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Abstract
Background Although immunotherapy with immune checkpoint inhibitors (ICIs) has become a standard therapeutic strategy 
in colorectal cancer (CRC) exhibiting microsatellite instability-high, limited patients benefit from this new approach. To 
increase the efficacy of ICIs in CRC patients, it is crucial to control the function of immunosuppressive cells in the tumor 
microenvironment. M2-tumor-associated macrophages (TAMs) are key immunosuppressive cells and promote tumor growth, 
angiogenesis, and epithelial-mesenchymal transition. In the present study, we focused on the VEGF signaling pathway in 
M2-TAMs to control their inhibitory function.
Methods We evaluated the population of M2-TAMs, the VEGF receptor 2 (VEGFR2) expression on M2-TAMs, and the cor-
relation between HIF-1α-positive cells and VEGFR2 expression levels on M2-TAMs in CRC using the analysis of The Cancer 
Genome Atlas colorectal adenocarcinoma dataset (n = 592), the flow cytometry of freshly resected surgical specimens of CRC 
(n = 20), and the immunofluorescence staining of formalin-fixed paraffin-embedded whole tissue samples of CRC (n = 20). 
Furthermore, we performed a functional assay of M2 macrophages through the VEGF/VEGFR2 signaling pathway in vitro.
Results The population of M2-TAMs and their VEGFR2 expression significantly increased in the tumor compared to the 
normal mucosa in the CRC patients. HIF1-α-positive cells significantly correlated with the VEGFR2 expression level of 
M2-TAMs. M2 macrophages induced by cytokines in vitro produced TGF-β1 through the VEGF/VEGFR2 signaling pathway.
Conclusions Our results suggest that anti-VEGFR2 therapy may have therapeutic potential to control the immune inhibitory 
functions of M2-TAMs in CRC, resulting in enhanced efficacy of immunotherapy with ICIs.

Keywords M2-tumor-associated macrophages (M2-TAMs) · Colorectal cancer (CRC) · VEGF receptor 2 (VEGFR2) · 
TGF-β

Abbreviations
CRC   Colorectal cancer
EMT  Epithelial-mesenchymal transition

FFPE  Formalin-fixed paraffin-embedded
HIF  Hypoxia-inducible factor
HPD  Hyper progressive disease
ICIs  Immune checkpoint inhibitors
KDR  Kinase insert domain receptor
TAMs  Tumor-associated macrophages
TCGA   The Cancer Genome Atlas
VEGFR2  VEGF receptor 2

Introduction

Colorectal cancer (CRC) has the third highest incidence and 
fourth highest mortality rate for males of all ages, as well 
as the second highest incidence and third highest mortality 
rate for females of all ages [1]. Patients with advanced CRC 
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undergo multidisciplinary treatment such as surgical resec-
tion combined with chemotherapy and/or radiotherapy [2, 
3]. Recently, although immunotherapy with immune check-
point inhibitors (ICIs) has become a standard therapeutic 
strategy in CRC exhibiting microsatellite instability-high, its 
response rate is reported to be still limited at 30–55% [4, 5].

To increase the efficacy of this new treatment, the critical 
points are not only the accumulation of CTLs but also the 
inhibition of immunosuppressive cells, including MDSCs, 
Treg cells, and tumor-associated macrophages (TAMs), in 
the tumor microenvironment. The prevalence of them asso-
ciated with tumor progression, metastasis, poor tumor dif-
ferentiation, and poor survival [6–10].

TAMs can be categorized into inflammatory M1-TAMs 
(classically activated) or immunosuppressive M2-TAMs 
(alternatively activated) [11]. Especially, M2-TAMs promote 
tumor growth, angiogenesis, and epithelial-mesenchymal 
transition (EMT), and interfere with the antitumor function 
of immune cells, resulting in the suppression of antitumor 
immune responses in the tumor microenvironment [8–10, 
12, 13]. Therefore, we focused on M2-TAMs in the present 
study to overcome the immune escape mechanism in the 
tumor microenvironment.

Recent reports on TAMs have suggested that they are 
polarized toward the M2 phenotype within the tumor micro-
environment [14–16], and we have also previously reported 
that the distribution of M2-TAMs tended to increase in the 
tumor compared to the normal mucosa in CRC patients [17]. 
Since VEGF receptor 2 (VEGFR2) is expressed on mac-
rophages [18], it is possible that anti-VEGFR2 therapy may 
control TAMs, especially M2-TAMs, in CRC.

In the present study, we evaluated the polarization of 
M1-/M2-TAMs and the VEGFR2 expression on M1-/
M2-TAMs using freshly isolated samples, formalin-fixed 
paraffin-embedded (FFPE) tissue samples, and the public 
dataset from The Cancer Genome Atlas (TCGA) in CRC 
patients. Furthermore, we performed a functional assay of 
M2 macrophages through the VEGF/VEGFR2 signaling 
pathway in vitro.

Materials and methods

TCGA dataset analysis

The mRNA expression z-scores of genes (RNA-Seq V2 
RSEM normalized, RNA-Seq data) were obtained from 
TCGA colorectal adenocarcinoma (PanCancer Atlas) data-
set (n = 592) through cBioPortal (https ://www.cbiop ortal 
.org/) [19, 20]. In the present study, we evaluated the mRNA 
expression levels of kinase insert domain receptor (KDR) 
(encoding VEGFR2) and hypoxia-inducible factor (HIF)1A. 
We utilized multi-gene expression signatures, including 

M1-TAMs signature (CD11c, CD40, CD64a, CD64b, 
CD64c, and CD80) and M2-TAMs signature (CD23, CD36, 
CD150, CD163, CD200, CD204, CD206, and CD209) [12]. 
The MRC1L1 gene expression was excluded because it was 
not available in TCGA dataset. The signature score was cal-
culated by averaging the expression levels of included genes 
in M1-TAMs and M2-TAMs signature [21–23].

Patients

The inclusion criteria were patients who had undergone sur-
gery for CRC at Fukushima Medical University Hospital 
between June 2018 and June 2019. The exclusion criteria 
were the preoperative treatment with a self-expanding metal 
stent and the tumor diameter of 3 cm or less because the 
stent induced local inflammation in the tumor and we need 
a 1–2 cm3 samples for flow cytometry. All procedures were 
conducted in accordance with the Helsinki Declaration and 
were approved by the Institutional Ethical Committee of 
Fukushima Medical University School of Medicine (Refer-
ence Nos. 2289 and 29316).

Freshly isolated clinical samples

Resected flesh samples of the normal mucosa and the tumor, 
sized 1–2  cm3, were immediately digested by the gen-
tleMACS Octo Dissociator with Heaters (Miltenyi Biotec, 
Bergish Gladbach, Germany) using the Tumor Dissociation 
Kit (Miltenyi Biotec) according to the manufacturer’s pro-
tocol. Briefly, the samples were cut into 2–3 mm pieces and 
put in a C-tube (Miltenyi Biotec) with 5 ml of RPMI 1640 
(Sigma‐Aldrich, St. Louis, MO) and enzymes H, R, and A in 
the Tumor Dissociation Kit. The samples were then dissoci-
ated by the gentleMACS Octo Dissociator with Heaters at 
37 °C for 1 h, according to manufacturer’s recommendation. 
The collected cells were then filtered using  Falcon® 70 µm 
Cell Strainer (Corning, Corning city, NY, USA), before 
being used for flow cytometric analysis.

Flow cytometry

The cells were stained according to the manufacturer’s 
preparation protocol for each antibody (Supplementary 
Table S1). To exclude the dead cells, 7-AAD (BD Bio-
sciences, San Diego, CA, USA) was used, and the isotype-
matched immunoglobulin served as a negative control. 
TAMs were detected by the gating used in our previous 
paper (M1-TAMs; CD14+CD11c+CD163−, M2-TAMs; 
CD14+CD11c−CD163+) (Fig. 1a) [17]. All staining was 
measured using a BD FACSCanto II flow cytometer (BD 
Biosciences) and data were analyzed using FlowJo software, 
version 10.3.0 (FlowJo, Ashland, OR, USA).

https://www.cbioportal.org/
https://www.cbioportal.org/
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Immunofluorescence staining

Four  μm-thick sections were deparaffinized and rehy-
drated, and the sections were then incubated with epitope 
retrieval solution (pH9.0, Dako, Glostrup, Denmark) for 
20 min at 100 °C. Thereafter, the sections were stained 
with anti-human CD163 antibody (clone 10D6, NCL-L-
CD163, 1:200; Leica biosystems, Newcastle upon Tyne, 
UK) to detect M2-TAMs and anti-human HIF-1α antibody 
(polyclonal, ab82832, 1:100; abcam, Cambridge, UK) at 
4 °C overnight. The sections were then incubated for 1 h 
with Alexa Fluor 488-conjugated anti-mouse (polyclonal, 
A-21202, 1:200; Thermo Fisher Scientific, Waltham, MA, 
USA) and Alexa Fluor 555-conjugated anti-rabbit second-
ary antibodies (polyclonal, A-31572, 1:200; Thermo Fisher 
Scientific). Nuclei were stained with DAPI (D9542, 40 ng/
ml; Sigma-Aldrich) for 10 min. Finally, slides were mounted 
using ProLong Glass antifade reagent (Thermo Fisher 
Scientific), and images were obtained using an Olympus 

FV1000-D confocal microscope (Olympus, Tokyo, Japan). 
Green staining; CD163, red staining; HIF-1α, blue stain-
ing; DAPI. Counting of HIF-1α+ (red staining alone and/
or merge around blue staining), CD163+ (green stain-
ing alone and/or merge around blue staining), and HIF-
1α+CD163+ (green and red localized staining or merge 
around blue staining) cells was performed in four fields 
(× 400) of the hot spots of HIF-1α+ cells.

Induction of M1/M2 macrophages

CD14+ monocytes were isolated from peripheral blood 
mononuclear cells from healthy volunteers by magnetic 
labeling using a Pan Monocyte Isolation Kit (Miltenyi 
Biotec) according to the manufacturer’s instructions. The 
CD14+ monocytes were cultured in AIM-V (Fisher Scien-
tific, Waltham, MA) with 25 ng/ml GM-CSF (215-GM-010; 
R&D systems, Minneapolis, MN, USA) to get M1 mac-
rophages or 50 ng/ml M-CSF (216-MC-005; R&D systems) 
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Fig. 1  The number of M2-TAMs increased in the tumor. a The gat-
ing method of flow cytometry for freshly resected surgical speci-
mens to detect M1-TAMs (CD14+CD11c+CD163−) and M2-TAMs 
(CD14+CD11c−CD163+). b The summary of population of M1- 
or M2-TAMs in CD14-positive cells in the normal mucosa (nor-
mal) and the tumor (tumor) by flow cytometric analysis (M1-TAMs; 

CD14+CD11c+CD163−, M2-TAMs; CD14+CD11c−CD163+). 
c Representative images showing the immunofluorescence staining 
of M2-TAMs in the normal mucosa (normal) and the tumor (tumor) 
samples. Green staining; CD163, red staining; HIF-1α, blue staining; 
DAPI. d The number of M2-TAMs in the normal mucosa (normal) 
and the tumor (tumor). *p < 0.05, ****p < 0.0001
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to get M2 macrophages for 5 days [24]. After 5 days, we 
cultured M1 or M2 macrophages with the addition of M1 or 
M2 cytokines (Table 1) for 48 h in hypoxia condition [24]. 
For hypoxia exposure, the cells were cultured with 100 μm 
cobalt chloride (Sigma-Aldrich) in a modulator incubator 
chamber (Billups-Rothenberg, Del Mar, CA, USA) with 1% 
 O2, 5%  CO2 and 94%  N2 [25, 26].

Cell treatment with VEGF and selective VEGFR2 
inhibitor (small molecule)

We treated M1/M2 macrophages with 100 ng/ml of Recom-
binant Human VEGF 165 Protein (R&D systems) with/
without 1 µm of selective VEGFR2 inhibitor (small mol-
ecule) (ZM323881, R&D systems). Each dose was recom-
mended according to the manufacturer’s instructions. DMSO 
(Sigma-Aldrich) was used as a vehicle and negative control. 
The treated cells were analyzed by Western blotting after 2 h 
incubation and the culture supernatants were collected to 
measure the concentration of TGF-β1 after 48 h incubation.

Western blotting

Samples were prepared and stained with antibodies, and 
the protein signals were visualized as previously described 
[27, 28]. The primary antibodies and matched secondary 
antibodies used in the present study are presented in Sup-
plementary Table S2.

ELISA

The TGF-β release in the culture supernatant of induced 
M2 macrophages was quantified with TGF beta-1 Human 
ELISA Kit (Invitrogen, Carlsbad, CA, USA) according to the 
manufacturer’s protocol and the absorbance was measured 
using a Benchmark microplate spectrophotometer (Bio-Rad 
Laboratories, Nazareth, Belgium).

Statistical analysis

Correlations between two groups were evaluated using the 
Pearson correlation coefficient. A paired-two-tailed Stu-
dent’s t test was used to compare two groups and one-way 
ANOVA with Turkey post hoc test was used to compare 
multiple groups. All statistical analyses were conducted 
using Graphpad Prism 6 software (Graphpad Software 
Inc., La Jolla, CA, USA). All p values were two-sided, and 
p < 0.05 was considered statistically significant.

Results

The number of M2‑TAMs increased in the tumor

We evaluated the population of TAMs in CD14-positive 
cells in the tumor microenvironment of CRC by flow cytom-
etry using the freshly resected surgical specimens (Fig. 1a) 
and immunofluorescence staining using FFPE whole tissue 
samples. The characteristics of patients and tumors are pre-
sented in Supplementary Table S3 (Stage I; 6, Stage II; 7, 
Stage III; 4, Stage IV; 3). The population of both M1- and 
M2-TAMs significantly increased in the tumor in compari-
son to the normal mucosa (p < 0.0001 and p = 0.02, respec-
tively), with the population of M2-TAMs in the tumor being 
the highest (Fig. 1b). Representative images of immuno-
fluorescence staining are presented in Fig. 1c. Immunoflu-
orescence staining analysis also revealed that the number 
of M2-TAMs, CD163+ cells, significantly increased in the 
tumor (p = 0.0178) (Fig. 1d).

VEGFR2 was expressed on M2‑TAMs in CRC patients

We assessed the expression of VEGFR2 on M1- and 
M2-TAMs in the tumor microenvironment of CRC by flow 
cytometry using the freshly resected surgical specimens. 
The gating method to detect the M1- and M2-TAMs is pre-
sented in Fig. 1a. A representative histogram of VEGFR2 

Table 1  Cytokines for 
the generation of M1/M2 
macrophages used in the present 
study

Cytokine Company Catalog number Concentra-
tion (ng/
ml)

M1 cytokines
 IFN-γ R&D systems (Minneapolis, MN, USA) 285-IF-100 50
 LPS Sigma-Aldrich (St. Louis, MO, USA) L2630-10MG 20

M2 cytokines
 IL-4 Pepro Tech (Rocky Hill, NJ, USA) 200-04 20
 IL-10 Pepro Tech 200-10 20
 IL-13 Pepro Tech 200-13 20
 TGF-β Pepro Tech 100-21 20
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expression is presented in Fig. 2a (upper). The summa-
rized data of the 20 samples from CRC patients show 
that VEGFR2 expression on the M2-TAMs significantly 
increased in comparison to that on M1-TAMs in both the 
normal mucosa and the tumor, and, furthermore, VEGFR2 
expression on M2-TAMs in the tumor was significantly 
higher than that in the normal mucosa (Fig. 2a). Next, we 
analyzed the correlation of VEGFR2 (KDR) and M2-TAMs 
signature using the TCGA colorectal adenocarcinoma (Pan-
Cancer Atlas) dataset, consisting of 592 samples. There 
was a significant correlation between mRNA expression of 
VEGFR2 (KDR) and M2-TAMs signature (CD23, CD36, 
CD163, CD200, CD209, MRC1, MSR1, and SLAMF1), 
which was calculated by averaging the expression levels 
of included genes (Fig. 2b). There was also a significant 
correlation between mRNA expression of VEGFR2 and 
M1-TAMs signature (CD40, CD80, FCGR1A, FCGR1B, 
FCGR1C, and ITGAX) (r = 0.4759, p < 0.0001).

HIF1‑α+ M2‑TAMs increased in the tumor 
and HIF1‑α+ cells significantly correlated 
with VEGFR2 expression of M2‑TAMs

We then assessed the correlation between VEGFR2 and 
HIF1A using the TCGA colorectal adenocarcinoma (Pan-
Cancer Atlas) dataset. The mRNA expression of VEGFR2 
was significantly correlated with that of HIF1A (Fig. 3a). 

Moreover, immunofluorescence staining analysis revealed 
that the number of HIF-1α+ cells and HIF-1α+ M2-TAMs 
significantly increased in the tumor in comparison to the nor-
mal mucosa (p = 0.0002, p = 0.0009, respectively) (Fig. 3b).

Subsequently, we evaluated the correlation between the 
number of HIF-1α+ cells from the immunofluorescence 
staining analysis and the expression level of VEGFR2 on 
M1- or M2-TAMs from the flow cytometric analysis in 
each patient, respectively. There was a significant positive 
correlation between the number of HIF-1α+ cells and the 
VEGFR2 expression on M2-TAMs, but not with that on 
M1-TAMs (Fig. 3c).

M2 macrophages produced TGF‑β1 
through the VEGF/VEGFR2 signaling pathway

We generated M1 and M2 macrophages in  vitro, as 
described in the “Materials and methods”. We evalu-
ated their VEGFR2 expression using flow cytometry and 
confirmed the VEGFR2 expression on M2 macrophages 
(Fig. 4a). Next, we treated M1 and M2 macrophages with 
VEGF and/or selective VEGFR2 inhibitor (small molecule), 
as described in the “Materials and methods”. VEGF-sig-
nal-related molecules were activated by VEGF stimulation 
in the M2 but not the M1 macrophages, since p-Akt and 
p-Erk1/2 increased by stimulation with VEGF in the M2 
macrophages only (Fig. 4b). This activation was canceled 
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with the treatment of selective VEGFR2 inhibitor (small 
molecule) (Fig.  4b). Furthermore, we treated M2 mac-
rophages in the same way and culture supernatants were 
collected to measure the concentration of TGF-β1. Produc-
tion of TGF-β1 significantly increased in M2 macrophages 
by stimulation with VEGF and this TGF-β1 release was 
completely canceled by selective VEGFR2 inhibitor (small 
molecule) treatment (Fig. 4c).

Discussion

In the present study, our results clearly indicate that the 
population of M2-TAMs and the VEGFR2 expression on 
M2-TAMs significantly increased in the tumor compared to 
the normal mucosa of CRC patients. Furthermore, the results 
of the in vitro assay indicate that the inhibitory function 
of M2 macrophages is partially dependent on the VEGF/
VEGFR2 signaling pathway.

Although the cell surface markers of M2-TAMs include 
CD163, CD204, and CD206, we used CD163 to detect 
M2-TAMs in our previous papers, in which we reported 
that TAMs may be shifted from M1- to M2-TAMs in the 

tumor microenvironment of CRC [12, 17]. Etzerodt A et al. 
indicated in a mouse model that CD163-expressing TAMs 
play a dominant role in suppressing anti-tumor immunity 
in melanomas resistant to anti-PD-1 therapy [29]. Fur-
thermore, CD163 expression on TAMs was a particularly 
strong indicator of poor prognosis in several human can-
cers [30]. Therefore, we used CD163 to detect M2-TAMs in 
the present study as well. We found that the population of 
M2-TAMs significantly increased in the tumor compared to 
the normal mucosa in CRC patients (Fig. 1b, d); these results 
were in line with those of our previous studies [12, 17]. Of 
note, VEGFR2 was expressed on M2-TAMs, and the expres-
sion level of VEGFR2 was the highest in the M2-TAMs 
in the tumor (Fig. 2a). The analysis of TCGA colorectal 
adenocarcinoma dataset also showed a significant positive 
correlation between mRNA expression of VEGFR2 and 
M2-TAMs signature (Fig. 2b). These results suggest that the 
VEGFR2 expression on M2-TAMs plays an important role 
in anti-tumor response within the tumor microenvironment, 
and VEGFR2 on M2-TAMs is targetable by anti-VEGFR2 
therapy.

The circumstance around tumor is usually hypoxic 
condition and our results also showed that the number of 
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(CD14+CD11c−CD163+) from flow cytometric analysis with the 
number of HIF-1α+ cells from immunofluorescence staining analysis 
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HIF-1α+ cells significantly increased in the tumor in com-
parison to the normal mucosa (Fig. 3b). Laoui et al. indi-
cated that M2-like macrophages accumulate in hypoxic areas 
in the tumor microenvironment [31]. In line with this study, 
our results indicate that the number of HIF-1α+ M2-TAMs 
significantly increased in the tumor in comparison to the 
normal mucosa (Fig. 3b). Interestingly, although mRNA 
expression of VEGFR2 was significantly correlated with that 
of HIF1A (Fig. 3a), there was a significant positive correla-
tion between the number of HIF-1α+ cells and the VEGFR2 
expression on M2-TAMs, but not that on M1-TAMs 
(Fig. 3c). These results suggest that hypoxia may induce 
VEGFR2 expression on M2-TAMs only. Colegio OR et al. 
indicated that lactic acid produced by tumor cells induced 
the M2-like polarization of TAMs, and this effect of lactic 
acid was mediated by HIF-1α [32]. It is possible that polar-
ized M2-TAMs induced by lactic acid express VEGFR2 
in the tumor microenvironment. However, further study is 
needed to elucidate this mechanism.

It is well known that IL-10 and TGF-β are key immu-
nosuppressive cytokines [33]. TAMs secrete IL-10 as well 
as TGF-β, which suppress the function of CD8+ T cells 
and DCs, and stimulate the amplification of Treg cells [16, 
34–37]. Additionally, TGF-β is a key driver of metastasis, 
because TGF-β triggers the EMT; therefore, the inhibition 
of TGF-β is very important both to enhance the efficacy 
of immunotherapy and to inhibit metastasis [16, 34]. In 
the tumor microenvironment, VEGF is produced by tumor 
cells, endothelial cells, stromal cell, DCs, MDSCs, Treg 
cells, and M2-TAMs [38]. Furthermore, the present study 
show that M2 macrophages produced TGF-β1 though the 
VEGF/VEGFR2 signaling pathway (Fig. 4b). These pre-
vious studies and our results suggest that M2-TAMs sup-
pressed the anti-tumor immune response in paracrine and 
autocrine VEGF signaling through VEGFR2 in the tumor 
microenvironment of CRC. It is possible that anti-VEGFR2 
therapy have a potential to control the inhibitory function 
of M2-TAMs.
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Hyper progressive disease (HPD) is a phenomenon, 
which is the acceleration of tumor growth in patients 
treated with ICIs, and its reported frequency ranges 
between 9 and 29% in patients with different types of can-
cer [39]. Lo Russo et al. recently suggested that non-small 
cell lung cancer patients with HPD showed the infiltration 
of clustered M2-TAMs expressing CD163+CD33+PD-
L1+ in the pretreatment tissue samples [39]. In the present 
study, we also found that M2-TAMs are predominantly 
accumulated in the tumor microenvironment of CRC. 
Since our results indicate that VEGFR2 was abundantly 
expressed on M2-TAMs, the inhibition of VEGF-signaling 
by anti-VEGFR2 inhibitors or anti-VEGF antibodies in 
M2-TAMs may help in controlling their inhibitory func-
tion for anti-tumor immune response. Recent studies have 
confirmed that M2-TAMs express PD-1 as well as PD-L1 
[39, 40]. It is possible that the accumulation of M2-TAMs 
may steal the anti-PD-1 mAb from CTL in the tumor 
microenvironment, resulting in the attenuation of efficacy 
of anti-PD-1 therapy. Taken together with the results of 
these previous reports and of the present study suggest 
that M2-TAMs may be involved in HPD, especially in ICIs 
targeted for PD-1/PD-L1 axis.

In conclusion, our results indicate that anti-VEGFR2 
therapy may have therapeutic potential to control the 
immune inhibitory functions of M2-TAMs in CRC, result-
ing in an enhancement of the efficacy of immunotherapy 
with ICIs.
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