
Vol.:(0123456789)1 3

Cancer Immunology, Immunotherapy (2023) 72:2717–2728 
https://doi.org/10.1007/s00262-023-03453-z

RESEARCH

Cytokine profiling identifies circulating IL‑6 and IL‑15 as prognostic 
stratifiers in patients with non‑small cell lung cancer receiving 
anti‑PD‑1/PD‑L1 blockade therapy

Yusuke Inoue1 · Naoki Inui1,2 · Masato Karayama1,3 · Kazuhiro Asada4 · Masato Fujii5 · Shun Matsuura6 · 
Tomohiro Uto7 · Dai Hashimoto8 · Takashi Matsui9 · Masaki Ikeda10 · Hideki Yasui1 · Hironao Hozumi1 · Yuzo Suzuki1 · 
Kazuki Furuhashi1 · Noriyuki Enomoto1 · Tomoyuki Fujisawa1 · Takafumi Suda1

Received: 5 November 2022 / Accepted: 16 April 2023 / Published online: 26 April 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Whether circulating levels of specific cytokines at baseline link with treatment efficacy of immune checkpoint blockade 
(ICB) therapy in patients with non-small cell lung cancer remains unknown. In this study, serum samples were collected in 
two independent, prospective, multicenter cohorts before the initiation of ICB. Twenty cytokines were quantified, and cutoff 
values were determined by receiver operating characteristic analyses to predict non-durable benefit. The associations of each 
dichotomized cytokine status with survival outcomes were assessed. In the discovery cohort (atezolizumab cohort; N = 81), 
there were significant differences in progression-free survival (PFS) in accordance with the levels of IL-6 (log-rank test, 
P = 0.0014), IL-15 (P = 0.00011), MCP-1 (P = 0.013), MIP-1β (P = 0.0035), and PDGF-AB/BB (P = 0.016). Of these, levels 
of IL-6 and IL-15 were also significantly prognostic in the validation cohort (nivolumab cohort, N = 139) for PFS (log-rank 
test, P = 0.011 for IL-6 and P = 0.00065 for IL-15) and overall survival (OS; P = 3.3E-6 for IL-6 and P = 0.0022 for IL-15). 
In the merged cohort, IL-6high and IL-15high were identified as independent unfavorable prognostic factors for PFS and OS. 
The combined IL-6 and IL-15 status stratified patient survival outcomes into three distinct groups for both PFS and OS. In 
conclusion, combined assessment of circulating IL-6 and IL-15 levels at baseline provides valuable information to stratify 
the clinical outcome of patients with non-small cell lung cancer treated with ICB. Further studies are required to decipher 
the mechanistic basis of this finding.
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Abbreviations
ALK  Anaplastic lymphoma kinase
AUC   Area under the curve
CI  Confidence interval
DCB  Durable clinical benefit
EGF  Epidermal growth factor
EGFR  Epidermal growth factor receptor
GM-CSF  Granulocyte–macrophage colony-stimulating 

factor
HR  Hazard ratio
ICB  Immune checkpoint blockade
IFN  Interferon
IL  Interleukin
IL-1RA  IL-1 receptor antagonist
IP-10  IFN-γ-inducible protein 10
LIPI  Lung immune prognostic index
MCP-1  Monocyte chemoattractant protein-1
MIG  Monokine induced by IFN-γ
MIP-1β  Macrophage inflammatory protein-1β
NDB  Non-durable benefit
OS  Overall survival
PDGF  Platelet-derived growth factor
PD-1  Programmed cell death protein 1
PD-L1  Programmed death-ligand 1
PFS  Progression-free survival
PS  Performance status
ROC  Receiver operating characteristic
TNF  Tumor necrosis factor
TPS  Tumor proportion score

Introduction

The development of antiprogrammed cell death protein 1 
(PD-1)/programmed death-ligand 1 (PD-L1) inhibitory anti-
bodies as immune checkpoint blockade (ICB) therapy has 
been a remarkable breakthrough in the treatment of non-
small cell lung cancer (NSCLC) and improved patient out-
come. However, clinical benefit for the single-agent therapy 
is only observed in a limited fraction of patients, and the 
response rates were approximately 20% in clinical trials [1, 
2]. The efficacy of treatment is not completely satisfactory, 
even after the enrichment of patients by approved biomark-
ers such as tumor PD-L1 expression measured by immuno-
histochemistry and tumor mutation burden. For example, in 
the KEYNOTE-024 trial, more than half of NSCLC patients 
with PD-L1 tumor proportion score (TPS) ≥50% who were 
treated with the PD-1 inhibitor pembrolizumab in the first-
line setting lacked a treatment response [3]. Additionally, 
although pembrolizumab was superior to standard chemo-
therapy in terms of survival in this trial, the survival curves 
for progression-free survival (PFS) highly overlapped in the 
initial 4 months from the initiation of therapy. Furthermore, 

overall survival (OS) was similar between pembrolizumab 
and chemotherapy in patients with PD-L1 TPS 1–49% in the 
KEYNOTE-042 trial [4], and the PFS curves of pembroli-
zumab and chemotherapy groups crossed across PD-L1 TPS 
cutoffs of 50%, 20%, and 1%, suggesting the existence of 
further determinants of response. Additionally, high tumor 
mutation burden was shown not to be a universal biomarker 
of response to ICB across cancer types [5]. Therefore, novel 
biomarkers are required to predict which patient is most 
likely to benefit from anti-PD-1/PD-L1 therapy and in which 
patient the therapy should not be prioritized.

ICB treatment enhances antitumor immunity by remov-
ing the co-inhibitory signaling in exhausted T cells in the 
tumor microenvironment [6]. Thus, the host immune status 
is an important determinant of treatment efficacy. Indeed, 
host factors that could affect the immune system, includ-
ing nutritional status [7], systemic inflammation [8], and 
gut microbiota [9], have been associated with the treatment 
response to ICB. Cytokines are a broad category of small 
proteins including chemokines, interferons (IFNs), inter-
leukins (ILs), tumor necrosis factors (TNFs), and growth 
factors. Cytokines are essential for immune cell autocrine 
and paracrine signaling and mediate crucial interactions 
between immune and non-immune cells in the tumor micro-
environment [10, 11]. Cytokine production is tightly con-
trolled to promote and amplify a range of pro- and anti-
inflammatory immune responses. Cytokines exert powerful 
immunomodulatory effects, and therefore, they have been 
extensively explored as cancer targets and treatments in the 
context of antitumor immunity. Furthermore, the systemic 
levels of some cytokines have been shown to be associated 
with response and resistance to ICB [8, 12–18]. However, 
whether specific circulating cytokine levels are robustly 
linked with treatment efficacy of ICB in patients with 
advanced or recurrent NSCLC remains unknown.

In this study, we aimed to identify cytokines that may 
serve as determinants of survival outcomes in patients with 
NSCLC treated with PD1/PD-L1 inhibitors, using two inde-
pendent, prospective, multicenter cohorts of patients treated 
with the PD-L1 inhibitor atezolizumab or the PD-1 inhibitor 
nivolumab.

Materials and methods

Study design and patients

Data were collected from patients with advanced or recur-
rent NSCLC enrolled in two independent, prospective, 
multicenter, observational studies conducted in Japan 
by our research group. The discovery cohort included 86 
patients who were treated with atezolizumab monotherapy 
at 12 institutions between January 2019 and May 2020; the 
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validation cohort included 200 patients who received single-
agent nivolumab at 14 institutions between July 2016 and 
December 2018. The study design, eligibility criteria, and 
exclusion criteria for each cohort were described previously 
[19, 20]. In brief, patients in both cohorts had an Eastern 
Cooperative Oncology Group performance status (PS) of 
0–2 and had histologically or cytologically proven unresect-
able stage III or IV or recurrent NSCLC. Molecular analyses 
for oncogenes such as EGFR and ALK were not mandatory 
and performed as part of the standard of care in both cohorts. 
PD-L1 protein expression in tumor cells was evaluated by 
the approved 22C3 immunohistochemistry assay as part of 
the standard of care; immunohistochemistry assay using 
E1L3N antibody (Cell Signaling Technology, Danvers, MA, 
USA) was used in a fraction of patients in the validation 
cohort before the approval of the 22C3 assay [20]. Data were 
analyzed from June 2022 to October 2022.

Treatment procedures and assessment of efficacy

In the discovery cohort, all patients received atezolizumab 
intravenously at a dose of 1200 mg on day 1 of each 21-day 
cycle. Before each treatment cycle, response was assessed 
by the treating investigators. In the validation cohort, all 
patients were treated with nivolumab at a dose of 3 mg/kg 
or a fixed dose of 240 mg on day 1 of each 14-day cycle. 
Therapeutic response was assessed every 8 weeks by the 
treating investigators. In both cohorts, surveillance was con-
tinued after completion of the treatment to define survival 
outcomes. Response was assessed following the Response 
Evaluation Criteria in Solid Tumors (RECIST) version 1.1.

Sample collection and laboratory assays

Peripheral blood was collected at baseline immediately before 
the initiation of atezolizumab or nivolumab therapy. The sam-
ples were centrifuged, and sera were aliquoted and cryopre-
served at −80 °C until analysis. A customized MILLIPLEX 
Human Cytokine/Chemokine/Growth Factor Panel A Mag-
netic Based Panel (HCYTA-60 K-PX38, Merck, Darmstadt, 
Germany), which enables the simultaneous quantification 
of multiple cytokines, chemokines, and growth factors on 
a Luminex bead-based platform, was used to quantitatively 
evaluate circulating 20 analytes (epidermal growth factor 
[EGF], eotaxin, granulocyte–macrophage colony-stimulating 
factor [GM-CSF], IFN-α2, IL-1 receptor antagonist [IL-1RA], 
IL-4, IL-6, IL-7, IL-10, IL-13, IL-15, IL-17E/IL-25, IL-18, 
IFN-γ-inducible protein 10 [IP-10], monocyte chemoattractant 
protein-1 [MCP-1], monokine induced by IFN-γ [MIG], mac-
rophage inflammatory protein-1β [MIP-1β], platelet-derived 
growth factor-AA [PDGF-AA], PDGF-AB/BB, and TNF-α). 
Assays were conducted in accordance with the manufacturer’s 
instructions. Samples were de-identified so that laboratory 

personnel were blinded to patient information. Fluorescent 
intensity was measured using the Bio-Plex 200 System (Bio-
Rad Laboratories, Hercules, CA, USA). Data were analyzed 
using the Bio-Plex manage software version 6.1 (Bio-Rad 
Laboratories). Assay working ranges for each analyte per each 
assay were determined as a range of concentrations between 
the upper and lower limits of quantification that were defined 
as the maximum and minimum standard points where recovery 
rates fell between 70% and 130%, respectively. The recovery 
rate was calculated as follows: (an observed concentration)/
(an expected concentration) × 100. When assay results were 
below the assay working range, the values were assigned to 
the midpoint between zero and the lower limit of the work-
ing range (applicable for EGF, GM-CSF, IL-1RA, IL-4, IL-6, 
IL-7, IL-10, IL-13, IL-15, IL-17E/IL-25, IL-18, MIP-1β, and 
TNF-α) [19, 21]. When the results fell above the assay work-
ing range, the values were assigned to the upper limit of the 
working range (applicable for PDGF-AB/BB).

Lung immune prognostic index (LIPI) score 
calculation

Pretreatment LIPI was calculated on the basis of the derived 
neutrophil-to-lymphocyte ratio [dNLR; neutrophils/(leuko-
cytes minus neutrophils)] and lactate dehydrogenase (LDH) 
level. Factors dNLR greater than 3 and LDH greater than the 
upper limit of normal were scored as one, respectively, and 
the sum was calculated for each case (score 0, 1, or 2) [22].

Statistical analysis

The median follow-up time was estimated by the reverse 
Kaplan–Meier method. To determine the appropriate cutoff 
values to better categorize patients who poorly responded to 
therapy, receiver operating characteristic (ROC) curve analy-
ses to predict non-durable benefit (NDB) were performed. The 
area under the curve (AUC) was calculated, where durable 
clinical benefit (DCB) was defined as partial response or sta-
ble disease with PFS ≥6 months, and NDB was defined as 
the others [23]. PFS and OS curves were estimated with the 
Kaplan–Meier method and compared by the log-rank test. The 
survival durations were defined as the time between the date 
of the first administration of atezolizumab or nivolumab and 
the date of progression or death from any cause for PFS, and 
the date of death from any cause for OS. Censoring was under-
taken at the date of last contact. Hazard ratios (HRs) were esti-
mated with Cox proportional hazards models. The Fisher exact 
test was used for categorical variables. Statistical tests were 
two-sided, and P < 0.05 was defined as statistically significant. 
Analyses were conducted using EZR statistical software ver-
sion 1.55 (Saitama Medical Center, Jichi Medical University) 
[24] and GraphPad Prism version 8.4.3 (GraphPad Software, 
San Diego, CA, USA).
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Results

Characteristics of patients in the discovery 
and validation cohorts

Of the 86 patients initially enrolled in the discovery cohort, 
5 patients were excluded because of a lack of serum samples 
(Fig. 1). The demographic characteristics of the remaining 
81 patients at baseline were reported previously [19] and are 
presented in Table 1. Most patients were male (64 [79.0%]) 
and had PS 0 or 1 (72 [88.9%]), a history of smoking (65 
[80.2%]), and stage IV disease (61 [75.3%]). The median 
number of previous systemic therapies was 2 (range, 1–7), 
and 36 (44.4%) and 20 (24.7%) patients received atezoli-
zumab as the second-line and third-line treatment, respec-
tively. Among the 81 patients, 38 (46.9%) had LIPI of 0, 
36 (44.4%) had LIPI of 1, and 7 (8.6%) had LIPI of 2. Ten 
patients (12.3%) had received prior ICI therapy. EGFR muta-
tion status was evaluated in 68 patients (84.0%), and activat-
ing mutations were identified in 15 patients (18.5%). Tumor 
PD-L1 expression was assessed in 66 patients (81.5%), and 
13 (16.9%) had PD-L1 ≥50%. The overall response rate 

was 13.6% (95% confidence interval [CI], 7.0–23.0) and 
the definition of DCB was fulfilled in 18 patients (22.2%). 
The median follow-up time was 25.7 months (95% CI, 
21.2–28.0), and 72 PFS events and 54 deaths were recorded 
at the time of data cutoff (November 2021).

In the validation cohort, 200 patients were initially 
enrolled. After excluding 61 patients because of a lack of 
serum samples, 139 patients were analyzed (Fig. 1). The 
patient characteristics at baseline are listed in Table 1. Age, 
sex, PS, smoking history, and disease stage were almost 
similar to those in the discovery cohort. The proportion of 
patients with adenocarcinoma was smaller in the validation 
cohort than the discovery cohort. Among the 139 patients, 
74 (53.2%) and 38 (27.3%) patients received nivolumab 
as the second-line and third-line treatment, respectively. 
No patients had a history of prior ICI treatment, and 11 
patients (7.9%) had EGFR mutations. In the validation 
cohort, 49 (35.3%), 65 (46.8%), and 25 (18.0%) patients 
had LIPI of 0, 1, and 2, respectively. PD-L1 expression 
status was available in all patients, as evaluation of PD-L1 
expression using archived tumor samples was mandatory 
in this cohort [20], and 16 (11.5%) were revealed as high 

Fig. 1  Overview of the study design. A flowchart of the study design 
to identify cytokines associated with treatment efficacy of anti-PD-1/
PD-L1 immunotherapy in the discovery cohort (atezolizumab cohort) 
and the independent validation cohort (nivolumab cohort) is shown. 
EGF, epidermal growth factor; GM-CSF, granulocyte–macrophage 
colony-stimulating factor; IFN-α2, interferon-α2; IL-1RA, interleu-

kin-1 receptor antagonist; IP-10, IFN-γ-inducible protein 10; MCP-
1, monocyte chemoattractant protein-1; MIG, monokine induced by 
IFN-γ; MIP-1β, macrophage inflammatory protein-1β; PDGF-AA, 
platelet-derived growth factor-AA; PD-1, programmed cell death pro-
tein 1; PD-L1, programmed death-ligand 1; TNF-α, tumor necrosis 
factor-α
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expressors (≥50%). The overall response rate was 21.6% 
(95% CI, 15.1–29.4). The median follow-up time was 
29.7 months (95% CI, 25.8–33.1), and 121 PFS events 
and 94 deaths were documented at the time of data cutoff 
(December 2019).

Association of circulating cytokines with survival 
outcomes in the discovery cohort

First, we quantified 20 cytokines in sera collected at base-
line in the discovery cohort (Figure 1). ROC analyses 
identified cutoff values to predict NDB for each analyte 

Table 1  Patient and tumor 
characteristics

* Includes (neo)adjuvant therapy
ALK, anaplastic lymphoma kinase, ECOG Eastern Cooperative Oncology Group, EGFR epidermal growth 
factor receptor, PD-1 programmed cell death protein 1, PD-L1 programmed death-ligand 1

Discovery cohort (atezoli-
zumab cohort)

Validation cohort 
(nivolumab 
cohort)

Characteristic N (%) N (%)
No. of patients

81 139
Age, years
Median (range) 70 (36–84) 69 (43–83)
Sex
Male 64 (79.0) 112 (80.6)
Female 17 (21.0) 27 (19.4)
ECOG performance status
0 48 (59.3) 71 (51.1)
1 24 (29.6) 62 (44.6)
2 9 (11.1) 6 (4.3)
Smoking status
Never 16 (19.8) 20 (14.4)
Current or former 65 (80.2) 119 (85.6)
Histology
Adenocarcinoma 55 (67.9) 76 (54.7)
Squamous cell carcinoma 20 (24.7) 55 (39.6)
Other 6 (7.4) 8 (5.8)
Stage at treatment
III 13 (16.0) 28 (20.1)
IV 61 (75.3) 101 (72.7)
Recurrence 7 (8.6) 10 (7.2)
No. of previous systemic therapies*
Median (range) 2 (1–7) 1 (1–8)
Previous treatment with PD-1/PD-L1 inhibitors
Nivolumab 5 (6.2) 0
Pembrorizumab 4 (4.9) 0
Duruvaumab 1 (1.2) 0
None 71 (87.7) 139 (100)
EGFR mutation
Presence 15 (18.5) 11 (7.9)
Absence 53 (65.4) 97 (69.8)
Unknown 13 (16.0) 31 (22.3)
ALK rearrangement
Presence 0 1 (0.7)
Absence 57 (70.4) 100 (71.9)
Unknown 24 (29.6) 38 (27.3)
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as follows: EGF, 44.100 pg/mL (AUC, 0.52; 95% CI, 
0.37–0.67); eotaxin, 113.110 pg/mL (AUC, 0.62; 95% 
CI, 0.48–0.76); GM-CSF, 8.490 pg/mL (AUC, 0.50; 95% 
CI, 0.36–0.65); IL-1RA, 0.821 pg/mL (AUC, 0.58; 95% 
CI, 0.42–0.74); IL-4, 2.200 pg/mL (AUC, 0.52; 95% CI, 
0.36–0.67); IL-6, 8.300 pg/mL (AUC, 0.54; 95% CI, 
0.40–0.67; Supplementary Figure S1a); IL-7, 12.180 pg/
mL (AUC, 0.60; 95% CI, 0.45–0.75); IL-10, 6.080 pg/
mL (AUC, 0.56; 95% CI, 0.40–0.71); IL-13, 2.412 pg/
mL (AUC, 0.52; 95% CI, 0.38–0.67); IL-15, 6.590 pg/mL 
(AUC, 0.56; 95% CI, 0.42–0.71; Supplementary Figure 
S1b); IL-17E/IL-25, 260.530 pg/mL (AUC, 0.59; 95% 
CI, 0.43–0.74); IL-18, 106.160 pg/mL (AUC, 0.55; 95% 
CI, 0.41–0.69); IP-10, 229.280 pg/mL (AUC, 0.46; 95% 
CI, 0.31–0.62); MCP-1, 536.800 pg/mL (AUC, 0.56; 95% 
CI, 0.41–0.70); MIG, 5695.190 pg/mL (AUC, 0.56; 95% 
CI, 0.40–0.72); MIP-1β, 38.080 pg/mL (AUC, 0.67; 95% 
CI, 0.54–0.79); PDGF-AA, 3742.510 pg/mL (AUC, 0.56; 
95% CI, 0.42–0.71); PDGF-AB/BB, 42647.980 pg/mL 
(AUC, 0.62; 95% CI, 0.46–0.78); and TNF-α, 21.900 pg/
mL (AUC, 0.59; 95% CI, 0.44–0.74). IFN-α2 was excluded 
from the analysis because only one sample showed a value 

above the lower limit of the working range. Among the 
other 19 analytes, more than half of the samples had lower 
values than the individual lower limits for GM-CSF (N = 
71, 87.7%), IL-10 (N = 46, 56.8%), IL-13 (N = 63, 77.8%), 
and IL-15 (N = 51, 63.0%).

We next tested whether survival curves for PFS and OS 
were stratified by the levels of the 19 analytes using the 
cutoff values. There were significant differences in PFS 
on the basis of levels of IL-6, IL-15, MCP-1, MIP-1β, and 
PDGF-AB/BB (Figure 2a). The median PFS and OS were 
2.0 months (95% CI, 1.3–3.3) and 7.9 months (95% CI, 
4.1–10.8), respectively, for IL-6high patients in comparison 
with 3.5 months (95% CI, 2.1–5.2) and 18.8 months (95% 
CI, 13.2 to not reached [NR]), respectively, for IL-6low 
patients (Figure 2b, c). Similarly, the median PFS in the 
IL-15high patients was shorter compared with that in the 
IL-15low patients (1.3 months [95% CI, 0.7–2.1] versus 3.3 
months [95% CI, 2.1–3.9]); similar results were observed 
for OS (3.3 months [95% CI, 1.1–4.5] versus 16.6 months 
[95% CI, 10.7–19.4]; Figure 2d, e). The prognostic impact 
of MCP-1, MIP-1β, and PDGF-AB/BB in PFS was not 
translated into OS (Supplementary Figure S2a–c).

Fig. 2  Identification of circulating cytokines associated with progres-
sion-free survival (PFS) and overall survival (OS) at baseline before 
atezolizumab initiation in the discovery cohort. a Log-rank P values 
for PFS and the delta median PFS of individual serum cytokines are 
plotted (N = 19). Delta median PFS values were calculated as follows: 
median PFS in the high group minus that in the low group for each 
of the 19 cytokines. Each dot represents one factor, and a dashed line 
represents a PFS log-rank P value of 0.05. The statistically significant 

results (P < 0.05) from the log-rank analysis are shown in orange. b 
Kaplan–Meier survival curves for PFS on the basis of IL-6 status 
(log-rank, P = 0.0014). c Kaplan–Meier survival curves for OS on the 
basis of IL-6 status (log-rank, P = 1.3E-5). d Kaplan–Meier survival 
curves for PFS on the basis of IL-15 status (log-rank, P = 0.00011). 
e Kaplan–Meier survival curves for OS on the basis of IL-15 status 
(log-rank, P = 1.4E-9)
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Validation in an independent, prospectively 
collected, multicenter patient cohort

The robustness of the above results was evaluated using an 
independent external validation cohort using the same cut-
offs as defined in the discovery cohort (Fig. 1). Survival 
curves for both PFS and OS were significantly separated by 
IL-6 (log-rank test, P = 0.011 for PFS; P = 3.3E-6 for OS; 
Fig. 3a, b) and IL-15 (log-rank test, P = 0.00065 for PFS; 
P = 0.0022 for OS; Fig. 3c, d) as observed in the discov-
ery cohort. The median PFS and OS were 1.9 months (95% 
CI, 1.7–3.1) and 8.4 months (95% CI, 6.1–11.7), respec-
tively, for IL-6high patients in comparison with 5.4 months 
(95% CI, 1.8–9.3) and 23.7 months (95% CI, 18.1 to NR), 
respectively, for IL-6low patients. For IL-15high patients, the 
median PFS and OS were 1.8 months (95% CI, 1.4–1.9) and 
7.8 months (95% CI, 3.1–12.6), respectively, whereas the 
median PFS and OS in IL-15low patients were 3.9 months 
(95% CI, 1.9–6.7) and 16.8 months (95% CI, 13.4–20.4), 

respectively. To further evaluate the consistency of IL-6 and 
IL-15 values to discriminate the efficacy of PD-1/PD-L1 
inhibitors, ROC analyses were carried out in the validation 
cohort to identify cutoff values to predict NDB (Supple-
mentary Figure S1c and d). The determined cutoff values 
for IL-6 (6.740 pg/mL) and IL-15 (5.520 pg/mL) were very 
close to those in the discovery cohort. In contrast to the find-
ings for IL-6 and IL-15, PFS curves were highly overlapped 
in accordance with the levels of MCP-1 (Supplementary Fig-
ure S3a), MIP-1β (Supplementary Figure S3b), and PDGF-
AB/BB (Supplementary Figure S3c).

Multivariable Cox regression analysis 
and prognostic stratification in accordance 
with levels of IL‑6 and IL‑15

Our results showed that IL-6 and IL-15 had prognostic 
effects for PFS and OS in both the discovery and valida-
tion cohorts. To further explore the prognostic impact of 

Fig. 3  Validation of the prognostic effects of baseline IL-6 and 
IL-15 levels before nivolumab initiation in the independent valida-
tion cohort. a Kaplan–Meier survival curves for PFS on the basis of 
IL-6 status (log-rank, P = 0.011). b Kaplan–Meier survival curves 

for OS on the basis of IL-6 status (log-rank, P = 3.3E-6). c Kaplan–
Meier survival curves for PFS on the basis of IL-15 status (log-rank, 
P = 0.00065). d Kaplan–Meier survival curves for OS on the basis of 
IL-15 status (log-rank, P = 0.0022)
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IL-6 and IL-15 status, we combined the cohorts and cat-
egorized patients into the following three groups: both IL-6 
and IL-15 low group; either IL-6 or IL-15 high group; and 
both IL-6 and IL-15 high group. The proportions of patients 
who derived DCB were significantly reduced when either 
factor or both factors were elevated (P = 0.00070; Fig. 4a). 
Additionally, the proportions of patients with poorer PS 
(P = 3.1E-5; Fig.  4b), squamous histology (P = 0.012; 
Fig. 4c), and greater LIPI (P = 0.0013; Fig. 4d) were signifi-
cantly increased in accordance with IL-6high and/or IL-15high 
status. Furthermore, patients with low serum albumin val-
ues (≤3.5 g/dL) were significantly enriched when IL-6 and 
IL-15 were elevated (P = 1.6E-9; Fig. 4e). In contrast, there 
were no significant relationships of IL-6 and IL-15 status 
with smoking history (Supplementary Figure S4a), tumor 
PD-L1 expression (Supplementary Figure S4b), and EGFR 
mutation status (Supplementary Figure S4c). Despite the 

above relationships of IL-6 and IL-15 status with PS, histol-
ogy, LIPI, and serum albumin status, multivariable analyses 
adjusted for relevant clinical prognostic factors including 
these factors revealed that IL-6high and IL-15high were inde-
pendent prognostic factors for PFS and OS (Table 2). Tumor 
PD-L1 expression status and EGFR mutation status were 
not included in the analysis because information was not 
available in 15 (6.8%) and 44 (20%) patients, respectively. 
Notably, survival curves for PFS (Fig. 4f) and OS (Fig. 4g) 
were clearly stratified into the three distinct groups, with 
the worst survival outcomes in the IL-6high and IL-15high 
patients and patients in the either IL-6 or IL-15 high group 
showing worse survival outcomes than IL-6low and IL-15low 
patients. The median PFS and OS were 3.9 months (95% CI, 
2.3–6.7) and 20.3 months (95% CI, 18.1–33.7), respectively, 
for the both IL-6 and IL-15 low group, 2.5 months (95% CI, 
1.8–3.5) and 10.8 months (95% CI, 7.9–12.8), respectively, 

Fig. 4  Patient characteristics and survival outcomes on the basis of 
baseline IL-6 and IL-15 status in the merged cohort. a Proportion 
of patients who experienced DCB or NDB on the basis of IL-6 and 
IL-15 levels classified as both low, either high, or both high. P value 
was calculated by the Fisher exact test. b Proportion of patients with 
PS of ≥1 or 0 on the basis of IL-6 and IL-15 levels classified as both 
low, either high, or both high. P value was calculated by the Fisher 
exact test. c Proportion of patients with squamous cell carcinoma or 
non-squamous histology on the basis of IL-6 and IL-15 levels classi-
fied as both low, either high, or both high. P value was calculated by 
the Fisher exact test. d Proportion of patients with an LIPI of 2, 1, or 
0 on the basis of IL-6 and IL-15 levels classified as both low, either 

high, or both high. P value was calculated by the Fisher exact test. e 
Proportion of patients with a baseline serum albumin level of >3.5 g/
dL or ≤3.5  g/dL on the basis of IL-6 and IL-15 levels classified as 
both low, either high, or both high. P value was calculated by the 
Fisher exact test. f Kaplan–Meier survival curves for progression-free 
survival on the basis of IL-6 and IL-15 levels classified as both low, 
either high, or both high (log-rank, P = 4.2E-7). g Kaplan–Meier sur-
vival curves for overall survival on the basis of IL-6 and IL-15 levels 
classified as both low, either high, or both high (log-rank, P = 1.6E-
11). DCB, durable clinical benefit; LIPI, lung immune prognostic 
index; NDB, non-durable benefit; PS, performance status
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for the either IL-6 or IL-15 high group, and 1.6 months (95% 
CI, 1.2–1.8) and 4.2 months (95% CI, 2.6–7.9), respectively, 
for the both IL-6 and IL-15 high group.

Discussion

An accurate prediction of survival benefit from ICB in 
patients with NSCLC is crucial for treatment decision-mak-
ing, and novel determinants of treatment efficacy beyond 
the approved biomarkers such as tumor PD-L1 expression 
and TMB are required. Given their essential and powerful 
roles in orchestrating the antitumor immune response via 
inflammatory and immunosuppressive signaling networks 
[11], cytokines have shown promise as quantitative candi-
date biomarkers for cancer immunotherapy. In this study, we 
screened a panel of cytokines and found that higher levels 
of circulating IL-6 and IL-15 were robust and independent 
factors associated with poor survival outcomes in patients 
with NSCLC receiving PD-1/PD-L1 inhibitors. Notably, 
the combined assessment of IL-6 and IL-15 status enabled 
precise and clinically meaningful stratification of patient 
survival outcomes.

IL-6 is a pro-inflammatory and tumor-promoting cytokine 
produced in chronic inflammatory conditions and various 
types of cancers [13, 25, 26]. In many pathogenic conditions 
including cancer, the IL-6/JAK/STAT3 signaling pathway 
plays a major immunoregulatory role [27]. In the context of 
antitumor immunity, IL-6 attenuates CD4+ T cell-derived 
IFNγ production and PD-1/PD-L1 ligation on tumor-asso-
ciated macrophages [28]. Furthermore, IL-6 induces tumor 
angiogenesis [10] and promotes tumor growth by inhibition 
of apoptosis [29]. Moreover, the survival of cancer cells 
exhibiting chromosomal instability has been demonstrated 
to depend on a cGAS-mediated inflammatory response, and 
IL-6 is a pivotal component of this signaling cascade [30]. In 
line with these pleiotropic functions of IL-6, multiple studies 
have reported that elevated circulating IL-6 is an unfavorable 
prognostic factor in patients with a variety of types of cancer 
who were treated with ICB [8, 13, 16–18] or who did not 
receive ICB [31–33]. These findings together with our work 
support the concept that targeting IL-6 with ICB could have 
therapeutic benefits, as proposed elsewhere [28, 34].

IL-15 is a cytokine that functions in innate and adap-
tive immunity and preferentially promotes the genera-
tion, proliferation, and activity of antitumor NK cells and 
CD8+ T cells but not of Treg cells [35]. Multiple trials of 
immunotherapy targeting IL-15 have been conducted, but 
the beneficial effects on circulating NK cells and CD8+ T 
cells were not translated into clinically meaningful efficacy 
as monotherapy [36, 37]. However, the combination with 
nivolumab, an IL-15 super-agonist ALT-803, which targets 
the shared IL-2 and IL-15Rβγ pathway, showed promising Ta
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clinical activity with an objective response rate of 28.6% (6 
of 21) and median PFS of 9.4 months in a non-randomized, 
open-label, phase 1b trial in patients with previously treated 
NSCLC [38]. Another study showed that exercise promotes 
the accumulation of tumor-infiltrating IL-15Rα+ CD8+ T 
cells in murine models of pancreatic ductal adenocarcinoma, 
resulting in antitumor effects [39]. The study also showed 
that an IL-15 super-agonist sensitized pancreatic tumors 
to PD-1 blockade therapy. Our result that a higher level of 
circulating IL-15 was independently associated with poor 
survival outcomes in NSCLC patients receiving ICB, how-
ever, stands in contrast to the role of IL-15 as a stimulator 
of NK cells and effector T cells. This could be, at least in 
part, exemplified by a paradoxical effect of continuous IL-15 
treatment on NK cells, which results in decreased viability 
and a functional change consistent with exhaustion [40]. 
Given the powerful functions of IL-15 on immune cells, 
mechanistic links of increased IL-15 expression with leuke-
mogenesis and myelomagenesis have been demonstrated [41, 
42], with implications for prognosis in hematological malig-
nancies [43]. Additionally, in colorectal cancer cells, IL-15 
was reported to promote cell proliferation and invasion with 
downregulation of p21WAF1 and BAX and upregulation 
of BCL-2, phospho-AKT, and VEGF [44]. These findings 
indicate possibilities that the unfavorable prognostic effects 
of IL-15 in our study were governed through the exhaustion 
of immune cells by continuous exposure to IL-15, through 
the direct promotion of aggressiveness of tumor cells, or 
through both scenarios.

In the present study, increased circulating levels of IL-6 
and IL-15 were significantly associated with poorer PS, 
higher LIPI scores, and lower serum albumin levels, sug-
gesting potential associations with impaired general condi-
tions such as cancer-induced cachexia, although the prognos-
tic effects of IL-6 and IL-15 were independent from those 
factors. Indeed, IL-6 causes cellular metabolic reprogram-
ming and promotes cachexia in patients with cancer [10]. 
Moreover, the IL-15 gene is highly expressed in skeletal 
muscle, where IL-15 regulates metabolism and maintains 
muscle fiber growth [45]. IL-15 was shown to decrease pro-
teolysis [46]. Thus, increased circulating IL-15 might be a 
result of increased production and release from decreased 
skeletal muscle in the condition of IL-6-induced cachexia. 
Whether such a regulatory feedback loop between IL-6-in-
duced cachexia or sarcopenia and a compensatory increase 
of muscle-derived IL-15 exists warrants future investigation.

This retrospective study using two independent, pro-
spective, multicenter cohorts has several major limitations. 
First, the sample sizes in both cohorts were not designed 
specifically to identify serum biomarkers associated with 
predetermined patient outcomes. Second, while serum 
collection was prespecified, samples were not available 
in 5.8% and 30.5% of patients initially enrolled in the 

discovery and validation cohorts, respectively. Third, the 
relatively high frequencies of EGFR mutations (18.5%) 
and a history of prior ICB (12.3%) in the discovery cohort 
might lead to the relatively low response rate of 13.6%. 
However, in the validation cohort, EGFR mutations were 
identified in only 7.9% of patients and no patients had 
received ICB before nivolumab therapy. Fourth, the asso-
ciation between changes in cytokine levels during treat-
ment and the clinical response was not assessed in this 
study. Although dynamic measures on treatment would 
be useful, we believe that pretreatment biomarkers are 
more actionable for guiding clinical decision. Fifth, when 
IL-6 and IL-15 values were assessed as continuous vari-
ables in the multivariable Cox regression analysis, IL-15 
alone remained an independent factor associated with poor 
survival outcomes (Supplementary Table S1). While the 
role of IL-6 levels in predicting the response and pro-
moting resistance to ICB therapy in cancer patients has 
been shown in multiple studies [8, 13, 16–18], whether 
the dichotomized IL-6 status separated at an optimal cut-
off point serves as a prognostic factor or whether there 
is a quantitative correlation between IL-6 concentrations 
and survival outcomes in patients receiving ICB therapy 
should be clarified in future studies. Finally, this study 
lacks the same analysis in patients treated with chemo-
therapy as a non-immunotherapy control. Thus, no conclu-
sions can be drawn as to whether the findings in this study 
are specific for patients with NSCLC treated with ICB or 
general for NSCLC regardless of therapeutic types offered.

In conclusion, from the investigation of two independent 
cohorts, we showed, for the first time, that combined assess-
ment of circulating IL-6 and IL-15 levels at therapy baseline 
would provide valuable information to stratify the clinical 
outcome of patients with NSCLC treated with PD-1/PD-L1 
inhibitors. Further studies are warranted to confirm our 
results and decipher the mechanistic basis underlying why 
this combination is prognostic in the context of immuno-
therapy, whether these factors are prognostic for other malig-
nancies, and whether these factors are useful specifically 
for patients receiving ICB or for cancer patients in general.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00262- 023- 03453-z.
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