningioma specimens had scattered macrophages. 
A total of 6 (4.1%) meningiomas had 1–25 aggregated 
macrophages, whereas 5 (3.4%) had > 25 aggregated mac-
rophages, Fig. 2c. Density of aggregated lymphocytes 
(P = 0.0071, Fisher’s exact) and aggregated macrophages 
(P = 0.0068, Fisher’s Exact) were significantly associ-
ated with higher grade meningiomas, Table 2. Scattered 
lymphocyte density was not associated with meningioma 
grade. An example of meningioma specimens exhibiting 

high focal aggregation of lymphocytes and macrophages 
is shown in Fig. 3.

The presence of scattered lymphocytes was associated 
with increased tumor mutational burden.

The mean number of single nucleotide variants was 
6.7 ± 19.9 (range 0–192). Mean number of single nucleo-
tide variants was 2.3 ± 2.9 for meningiomas that did not have 
scattered lymphocytes compared to 6.9 ± 20.3 for meningi-
omas that did have scattered lymphocytes (P = 0.03). Mean 

Fig. 1  H&E at 40X demonstrating density of scattered (arrowheads) and aggregate (circled) lymphocytes in meningioma

Fig. 2  Bar graphs of a scattered lymphocyte, b aggregated lymphocyte, and c aggregated macrophage distributions binned by not present, 
1–25, > 25. Values above bars are data counts



172 Cancer Immunology, Immunotherapy (2021) 70:169–176

1 3

number of single nucleotide variants was 7.1 ± 20.7 for men-
ingiomas that did not have aggregate macrophages present 
compared to 1.7 ± 1.2 for meningiomas that did have aggre-
gate macrophages (P = 0.004).

A total of 59 (40.7) meningiomas harbored NF2 muta-
tions. AKT1, SMO, and PIK3CA mutations were identi-
fied in 8 (5.6%), 4 (2.8%), and 4 (2.8%), respectively. NF2 
mutation status was associated with increased density of 
scattered lymphocytes. NF2 mutations were seen in 0 (0%) 
meningiomas that did not have scattered lymphocytes, 46 
(40.0%) meningiomas that had 1–25 scattered lymphocytes, 

and 13 (54.2%) meningiomas that had > 25 scattered lym-
phocytes (P = 0.046, Fisher’s exact). Among the 11 cases 
with aggregate macrophages, an NF2 mutation was seen 
in only 1 (9.1%) case (P = 0.03, Fisher’s exact). There was 
no significant association between scattered lymphocytes, 
aggregated lymphocytes, or aggregated macrophages and 
AKT1, SMO, and PIK3CA mutations status.

Discussion

Meningiomas are extra-axial tumors that reside outside of 
the blood–brain barrier. Systemic immune regulators can 
infiltrate these tumors [19]. While there has been consid-
erable interest in studying immune-mediated processes to 
guide immunotherapies in other brain tumors such as glio-
mas [19–21], there is also a growing interest in assessing 
the immune system response to meningiomas and multiple 
immunotherapies trials are currently underway [19, 22]. Fur-
ther understanding the complex association between immune 
infiltration and genomic mutations may help to increase our 
understanding of the complex role of inflammation in the 
tumor microenvironment as well as guide emerging immu-
notherapies for treating meningiomas.

Patterns of immune infiltrates in meningioma have been 
qualitatively described. They include a variety of cells 
including B and T lymphocytes, macrophages, plasma 
cells, and mast cells. Macrophages are found in all menin-
gioma grades; however, they tend to have greater density in 
grades II and III lesions [9]. Grund et al. found that higher 
grade meningiomas with invasion of the pial–glial basement 
membrane exhibited greater degrees of microglial cells that 
expressed CD14 or CD163 [23]. These results support our 
finding of increased aggregated macrophages in higher grade 
meningiomas in the present study.

Similarly, CD4 + and CD8 + T lymphocytes are found in 
both low- and high-grade meningiomas, and tend to exhibit 
greater density in atypical and anaplastic meningiomas [9, 
24]. Interestingly, increased presence of infiltrating CD8 + T 
cells has been shown to correlate with increased survival in 
meningiomas, as well as breast and lung cancer [25–27]. 
Higher PD-L1 + /CD68 − expression has been shown to be 
associated with reduced overall survival. Increased expres-
sion of CD68 −, PD-L1 + cells is correlated with meningi-
oma grade [28]. Elevated PD-L1 expression in high-grade 
meningiomas has been found in numerous studies, suggest-
ing that immune checkpoint inhibitors may be useful in 
treating aggressive high-grade meningiomas [29–32].

Several studies have evaluated how systemic serum 
markers of inflammation mediate immune response against 
meningiomas. Comtesse et  al. found that patients with 
meningiomas exhibited an elevated serum antibody level 
to numerous antigens compared with healthy individuals, 

Table 1  Clinical characteristics

Data in parenthesis represent percentage in column, unless otherwise 
indicated

Clinical characteristics

Age
Median (IQR) 60.7 (49.0, 70.9)
Range 20.3–95.7
Sex (female) 95 (65.5)
WHO grade
 I 43 (29.7%)
 II 93 (64.1%)
 III 9 (6.2%)

Occurrence
 Primary 77 (53.1%)
 Recurrent 68 (46.9%)

Mitotic count
 Median (IQR) 1 (0, 5)

Ki-67
 Median (IQR) 20 (10, 30)

Table 2  Immune infiltration by meningioma grade

Bold values indicate statistical significance (P < 0.05)
Data in parenthesis represent percentage in row
*P value within row, Fisher’s exact test

Grade I Grade II Grade III P value*

Scattered lymphocyte 0.6
 Not present 2 (33.3) 4 (66.7) 0 (0)
 1–25 32 (27.8) 74 (64.4) 9 (7.8)
  > 25 9 (37.5) 15 (62.5) 0 (0)

Aggregated lymphocyte 0.0071
 Not present 38 (33.3) 73 (64.0) 3 (2.6)
 1–25 3 (15.0) 14 (70.0) 3 (15.0)
  > 25 2 (18.2) 6 (54.6) 3 (27.3)

Aggregated macrophage 0.0068
 Not present 42 (31.3) 86 (64.2) 6 (4.5)
 1–25 1 (16.7) 5 (83.3) 0 (0)
  > 25 0 (0) 2 (40.0) 3 (60.0)
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supporting that meningioma do in fact elicit a systemic 
immune response. CD69, a surface marker of natural killer 
cells and lymphocyte activation, may be elevated in the 
serum of patients with meningiomas [33].

We modeled our immune cell infiltration quantification 
after the study by Keren et al., which described the impact 
of tumor infiltrating immune cells in cold (no infiltration), 
mixed (scattered immune cells), and compartmentalized 
(aggregated immune cells) on tumor behavior and progno-
sis in breast cancer [34]. Keren et al. demonstrated that the 
compartmentalized immune cell phenotype was associated 
with increased survival compared with the mixed pheno-
type [34]. Linking underlying genomic status with tumor 
immune microenvironment features may further our under-
standing of the complex interplay between inflammation 
and tumor progression and aide in patient stratification and 
developing immunotherapies in the future. The results from 
this study suggest that potentially clinically relevant infor-
mation is provided by studying the spatial arrangement of 
immune infiltration in the context of genomic heterogeneity 
in meningiomas.

Our results suggest that meningiomas that harbor more 
mutations generate increased levels of neoantigens that 
result in a more marked immune response. Meningiomas 
with scattered lymphocyte infiltration had threefold muta-
tional burden compared with meningiomas without lym-
phocyte infiltration. Indeed, meningiomas with high tumor 
mutational burden may display higher susceptibility to 
immunotherapies compared with tumors with low muta-
tional burden. Prior studies have shown that tumors with 
greater tumor mutational burden tend to have higher immu-
nogenicity, which leads to a more robust repertoire of neo-
antigens and confers susceptibility to immunotherapies [35, 
36]. There are a few studies that have examined the associa-
tion between tumor mutational burden and immune response 
in meningiomas [37]. These findings may be useful in the 

selection of clinical trial candidates for the application and 
development of immunotherapeutic strategies in high-grade 
meningiomas, as seen in gliomas [20, 38].

While the role of cancer immunotherapy continues to 
expand in the treatment of advanced cancers such as mela-
noma [39], lung cancer [40], and glioma [20, 21, 38], the 
role of immunotherapy in the treatment of meningiomas 
must still be elucidated. Interestingly, a recent case report 
documented an incidental 24% decrease in meningioma vol-
ume in a patient receiving nivolumab for concomitant stage 
IV lung adenocarcinoma, providing preliminary evidence for 
the efficacy of a single-agent monoclonal antibody targeting 
PD-1 in treating meningiomas [41].

Clinical tr ials aimed at determining the effi-
cacy nivolumab (NCT03173950), pembrolizumab 
(NCT03279692), avelumab (NCT03267836), and nivolumab 
with and without ipilimumab in combination with multifrac-
tion stereotactic radiosurgery (NCT03604978) are currently 
underway in patients with meningiomas. These studies, as 
well as clinical trials that utilize other checkpoint inhibitors 
against targets such as cytotoxic T lymphocyte-associated 
protein 4 (CTLA4), will be important for determining the 
role of immune checkpoint inhibitors in patients with high-
grade meningiomas.

Limitations and future directions

The main limitation of the present study was the inabil-
ity to quantify specific immune cell populations beyond 
the distinction between lymphocytes and macrophages 
that was permitted by H&E stains. Meningiomas can be 
invaded by a wide variety of immune cells and future stud-
ies are required to perform advanced immunohistochemi-
cal staining to quantify specific cell types to correlate with 
molecular findings. In particular, CD4, CD8, CD25, and 
FOXP3 are important immune cell markers that have been 

Fig. 3  H&E at 40X demonstrating high aggregate lymphocyte (a) and macrophage (b) distributions (circled) seen in meningioma
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described in distinct meningioma phenotypes that should 
be investigated in the context of genomic alterations [24, 
31, 42, 43]. Immune cells expressing immune checkpoint 
molecules such as PD-1, CTLA-4, and Tim-3 should be 
examined in the context of genomic alterations. Moreover, 
prior studies have provided evidence for the prognostic 
significance of activity of immune cells at the tumor bor-
der; such focused evaluation ought to occur in meningi-
omas [34]. Given the lack of differentiation of immune cell 
sub-phenotypes using immunohistochemistry, the present 
study serves to provide preliminary data with regard to 
the correlation of macrophage and lymphocyte patterns 
with tumor mutational status. Future work will include 
immunohistochemical interrogation of specific immune 
cell markers to further elucidate the role of immune cell 
infiltration in meningiomas.

Given the nature of the surgical resections, it was difficult 
to determine the location that each histological specimen 
originated from within the tumor. Future work should focus 
on methods by which to document the location of histo-
logical specimens within the tumor such as deeper aspects 
versus sections at the brain–tumor interface.

Conclusion

There are limited treatment options for patients with men-
ingiomas in the recurrent setting [44, 45]. Immunotherapy 
is currently being explored in clinical trials as an adjuvant 
modality for treating aggressive meningiomas that recur 
after neurosurgical resection. However, there is an unmet 
need to sufficiently characterize the association between 
genomic heterogeneity and immune response in meningi-
omas. The present study revealed that both tumor mutational 
burden and NF2 mutation status are correlated with density 
of lymphocytic infiltration. These findings may serve as a 
novel biomarker to guide the emerging role of immunother-
apy in high-grade meningiomas.
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