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Abstract
Targeting PD-1/PD-L1 has shown substantial therapeutic response and unprecedented long-term durable responses in the 
clinic. However, several challenges persist, encompassing the prediction of treatment effectiveness and patient responses, the 
emergence of treatment resistance, and the necessity for additional biomarkers. Consequently, we comprehensively explored 
the often-overlooked isoforms of crucial immunotherapy players, leveraging transcriptomic analysis, structural modeling, 
and immunohistochemistry (IHC) data. Our investigation has led to the identification of an alternatively spliced isoform of 
PD-L1 that lacks exon 3 (PD-L1∆3) and the IgV domain required to interact with PD-1. PD-L1∆3 is expressed more than 
the canonical isoform in a subset of breast cancers and other TCGA tumors. Using the deep learning-based protein mod-
eling tool AlphaFold2, we show the lack of a possible interaction between PD-L1∆3 and PD-1. In addition, we present data 
on the expression of an additional ligand for PD-1, PD-L2. PD-L2 expression is widespread and positively correlates with 
PD-L1 levels in breast and other tumors. We report enriched epithelial-mesenchymal transition (EMT) signature in high 
PD-L2 transcript expressing (PD-L2 > PD-L1) tumors in all breast cancer subtypes, highlighting potential crosstalk between 
EMT and immune evasion. Notably, the estrogen gene signature is downregulated in ER + breast tumors with high PD-L2. 
The data on PD-L2 IHC positivity but PD-L1 negativity in breast tumors, together with our results on PD-L1∆3, highlight 
the need to utilize PD-L2 and PD-L1 isoform-specific antibodies for staining patient tissue sections to offer a more precise 
prediction of the outcomes of PD-1/PD-L1 immunotherapy.
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Introduction

PD-L1 is an Ig-like transmembrane receptor ligand 
expressed on cell surfaces. Interaction of this ligand with its 
receptor (PD-1) inhibits T-cell activation and cytokine pro-
duction. During infection or inflammation, this interaction is 
essential to prevent autoimmunity. However, PD-L1 is also 
frequently overexpressed on the surface of different tumors, 
including lymphoma, melanoma, lung, breast, kidney, ovary, 
bladder cancers, and glioblastoma [1–4]. These tumor cells 
expressing PD-L1 protein escape from the immune sys-
tem through cytotoxic T-cell inactivation, which promotes 
tumor growth and metastasis [5]. On the other hand, PD-1 
is highly expressed in activated T cells, B cells, thymocytes, 
natural killer (NK) cells, and other antigen-presenting cells 
(APCs). Hence, PD-1/PD-L1 signal transduction is critical 
for autoimmunity, antiviral responses, and antitumoral T-cell 
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responses [6]. Given these vital roles, monoclonal antibod-
ies directed against PD-1 or PD-L1 for immune checkpoint 
blockade immunotherapy have emerged as a promising and 
effective treatment strategy in a subset of advanced cancer 
patients [7–9]. Targeting PD-1/PD-L1 has shown substantial 
therapeutic response and unprecedented long-term durable 
responses in the clinic; however, critical challenges remain 
to be addressed. For example, the reasons for the lack of 
complete clinical response or resistance to immune check-
point inhibitors in some patients are unclear.

Currently, most focus is on PD-L1 binding to PD-1 for 
immune checkpoint blockade immunotherapy. Diagnostic 
antibodies score PD-L1 levels to determine patient eligibility 
for immunotherapy. However, PD-L1 isoforms and a second 
ligand (PD-L2) [10] are often overlooked within this great 
potential to treat aggressive tumors. PD-L2 expression is 
already reported for several tumor types, including head and 
neck squamous cell carcinoma [11], lung squamous cell car-
cinoma [12], renal cell carcinoma [13], and pancreatic ductal 
adenocarcinoma [14]. Here we focus on PD-L1 isoforms and 
PD-L2 in breast cancers and propose that disregarding these 
variants may hinder accurate eligibility scoring for immuno-
therapy and effective treatment of patients.

Methods

Expression data

Tumor expression data were retrieved from public domain 
resources. TPM data (RSEM) in the Genotype-Tissue 
Expression Project (GTEx) (https:// gtexp ortal. org) and The 
Cancer Genome Atlas (TCGA) Genomic Data Commons 
Data Portal (GDC Data Portal) (https:// portal. gdc. cancer. 
gov) were downloaded from UCSC Xena, Xena Toil RNA-
Seq Recompute Compendium (https:// toil. xenah ubs. net) 
(Jan.16, 2021). The batch effect caused by different compu-
tational analyses is eliminated because USCS Xena contains 
data re-analyzed by the same RNA-Seq pipeline for TCGA 
and GTEx samples. The clinical data for TCGA-BRCA 
samples containing PAM50 status (Luminal A (estrogen 
receptor (ER)-positive and progesterone receptor (PR)-pos-
itive, HER2-negative), Luminal B (ER-positive and HER2-
negative), HER2-enriched (ER-negative, PR-negative, and 
HER2-positive), and Triple-negative or basal-like breast 
cancer (ER/PR/HER2-negative) were downloaded from 
TCGA by the TCGAbiolinks R package version 2.20.0 [15].

PD‑L1∆3 and PD‑L2 expression analysis

To determine the number of patients exhibiting higher 
expression of the PD-L1∆3 or PD-L2 transcripts, we 
extracted RNA-Seq data in the form of RSEM TPM values 

using the UCSC Xena tool and compared the isoform-level 
RSEM TPM data for isoforms.

Differential gene expression

RNA expression data for cancer patients were obtained from 
the TCGA database through the XENA Toil web interface. 
Patients with available PD-L1 and PD-L2 expression data 
were included in the study. Based on the PD-L2/PD-L1 ratio, 
patients were classified into two groups: those with a ratio 
greater than or equal to 1 (PD-L2/PD-L1 >  = 1) and those 
with a ratio less than 1 (PD-L2/PD-L1 < 1). The RNA-seq 
data of TCGA was used on the cBioPortal platform to deter-
mine differentially regulated genes in the PD-L2 > PD-L1 
group. Genes with a student t test p value < 0.05 and 
fold-change > 1.5 or < 0.6 were considered differentially 
expressed between the two patient groups (PD-L2 > PD-L1 
vs. PD-L2/PD-L1 < 1). The “GSEAPreranked” tool in Gene 
Set Enrichment Analysis (GSEA) software version 4.2.1 was 
used to compute enriched biological pathways for tumors 
grouped according to PD-L2/PD-L1 expression ratios [16]. 
The weighted GSEA analysis was performed with 1000 
permutations using human gene symbols for Hallmark 
gene sets. mRNA expressions of PD-L1 and PD-L2 were 
also analyzed in the METABRIC (Molecular Taxonomy 
of Breast Cancer International Consortium) dataset [17]. 
We grouped patients using their PAM50 subtype and the 
expression level of PD-L2 and PD-L1. The normalized 
mRNA expression data for PD-L1 (ILMN_1701914) and 
PD-L2 (ILMN_2159272) from European Genome-Phenome 
Archive (EGAS00000000083) and the clinical data from 
cBioPortal were used. The DEGs between the two groups 
(PD-L2/PD-L1 >  = 1 vs. PD-L2/PD-L1 < 1) were deter-
mined and analyzed by GSEA.

Protein structure and modelling

Human PD-1, PD-L1, and PD-L2 sequences were retrieved 
from the UniProt Knowledgebase [18]. The crystal structures 
of PD-L1 and PD-1 were retrieved from Protein Data Bank 
[19] through accession ids 3BIS [20] and 3RRQ (Supple-
mentary Fig. 1). For modeling the protein isoforms with 
unknown structures and their interactions, the deep learning-
based protein modeling tool AlphaFold2 (AF2) [21] was 
used through the ColabFold platform [22]. AF2 evaluates 
the per-residue confidence score (pLDDT) between 0 and 
100, the predicted aligned error (PAE) rate for each residue, 
and the predicted structure accuracy (predicted TM (pTM)), 
ranging between 0 to 1. The interfaces of protein interac-
tions were analyzed with the PDBePISA web server [23]. 
PyMOL was used for the visualization of the protein struc-
tures (The PyMOL Molecular Graphics System, Version 2.0, 
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Schrödinger, LLC, 1 December 2022). IBS 2.0 was used to 
illustrate the protein domain organizations [24].

IHC for PD‑L1 and PD‑L2

PD-L1 and PD-L2 immunohistochemistry results were 
taken from the Human Protein Atlas (proteinatlas.org) [25]. 
CAB076385 antibody was used for PD-L1, and HPA013411 
was used for PD-L2 staining.

Results

PD‑L1 and PD‑L1 isoforms

PD-L1 (CD274, ENSG00000120217.13) gene maps to 
Chromosome 9: 5,450,503–5,470,566 and generates sev-
eral mRNA isoforms. The canonical mRNA isoform 
(ENST00000381577.3) is 3622 nucleotides long, has seven 
exons, and codes for a 290 amino-acid long protein with 
N-terminus Immunoglobulin Variable domain (IgV), Immu-
noglobulin Constant-2 set (IgC2) domain, transmembrane 
and cytoplasmic domains at the C-terminus (Fig. 1a). The 
N-terminal IgV domain of PD-L1 is responsible for binding 
to the IgV domain of PD-1 [26, 27].

Along with this well-known canonical PD-L1 transcript, 
a second PD-L1 mRNA isoform (ENST00000381573.8, 
3.3 kb) is also expressed. Because of alternative splicing, 
this isoform lacks the third exon and encodes a 176 amino 
acid protein isoform (NP_001254635) which lacks the IgV 
domain (hereon referred to as PD-L1∆3) (Fig. 1a).

First, to understand the functional relevance of not hav-
ing the IgV domain for the PD-1 interaction, we investi-
gated the structure and function of the PD-L1∆3 protein 
isoform. The crystal structure of the PD-1: PD-L1 complex 
was available through the PDB (ID:3BIK) [19]. The individ-
ual structures of PD-L1 and PD-1 were previously resolved 
(PDB IDs: 3BIS [20], and 3RRQ, Supplementary Fig. 1). 
PD-1 and PD-L1 interact through the front and the side of 
(IgV) domains, so the interface residues are located on their 
IgV domains (Supplementary Table 1). To understand the 
implication for the loss of the IgV domain in PD-L1∆3 for 
the PD-1 interaction, we used the deep learning-based pro-
tein modeling tool AlphaFold2 (AF2) [21] (Supplementary 
Fig. 1). As a result, the lack of IgV domain in the PD-L1∆3 
resulted in a significantly low confidence score at the inter-
action surface with PD-1, compared with the high score of 
PD-1-IgV: PD-L1-IgV, calculated as a reference (Fig. 1b). 
In addition, the important salt bridges (SB1: D85-F19 and 
SB2: E136-R125) between the PD-1-IgV and PD-L1-IgV 
interface are completely lost in the PD-1-IgV: PD-L1∆3-
IgC2 complex model (Fig. 1c). Based on these results, we 
suggest that PD-L1∆3 protein does not bind to PD-1.

Next, we were curious whether the PD-L1∆3 transcript 
is expressed in tumors. Within the TCGA (The Cancer 
Genome Atlas) tumor types, we determined patients with 
higher levels of PD-L1∆3 compared to the canonical PD-L1 
transcript (PD-L1∆3 > PD-L1) (Fig. 2a). Out of 33 different 
malignancies, 20 cancer types had 10% or more patients with 
higher PD-L1∆3 > PD-L1 transcript expression. A breast 
cancer-specific graph (n = 86) shows PD-L1∆3 and PD-L1 
expression levels (Fig. 2b).

These results indicated that PD-L1∆3 transcript lev-
els exceed the canonical PD-L1 transcript expression in a 
group of breast cancers and other malignancies. Hence, it 
is reasonable to expect that PD-L1∆3 protein is present in 
tumors and that anti-PD-L1 antibodies recognizing common 
epitopes would bind to both protein isoforms. Consequently, 
unspecific detection of the PD-L1∆3 protein isoform could 
be problematic in immunotherapy eligibility tests based on 
PD-L1 staining. Of note, the functional role of this PD-L1 
protein isoform without the IgV domain remains to be 
investigated.

A second ligand for PD‑1; PD‑L2

We continued to look into additional isoform-level com-
plexities that may be involved in immunotherapy checkpoint 
responses. We focused on a second ligand of PD-1; PD-L2 
(Programmed Cell Death-1, Ligand 2, PDCD1LG2, a.k.a. 
CD273). PD-L2 gene maps distal to PD-L1 on Chromosome 
9: 5,510,531–5,571,282 (hg38) and is known to generate 
only one mRNA transcript. In addition to the physical prox-
imity of PD-L2 and PD-L1 genes, previous work showed 
that both genes are co-regulated [27].

PD-L2 mRNA isoform (ENST00000397747.5) is 2432 
nucleotides long, has seven exons, and codes for a 273 
amino-acid long protein with an N-terminus Ig-like V-type 
domain and a membrane-proximal IgC domain. The N-ter-
minal Ig-like V-domain of PD-L2 is responsible for binding 
to PD-1, similar to PD-L1 [10]. Numerous structural and 
biochemical methods confirmed that PD-L2 binding to PD-1 
has a stronger affinity than PD-L1 [28]. Notably, current 
diagnostic or therapeutic antibodies targeting PD-L1 fail to 
bind to PD-L2 due to a lack of high sequence homology 
between the two proteins [29].

Given its ability to bind to PD-1, we sought to determine 
the expression pattern of PD-L2 in breast tumors. Based on 
RNA-seq data of the TCGA dataset, PD-L1 and PD-L2 tran-
script levels positively correlate in breast cancers as well as 
other cancer types (Fig. 3a and Supplementary Fig. 2). Next, 
we wanted to see whether there are tumors that express more 
PD-L2 than PD-L1. For breast cancer subtypes, basal tumors 
had (150 out of 173, 87%) the highest ratio of PD-L2/PD-L1 
transcript expression, but within all subtypes, most tumors 
had higher levels of PD-L2 transcript (Fig. 3b).
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To start understanding the biological relevance of PD-L2 
expression in breast tumors, we grouped tumors based on 
the infiltration of cytotoxic T lymphocytes (CTL) accord-
ing to CD8A, CD8B, GZMA, GZMB, and PRF1 expression 
levels, using the TIDE (Tumor Immune Dysfunction and 
Exclusion) algorithm [30, 31]. Then we determined PD-L1 
and PD-L2 expression levels in high and low CTL infiltra-
tion groups. PD-L2 expression levels were comparable to or 
higher than PD-L1 levels in all CTL high groups. Of note, 
within the luminal A (ER/PR + , HER2-) subtype, PD-L2 
expression was more elevated than PD-L1 in the CTL high 
group. In contrast, both PD-L1 and PD-L2 levels were low 
in the CTL low tumors (Fig. 3c). These results suggested 
that high expression of PD-L2 in the CTL high groups could 
have functional relevance.

Next, we grouped TCGA BRCA patients based on their 
PAM50 subtype and the expression level of PD-L2 and 
PD-L1 and then compared two groups (PD-L2/PD-L1 > 1 
vs. PD-L2/PD-L1 < 1) of patients to identify differentially 
expressed genes. Differential expression analysis using 
cBioPortal resulted in DEGs (differentially expressed 
genes) according to the criteria of a fold change (fc > 1.5 

or fc < 0.6, and a p value of < 0.05) (Fig. 4a). DEGs were 
further analyzed by gene set enrichment and ontology tools. 
GSEA showed that the gene signature for EMT (epithelial-
mesenchymal transition) was enriched for the transcript ratio 
of PD-L2/PD-L1 > 1 breast tumors in all subtypes (Fig. 4b).

An independent METABRIC breast cancer dataset con-
firmed these results, showing enrichment of an EMT sig-
nature for high PD-L2 expressing tumors (Supplementary 
Table 2). EMT, a characteristic of tumor cells, is essential 
for migration, colonization, and metastasis [32]. Evidence of 
a bidirectional regulation between EMT and immune check-
point proteins is increasing [33]; hence the co-existence of 
EMT and high PD-L2 expression may also represent an 
opportunity for effective immunotherapy, biomarker devel-
opment, and drug targeting.

While the EMT signature was enriched in PD-L2-high 
tumors of all breast cancer subtypes, there were also sub-
type-specific gene signatures. Of note, the KRAS-Signaling-
Up signature was enriched in luminal A, and luminal B, 
breast cancers with higher PD-L2 expression (ES = 0.53, 
0.49, respectively). GSEA Hallmark gene signatures for 
allograft rejection, inflammatory response, and interferon-
gamma response were also enriched along with the KRAS-
Signaling-Up gene set in PD-L2-high tumors, suggesting 
inflammation and a favorable tumor immune microenviron-
ment [34]. Luminal A and luminal B tumors with higher 
PD-L2 expression were also enriched for the Gene Ontol-
ogy Biological Process tool's positive T cell selection gene 
signature (ES = 0.78 and 0.79, respectively) (Supplementary 
Table 2). Interestingly estrogen response genes were down-
regulated in the PD-L2 > PD-L1 luminal A and luminal B 
breast cancer patients (Supplementary Table 2).

Fig. 1  PD-1/PD-L1 interaction models. a Domain organizations 
of  PD-L1, PD-L1∆3 isoform, and PD-1 (IgV in slate and IgC2 in 
pink). The same color coding for domains is followed for panels. The 
corresponding full-length protein models were generated with AF2. 
b The best structural models produced by AF2 for PD1-IgV:PDL1-
IgV and PD1-IgV:PDL1∆3-IgC2 interactions. The confidence score 
of models is presented in color-coded pLDDT scores, where yel-
low and orange indicate low and very low confidence regions. c The 
salt bridge (SB) distribution across PD1-IgV:PDL1-IgV interface is 
shown. SB1 and SB2 are lost for the PD1-IgV: PDL1∆3-IgC2 com-
plex model
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the percentage and the number of patients exhibiting higher expres-
sion of the PD-L1∆3 (ENST00000381573) transcript compared to 

the canonical PD-L1 transcript (ENST00000381577). The RSEM 
TPM values of isoforms for the TCGA dataset were extracted using 
the UCSC Xena tool. b Higher expression of the PD-L1∆3 transcript 
compared to the canonical PD-L1 transcript in breast tumors (n = 86)



4070 Cancer Immunology, Immunotherapy (2023) 72:4065–4075

1 3

10
0

2

4

6

8

10

0 2 4 6 8

PD
-L

2:
 m

R
N

A 
Ex

pr
es

si
on

, 
R

SE
M

 (B
at

ch
 n

or
m

al
iz

ed
 fr

om
 Il

lu
m

in
a 

H
iS

eq
_R

N
AS

eq
V2

) 
(lo

g2
(v

al
ue

 +
 1

))

y = 0.69x + 2.91
R² = 0.53

Spearman: 0.74
(p = 7.43e-188)

Pearson: 0.73
(p = 3.20e-180)

BRCA_LumA
(n=499)

BRCA_LumB
(n=197)

BRCA_Her2-enriched
(n=78)

BRCA_Basal-like
(n=171)

BRCA_Normal-like
(n=36)

150/17365/78400/500 157/196 32/36

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

PD-L1: mRNA Expression, 
RSEM (Batch normalized from Illumina HiSeq_RNASeqV2) 

(log2(value + 1))

Lu
m

A

Lu
m

B

HE
R2

en
ric

he
d

Ba
sa

l-li
ke

No
rm

al-
lik

e

PD
L2

/P
D

L1
 R

at
io

lo
g2

(F
PK

M
-U

Q
+1

)

LumA LumB

HER2-enriched Basal-like

0

5

10

15

0

5

10

15

0

5

10

15

20

25

0

5

10

15
20

40

60

TP
M

TP
M

TP
M

TP
M

PD
-L

1

PD
-L

2

PD
-L

1

PD
-L

2

PD
-L

1

PD
-L

2

PD
-L

1

PD
-L

2

PD
-L

1

PD
-L

2

PD
-L

1

PD
-L

2

PD
-L

1

PD
-L

2

PD
-L

1

PD
-L

2

****
****

** ns

****
****

ns ns

***
****

ns ns

****
****

ns **

CTL high
n=116

CTL low
n=315

CTL high
n=54

CTL low
n=118

CTL high
n=37

CTL low
n=40

CTL high
n=89

CTL low
n=82

a. b.

c.



4071Cancer Immunology, Immunotherapy (2023) 72:4065–4075 

1 3

For Her2-enriched tumors, high PD-L2 expressing tumors 
had downregulated E2F target genes, G2M checkpoint 
genes, MYC targets, and oxidative phosphorylation gene 
signatures (Supplementary Table 1). For basal-like tumors, 
in addition to upregulated EMT genes, Myogenesis, UV-
Response, and Angiogenesis Hallmark gene signatures were 
upregulated (Supplementary Table 2). In contrast, inter-
feron-gamma/alpha response genes, E2F, and MYC target 
genes were downregulated in high PD-L2-expressing tumors 
(Supplementary Table S2).

These results indicate significant transcriptomic differ-
ences in high PD-L2/PD-L1 expressing tumors compared to 
low PD-L2/PD-L1 tumors. These differences suggest func-
tional implications for high PD-L2 expression in breast can-
cers through EMT and subtype-specific pathways. To sup-
port the significance of our findings, we provide evidence for 
PD-L2 staining in breast cancer patients with undetectable 
levels of PD-L1 in the Human Protein Atlas [25] (Fig. 5a, b). 
73% of breast tumors (8 out of 11) had medium, 18% (2 out 
of 11) had low staining intensity for PD-L2, whereas none 
of the 12 samples had PD-L1 staining (Fig. 5a). Figure 5b 
shows the same patient samples stained for medium intensity 
for PD-L2 whereas PD-L1 staining was not detected.

Overall, these results show that the expression of PD-L2 
and isoforms of PD-L1 adds another layer of complexity 
that may play decisive roles in the ultimate outcomes of 
immunotherapy blockade.

Discussion

Immunotherapy primarily aims to block PD-1/PD-L1 inter-
action to reactivate the immune system to recognize and 
attack cancer cells. However, multiple factors (e.g., CTL 
infiltration, DNA repair defects, mutation, neo-antigen load) 
can affect the success of cancer immunotherapy approaches. 
None of these factors, including PD-L1 levels, is sufficient 
to predict the therapy response. This study looked into 
transcript-level complexities that may improve the current 
understanding of PD-1/PD-L1-focused treatment strategies. 
Here, we mainly provide transcript level evidence from 
patient samples but protein levels and post-translational 

modifications such as ubiquitination, glycosylation, phos-
phorylation acetylation, and palmitoylation are to be con-
sidered for PD-L1 and PD-L2 positivity in future studies.

PD‑L1 isoforms

The FDA approved different PD-L1 immunohistochemical 
assays/antibodies. These assays are generally based on four 
PD-L1 antibodies (22C3, 28-8, SP263, SP142). SP142 and 
SP263 recognize the cytoplasmic domain of PD-L1, 22C3 
recognizes the IgC2 domain, and 28-8 recognizes both the 
IgV and the IgC2 domains [35]. Hence, a positive PD-L1 
IHC score could be due to the recognition of the protein 
isoform translated from PD-L1∆3 alone or with the canoni-
cal PD-L1, causing false positivity. Only 28-8 antibody is 
likely to recognize the canonical full-length PD-L1 pro-
tein among these four antibodies. Consequently, unspecific 
detection of the PD-L1∆3 protein could explain commonly 
reported staining inconsistencies [35, 36]. Hence, as diag-
nostic accuracy is a critical parameter for PD-L1 positivity 
in patients, the presence and unintentional detection of a 
non-PD-1 interacting PD-L1 protein variant may skew the 
test results. Earlier, a PD-L1 splice variant lacking the IgV 
domain was identified in peripheral blood mononuclear cells 
[37]. The alternatively spliced isoform of PD-L1, missing 
exon 3, was also recently described in oral squamous cell 
carcinoma cell lines [38]. This study further provides evi-
dence on enhanced exon 3 inclusion upon IFN-γ treatment 
in cell lines. Altogether, these findings highlight the impor-
tance of understanding the mechanisms controlling gene 
expression and splicing patterns.

In addition to PD-L1∆3, a soluble form of PD-L1 (sPD-
L1) was detected in NSCLC (Non-Small Cell Lung Can-
cer) patients who did not respond to anti-PD-L1 treatment 
[39]. This isoform is a product of alternative splicing and 
polyadenylation and, when translated, lacks the transmem-
brane domain. As a result, it is secreted, can bind to PD-1, 
and works as a decoy of anti-PD-L1 antibodies [39]. Inter-
estingly, this soluble PD-L1 encoded form has been detected 
in healthy human serum but is elevated in autoimmune dis-
ease and cancer [40–44]. Expression or up-regulation of this 
isoform, translated into a C-terminus truncated protein (sPD-
L1) alone or with the full-length protein, may also explain 
why some PD-L1-positive patients do not respond well to 
anti-PD-L1 drugs.

In addition to earlier work, large datasets for transcrip-
tome and proteome level analysis in normal tissues and 
patient samples are now available. Together with previous 
work, we highlight to need to look into PD-L1 isoforms that 
may have functional implications.

Fig. 3  PD-L1 and PD-L2 expression levels correlate in TCGA breast 
cancers. a The x-axis represents the log2-transformed RSEM gene 
expression values of PD-L1, and the y-axis represents the log2-trans-
formed RSEM gene expression values of PD-L2. Pearson (r = 0.74), 
Spearman correlation coefficients (r = 0.73), and corresponding 
p-values are shown. The line represents the regression line of the 
positive correlation. b Breast cancer subtypes and high PD-L2/PD-L1 
expressing tumors (log2(FPKM-UQ + 1)) are shown., c. PD-L1 and 
PD-L2 levels in CTL high and low breast cancers grouped according 
to PAM50 status (Mann–Whitney test, ns: not significant, ** < 0.01, 
*** < 0.001, **** < 0.0001). CTL infiltration groups were determined 
using the TIDE algorithm

◂
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Fig. 4  Differential expression 
analysis results for patients 
with different PD-L2/PD-L1. 
a Volcano graphs of DEGs in 
PD-L2/PD-L1 > 1 v.s. PD-L2/
PD-L1 < 1 tumors of the 
luminal A, luminal B, HER2-
enriched, and basal-like breast 
cancer subtypes of the TCGA 
dataset. DEGs were selected 
based on fold-change (> 1.5 
or < 0.6) and p value (student t 
test p value < 0.05) criteria. b. 
Gene set enrichment analysis 
(GSEA) was performed to 
identify enriched biological 
pathways and gene ontology 
terms in high PD-L2 expressing 
tumors. Enrichment plots for 
“Hallmark-Epithelial Mesen-
chymal Transition” (EMT) gene 
sets are shown for each breast 
cancer subtype. The y-axis 
represents the enrichment score 
(ES), and the curves represent 
the running sum of ESs. The 
x-axis shows the rank positions 
of gene set members represent-
ing EMT. Vertical lines indicate 
the position of individual genes 
in the ranked list. Normalized 
enrichment scores (NES) and 
false discovery rates (FDR) are 
indicated on the graphs
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PD‑L2

PD-L2 has a sequence identity of only 38% to PD-L1 [20]. 
Structural, functional, and evolutionary differences between 
the two ligands showed PD-L2 to have a stronger affinity 
to PD-1 than the PD-1/PD-L1 interaction [28]. Hence, we 
investigated high PD-L2 expression correlated genes and 
gene signatures to determine responders and potential bio-
marker candidates for immune checkpoint blockade.

We demonstrate the EMT gene signature enrichment in 
the high PD-L2-expressing tumors among all breast can-
cer subtypes. The transition from polarized epithelial cells 
to mobile mesenchymal cells, mediated by EMT, allows 
enhanced stem cell properties, therapy resistance, invasive-
ness, and metastasis. A correlation between PD-L1 and 
EMT-related gene signatures in breast and other cancers 
has been suggested [reviewed in 45]. In addition to tumor 
cells, tumor-infiltrating immune cells can also promote 
EMT through the secretion of soluble factors (e.g., TGFβ, 
IL-6, TNF-α, IFN-γ, VEGF, etc.). Interestingly, pathways 

implicated in EMT have been linked to PD-L1 upregulation. 
It remains to be tested whether EMT also modulates PD-L2 
transcription.

Of note, the high PD-L2/PD-L1 ratio group in ER + breast 
tumors had a downregulated estrogen response-related gene 
signature, suggesting the presence of a more aggressive 
subgroup. These results support a recent study by Chervo-
neva et  al. Approximately one-third of treatment-naive 
ER + breast tumors (n = 684, and a validation cohort of 273 
patients) were reported to have high PD-L2 IHC staining, 
independently predicting poor clinical outcomes and ele-
vated progression risk in patients despite receiving adju-
vant chemotherapy [46]. So far, PD-1 inhibitors have been 
approved only for TNBCs, and ER + subtype patients are 
considered to have lower response rates to immunotherapy 
[47]. Hence, finding markers to identify likely responders 
expressing PD-L2 could significantly impact these patients.

On the other hand, PD-L1 signaling in some tumor cells 
has been linked to cancer initiation, EMT, invasion, metasta-
sis, glucose metabolism, and drug resistance [48]. However, 
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Fig. 5  The PD-L1 and PD-L2 protein staining data for breast tumors 
with representative regions amplified for details. a According to the 
Protein Atlas annotation, PD-L2 staining is medium, moderate inten-
sity, the quantity is > 75%, and the location is cytoplasmic/membra-

nous. In contrast, PD-L1 staining is not detected for the same patient 
samples. b The cell nuclei are labeled blue, and the proteins are 
shown with brown color. Image source credit: Human Protein Atlas
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PD-L2 signaling in cancer cells is less understood and war-
rants more interest in light of its expression in cancers. High 
PD-L2 in some patients may be competitive over antibody 
drugs targeting PD-L1 or the PD-1 receptor. Hence, tumors 
exclusively expressing PD-L1 or with PD-L2 may have dif-
ferent responses to immunotherapy. Of note, the expression 
of PD-L2 may explain why some PD-L1-negative patients 
still benefit from anti-PD-1 therapy. Hence, high PD-L2 
expression in breast and other tumor types may provide a 
rationale for immune checkpoint blockade with anti-PD-1 
and yet-to-be-developed PD-L2 inhibitors. Of note, no alter-
natively spliced PD-L2 isoform is reported in normal tissues 
tested in the GTEx database, but in an early study, PD-L2 
isoforms were reported in activated leukocytes [49]. Moreo-
ver, pathogenic alterations may also affect the function of 
PD-L2 or cause deregulated alternative splicing. Indeed, a 
germline mutation in the PD-L2 gene causes a novel tran-
script variant that likely underlies the genetic etiology of the 
lymphomas in a specific family [50]. Hence identification of 
PD-L2 mutations and/or isoforms may also be critical during 
personalized immunotherapy decisions.

In closing, we provide transcriptome-level evidence sup-
ported by structural modeling, bioinformatic analyses, and 
IHC data on the significance of PD-L1 isoforms and PD-L2 
in breast cancer subtypes. Because effective predictive bio-
markers for PD-1 blockade are needed to improve immu-
notherapy response, the expression of PD-L1 isoforms and 
PD-L2 in tumors warrants further research. Based on accu-
mulating evidence and our findings, we propose the urgent 
need to develop and utilize isoform-specific antibodies for 
PD-L1 and PD-L2 for staining patient tissue sections to pre-
dict immunotherapy outcomes better. Immune-dependent 
overlapping and independent, unique molecular functions 
of PD-L1 and PD-L2 also remain to be fully understood.
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