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Abstract
Immunotherapy has been one of the great advances in the recent years for the treatment of advanced tumors, with nonsmall-
cell lung cancer (NSCLC) being one of the cancers that has benefited most from this approach. Currently, the only validated 
companion diagnostic test for first-line immunotherapy in metastatic NSCLC patients is testing for programmed death 
ligand 1 (PD-L1) expression in tumor tissues. However, not all patients experience an effective response with the established 
selection criteria and immune checkpoint inhibitors (ICIs). Liquid biopsy offers a noninvasive opportunity to monitor dis-
ease in patients with cancer and identify those who would benefit the most from immunotherapy. This review focuses on 
the use of liquid biopsy in immunotherapy treatment of NSCLC patients. Circulating tumor cells (CTCs), cell-free DNA 
(cfDNA) and exosomes are promising tools for developing new biomarkers. We discuss the current application and future 
implementation of these parameters to improve therapeutic decision-making and identify the patients who will benefit most 
from immunotherapy.
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Introduction

Lung cancer is currently the most frequently diagnosed 
malignant tumor, representing the leading cause of cancer 
death worldwide [1]. Nonsmall-cell lung cancer (NSCLC) 
accounts for approximately 85% of lung malignancies, and 

approximately 70% of them are diagnosed with a nonsqua-
mous histology such adenocarcinoma or large cell carcinoma 
[2]. More than 60% of newly diagnosed patients present 
locoregional or distant metastases at the time of detection.

Over the past 20 years, the treatment landscape and prog-
nosis of advanced NSCLC patients have changed [3]. First, 
the introduction of target therapies for oncogene-addicted 
tumors improved patient survival outcomes. However, only 
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15% of patients with advanced NSCLC present genetic alter-
ations in EGFR, ALK, ROS1, or BRAF [4]. More recently, 
immune checkpoint inhibitor (ICI) agents targeting both 
programmed cell death protein 1 (PD1) or programmed cell 
death ligand 1 (PD-L1) have been established as a stand-
ard treatment in the NSCLC setting. Unfortunately, not all 
patients respond, and only a subset of them benefit from 
immunotherapy. Hence, there is a need for new biomark-
ers. Identifying optimal responsive biomarkers to anti-PD-1/
PD-L1 therapies in NSCLC is essential for selecting patients 
who will benefit from immunotherapy while limiting ineffec-
tive therapy that can produce adverse reactions in patients.

It is within this context that there has been interest in 
liquid biopsy, a concept that refers to any tumor-derived 
material circulating through the blood or nonblood body 
fluids [5]. Liquid biopsy has been developed as an attractive 
approach to detect biomarkers in a minimally invasive, cost-
effective, and rapid manner. Circulating tumor cells (CTCs), 
cell-free DNA (cfDNA) and extracellular vesicles are the 
most widely studied components in the field of NSCLC. This 
review focuses on the use of liquid biopsy in immunotherapy 
treatment of NSCLC patients, highlighting its potential to be 
applied in a clinical setting.

Immune checkpoint inhibitors 
in the treatment of NSCLC

The European Medicines Agency (EMA) and the U.S. The 
Food and Drug Administration (FDA) have approved two 
classes of ICIs for the treatment of malignancies, includ-
ing NSCLC [6, 7]: Inhibitors of PD-1 or its ligand PD-L1 
and inhibitors of cytotoxic lymphocyte-associated protein 4 
(CTLA-4). Table 1 summarizes the different ICIs employed 
in the treatment of NSCLC.

Nivolumab, a human immunoglobulin G4 (IgG4) 
monoclonal antibody (mAb) that targets PD-1, has shown 
improved overall survival (OS), progression-free survival 
(PFS) and objective response rate in previously treated 
advanced squamous cell lung carcinoma in comparison with 
docetaxel according to the results of the CheckMate 017 
trial [8]. In nonsquamous NSCLC, the results of the Check-
Mate 057 trial demonstrated that nivolumab significantly 
improved OS and objective response rate (ORR) compared 
to docetaxel [9]. However, as compared to chemotherapy, 
nivolumab monotherapy has not shown significant effects 
on improving PFS or OS in previously untreated advanced 
NSCLC patients with PD-L1 expression on at least 5% of 
tumor cells [10].

Pembrolizumab, a humanized IgG4 mAb directed against 
PD-1, was approved for previously treated metastatic 
NSCLC patients with a PD-L1 tumor expression level of 1% 
or more, taking into consideration the benefits in the KEY-
NOTE 10 trial [11]. Recently, the use of pembrolizumab has 

Table 1  Immune checkpoint inhibitors in the treatment of NSCLC

TMB tumor mutational burden, PD-L1 IC PD-L1 expression in immune cells in the tumor area
Nivolumab plus Ipilimumab for first-line treatment of metastatic NSCLC alredy has the approval of the European Medicines Agency (EMA)

Drug Target Approved use for NSCLC Line of treatment Biomarker for patient 
selection

Comments References

Nivolumab PD1 Metastatic 2nd line None Monotherapy [8, 9]
Pembrolizumab PD-1 Metastatic 2nd line PD-L1 IC ≥ 1% Monotherapy [11]

1st line PD-L1 IC ≥ 50% Monotherapy [12]
None In combination with 

platinum-based chemo-
therapy

[13, 14]

Atezolizumab PD-L1 Metastatic 2nd line None Monotherapy [15]
1st line Nonsquamous NSCLC, 

independent of the 
PD-L1 expression level

In combination with beva-
cizumab, carboplatin, 
and paclitaxel

[17]

Durvalumab PD-L1 Unresectable, stage III Maintenance None [20]
Ipilimumab CTLA-4 Metastatic 1st line PD-L1 ≥ 1% Nivolumab plus Ipili-

mumab
[22]

None Nivolumab plus Ipili-
mumab in combination 
with platinum-based 
chemotherapy

[23]
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moved into the first-line setting for recurrent or metastatic 
NSCLC. The results from the KEYNOTE-024 trial demon-
strated that compared with platinum-based chemotherapy, 
pembrolizumab led to significant improvements in OS, 
PFS, and ORR in patients with PD-L1 expression on at least 
50% of tumor cells [12]. Moreover, the addition of pem-
brolizumab to platinum-based chemotherapy in previously 
untreated metastatic NSCLC has recently demonstrated a 
significant improvement in survival results independent of 
PD-L1 status [13, 14].

Atezolizumab is a humanized IgG1 mAb that specifically 
targets PD-L1, blocking its receptors PD-1 and B7.1. In pre-
viously treated NSCLC patients, atezolizumab significantly 
prolonged OS and ORR when compared with docetaxel 
according to the results of the OAK trial [15]. Consequently, 
the efficacy of atezolizumab, alone [16] or in combination 
with chemotherapy [17–19], has been studied in chemother-
apy-naïve advanced NSCLC patients in several trials.

Durvalumab, a human IgG1 mAb directed against PD-L1, 
has been recently approved as consolidation therapy fol-
lowing concurrent chemoradiation in unresectable stage III 
NSCLC patients [20].

Ipilimumab, a fully human IgG1 mAb directed against 
CTLA-4, has also been studied in combination with 
nivolumab in first-line treatment of advanced NSCLC in 
CheckMate 227, Part 1 [21, 22]. In this trial, in previously 
untreated NSCLC patients and with high-tumor mutational 
burden (TMB), PFS was significantly longer with nivolumab 
plus ipilimumab than with platinum-based chemotherapy, 
irrespective of PD-L1 expression level [21]. Moreover, in 
this trial, the combination of nivolumab plus ipilimumab 
resulted in a longer duration of OS than chemotherapy in 
patients with NSCLC, independent of the PD-L1 expres-
sion level [22]. Finally, the CheckMate 9LA trial has shown 
that adding 2 cycles of platinum-based chemotherapy to the 
combination of Nivolumab plus Ipilimumab prolongs the 
survival of patients with stage IV or recurrent NSCLC [23].

Biomarkers in immunotherapy

Intensive work has been carried out in the recent years in the 
search for biomarkers that identify groups of patients who 
could benefit most from PD-1/PD-L1 inhibitors. The best-
known biomarker in this scenario is PD-L1 expression in 
tumor or immune cells: a higher probability of response with 
higher expression of PD-L1 has been described [24, 25]. 
More than PD-L1 expression on more than 50% of tumor 
cell NSCLC patients predicts higher effectiveness of pem-
brolizumab than chemotherapy as a first-line treatment in the 
metastatic setting [12]. In clinical practice, this marker has 
limited utility because patients who do not express PD-L1 
may respond to PD-1 or PD-L1 checkpoint inhibitors, and in 

contrast, some patients with elevated expression of PD-L1 
do not benefit from the use of these drugs.

High TMB has been linked to the effectiveness of immu-
notherapy, but given the conflicting results among several 
studies, this biomarker has not yet been translated into the 
clinic [21, 22] or authorized by regulatory agencies. The 
variability among the techniques used for the analysis and 
interpretation of TMB may influence the value of this bio-
marker as a predictive factor of response to immunotherapy. 
As a result, there is an ongoing initiative for increased stand-
ardization of TMB interpretation, a subject of active pursuit 
by the TMB Harmonization Project [26, 27].

In a meta-analysis of 14,395 patients, Yu et al. concluded 
that the combined use of PD-L1 expression in tissue and 
TMB is a promising biomarker to evaluate patient survival 
and response to precision immunotherapy [28]. The fur-
ther combination of  CD8+ tumor-infiltrating lymphocytes, 
PD-L1 expression, and TMB was associated with reliable 
prognosis, but these results need to be validated in large-
scale prospective trials.

Liquid biopsy

Tumor diagnosis is made based on tissue biopsy, as well as 
complementary techniques that can add any genomic infor-
mation for therapy selection. However, tumor lesions are 
sometimes difficult to biopsy, and invasive procedures are 
not the best way to monitor the evolution of the disease. In 
addition, tumor heterogeneity originates from the appear-
ance of mutations that cause resistance or progression to 
treatments by selection of more aggressive clones. Consider-
ing the risks and logistical challenges, and even high cost, 
that limit the application of interventional biopsies, liquid 
biopsy presents an attractive opportunity for minimally inva-
sive genomic diagnostics.

Tissue provides a snapshot of the tumor at a given time 
and location, while liquid biopsy has the potential to estab-
lish a tumor molecular profile at the beginning of the treat-
ment and during the course of the disease (Fig. 1). In addi-
tion, liquid biopsy can capture dynamic intrapatient genomic 
heterogeneity [5]. These characteristics are especially impor-
tant in the management of patients with lung cancer due 
to the great difficulty in obtaining a tissue sample in some 
cases [29].

Currently, there are limitations that prevent us from put-
ting into clinical practice the use of the biomarkers used 
by liquid biopsy. The most relevant is that there is no clear 
agreement on the usefulness or threshold to be consid-
ered for most of the biomarkers studied (notably TMB and 
PD-L1). Initiatives are underway to harmonize and stand-
ardize methods of analysis through universal protocols. 
An agreement in the scientific community about the ideal 
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biomarker and cut off to define this parameter is needed. 
The minimally invasive nature of liquid biopsy sampling 
offers a clear opportunity in immunotherapy. In this work, 
we will focus on the potential clinical applications of CTCs 
and cfDNA, the most widely studied substrates in the field 
of NSCLC.

Cell‑free DNA

Different types of biological samples are used for liquid 
biopsies, but cfDNA is currently the material with the 
greatest potential in clinical practice. The short half-life of 
cfDNA, approximately 2 h, permits a rapid assessment of 
tumor-related changes and enables real-time monitoring of 
molecular biomarkers of response or relapse. Composed of 
double-stranded fragments of 150–200 base pairs, cfDNA 

derives from normal physiological tissue remodeling events 
[30], although a portion of cfDNA results from necrosis and 
apoptosis of cancer cells, and active cfDNA secretion has 
also been suspected [31]. The fraction of circulating tumor 
DNA (ctDNA) in overall cfDNA in patients with cancer 
varies greatly, from less than 0.1% to more than 90% [30], 
with ctDNA being distinguished solely through character-
istic somatic genomic alterations and its trend to be more 
fragmented, with sizes ranging from 90 to 150 base pairs.

Therapies for NSCLC patients targeting EGFR, ALK 
or ROS1 molecular alterations have been proven effective, 
inhibiting molecules that are pivotal for cell proliferation. 
Circulating free DNA is now regularly used to manage tyros-
ine kinase inhibitor treatment in EGFR-mutated NSCLC, 
and a large number of studies have demonstrated that EGFR 
gene mutations detected in cfDNA are highly concordant 

Fig. 1  Comparison of the advantages and limitations between tissue and liquid biopsy. Plot generated by the gganatogram R package (https ://
githu b.com/jespe rmaag /ggana togra m)

https://github.com/jespermaag/gganatogram
https://github.com/jespermaag/gganatogram
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with those detected in tumor tissue of NSCLC patients [32]. 
What is clear is that cfDNA has been widely studied in the 
field of targeted therapy. Two FDA- and EMA-approved 
assay kits to detect somatic mutations in the EGFR oncogene 
in patients with NSCLC are now available: the Cobas EGFR 
Mutation Test v2 CE-IVD (Roche, Basel, Switzerland) and 
therascreen mutation kits (Qiagen, Hilden, Germany). In 
contrast, the potential of cfDNA to guide the choice of and 
follow the response to immune therapy is just beginning to 
be evaluated (Table 2).

Blood tumor mutational burden (bTMB)

One of the biomarkers that could drive the choice of treat-
ment is the blood tumor mutational burden (bTMB) because 
it can be estimated from cfDNA next-generation sequencing 
(NGS). Recently, Gandara et al. demonstrated the possibil-
ity of using cfDNA to determine TMB [33], also reporting 
an association with superior results in terms of efficacy in 
NSCLC treated with immunotherapy. In this regard, a gene 
panel and algorithm were also optimized for bTMB [34], 
suggesting that bTMB may serve as a potential biomarker 
of clinical benefit in patients with NSCLC treated with anti-
PD-1 and anti-PD-L1 agents. bTMB may be related to the 
ability of each tumor to produce antigens that are detected 
by the immune system, producing an antigenic reaction 
that triggers an immune response to that tumor. However, 
studies focused on the relationship between TMB in tissue 
and the immune response have produced conflicting results 
[35–37]. In general, further studies are needed to clarify 
the conditions required to use bTMB in routine clinical 
practice. The methods for its determination, as well as the 
threshold to be adopted as a cutoff point for high, interme-
diate and/or low classification, have yet to be unified and 
standardized by the scientific community [38]. Moreover, 
there is a high cost coming from whole-exome sequencing 
or broad panels, which confers another challenge for clini-
cal implementation. Perhaps it is necessary to move beyond 
TMB and move to identifying specific somatic alterations 
detectable in cfDNA that can facilitate selection of patients 
for immunotherapy. Not all point mutations participate in 
the generation of highly immunogenic peptides [39]. Guib-
ert et al. showed that targeted NGS of plasma cfDNA and 
monitoring its early variations could predict the response 
to immunotherapy [40]. The study revealed the detrimental 
effect of STK11 and PTEN mutations in cfDNA on the ICI 
outcomes reported in tissue. In contrast, mutational trans-
version (Tv, substitution of a purine by a pyrimidine or vice 
versa) in KRAS and p53 predicts superior results in terms of 
PFS. Moreover, the combination of all these specific mark-
ers in a predictive model, together with known targetable 
oncogenic drivers, allows guided patient treatment towards 
either targeted therapy or ICI.

Minimal residual disease

Detection of minimal residual disease (MRD) following 
chemoradiation therapy (CRT) predicts the development 
of progressive disease in NSCLC with high sensitivity and 
specificity [41]. Immunotherapy is used in the adjuvant set-
ting for patients with unresectable locoregionally advanced 
NSCLC. The optimal use of immunotherapy requires the 
identification of patients with MRD to maximize the oppor-
tunity for cure, and cfDNA might enable approaches for dis-
ease progression monitoring [42]. Antonia SJ et al. showed 
a survival advantage with durvalumab consolidation therapy 
after concurrent chemoradiation therapy in patients with 
stage III [20], unresectable NSCLC. Recently, Moding EJ 
et al. showed that patients with MRD after CRT receiving 
ICIs had significantly better outcomes than patients who did 
not receive consolidation ICI therapy [43]. cfDNA analy-
sis may guide the decision to administer consolidation ICI 
therapy based on the presence of MRD.

Changes in cfDNA concentration

There are a few studies that propose the cfDNA concentra-
tion as a predictive marker of immunotherapy response. In 
a proof-of-concept study, changes in cfDNA concentration 
were reported as a valuable tool to assess tumor response 
in patients treated with anti-PD-1 drugs [44]. Giroux Lep-
rieur et al. reported that low cfDNA concentration at first 
evaluation (at 2 months) had a relationship with long-term 
benefit of nivolumab [45]. In addition, a decrease in cfDNA 
level was correlated with radiological response to immuno-
therapy [46], suggesting that cfDNA levels may be an early 
marker of therapeutic efficacy and predict prolonged sur-
vival in patients treated with immune checkpoint inhibitors 
for NSCLC. In another study, NSCLC patients treated with 
nivolumab and with a cfDNA below their median values 
survived significantly longer than those with a cfDNA value 
above their median values [47]. Moreover, the joint analy-
sis of cfDNA with CTCs helped to discriminate a low-risk 
population that might benefit from continuing nivolumab 
beyond progression. This suggests that the use of cfDNA 
and CTCs could help to select those patients who will ben-
efit most from immunotherapy.

Circulating tumor cells

Circulating tumor cells (CTCs) are released from the pri-
mary tumor into the blood and have a very short half-life 
(1–2.4 h). The proportion of CTCs in the bloodstream is very 
low, approximately 1 CTC per  106–107 leukocytes. Initially, 
CTCs have an epithelial phenotype; however, the blood-
stream is not an ideal place for epithelial tumor cells, and 
for this reason, they can undergo epithelial-to-mesenchymal 
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transition (EMT). This transition reduces the expression of 
epithelial markers and increases plasticity and capacity for 
migration, invasion, and dissemination, being the CTCs iso-
lation a challenge for their total isolation and capture.

CTCs isolation platforms

In most of the current assays for the detection of CTCs, the 
platforms are based on the expression of epithelial markers 
such as EPCAM and cytokeratins. Both biomarkers are not 
expressed on mesenchymal cells; therefore, new CTC isola-
tion platforms were developed [48]. Currently, the methods 
to detect and isolate CTCs are based on different aspects: 
(1) the surface presence of specific antigens (EpCAM is the 
most common), such as what is used in the  CellSearch® sys-
tem (Menarini), Epic platform (Epic sciences) or GILUPI 
CellColector (GILUPI); or (2) size and deformability, such 
as what is used in Parsortix (Angle), ISET (ISET, Rarecells 
Diagnostics), Vortex VTX-1 (Vortex Bioscience), and the 
ClearCell FX device (Biolidics).

CTCs and PD‑L1 expression

In the field of immunotherapy, the expression of PD-L1 in 
tissue samples is the gold-standard biomarker to choose the 
treatment. Pilot studies in lung cancer have shown PD-L1 
as a predictive factor. However, the PD-L1 status can be 
underestimated in small biopsies, which may not be repre-
sentative of the entire tumor, causing some to not receive ICI 
treatment due to tissue sampling bias [49]. PD-L1 analyses 
in CTCs could be a good option to solve this problem.

The possibility of measuring the expression of PD-L1 
in CTCs before and during treatment has been analyzed in 
several studies (Table 2). Some authors have studied the 
relationship between baseline CTCs and overall survival, 
finding an association between a high number of CTCs and 
an increased risk of death and progression [50]. In addition, 
the presence of CTCs with positive PD-L1 expression (≥ 1% 
of cells) before ICI treatment was correlated with poor prog-
nosis and survival [50, 51], and the persistence of PD-L1 on 
CTCs after 6 months of ICI therapy may represent the occur-
rence of tumor escape, which results in disease progression. 
It may also be a reflection of the aggressiveness of these 
CTCs, which may show characteristics of the mesenchymal 
phenotype (via EMT) [52]. In a stage-adjusted Cox model, 
it was concluded that a high proportion of PD-L1-positive 
cells was a predictor of mortality [51].

CTCs vs. tissue

The concordance between PD-L1 expression by CTCs and 
PD-L1 expression in tissue has been evaluated in several 
studies, showing controversial results [50, 53]. Iliè et al. 

showed a concordance of 93% between tissue and CTCs 
regarding PD-L1 expression in a cohort of 106 patients 
treated with chemotherapy [53], using the platform ISET. 
Dhar et al. also showed a good correlation between tissue 
and CTCs using a different isolation platform (Vortex iso-
lation). However, the sample size in this study was only 4 
patients [54]. Other studies reveal the opposite situation. 
Guibert et al., reported no correlation between CTCs and 
tissue in a cohort of 96 patients treated with nivolumab in 
2nd line, isolating the CTCs with the ISET platform [50]. 
Recently, other two studies reported the same conclusion 
using two different approaches to isolate the CTCs (Micro-
cavity array and Parsortix system) [55, 56]. It is important 
to remark that in these studies, the expression of PD-L1 was 
analyzed using different methods, therefore, different pheno-
types of CTCs could be obtained in each study. Also, differ-
ent antibodies and unbalanced populations were employed, 
so comparisons between them must be interpreted with 
caution. More studies are needed to assess a standardized 
method and PD-L1 antibody to detect and analyze CTCs.

Other blood biomarkers

There are other markers in the field of liquid biopsy with 
great potential for future clinical applications. Extracellu-
lar vesicles (EVs) are nanosized particles with membranes 
released by any cell type, including cancer cells. The most 
common subtypes of EVs are exosomes. Exosomes have 
a size between 50 and 150 nm, are very abundant, express 
proteins on their surface and contain several particles, such 
as proteins, nucleic acids, and lipids [60]. For this reason, 
exosomes are also a promising biomarker for analyzing the 
expression of PD-L1. One study in NSCLC patients con-
cluded that PD-L1 expression in exosomes was correlated 
with disease progression, tumor size, lymph node status, 
metastasis, and TNM stage. However, no association was 
demonstrated between PD-L1 expression in exosomes and 
tissue [61]. In addition, the standardization of methodologies 
for exosome isolation remains a challenge [49].

Numerous studies have also reported a correlation 
between immunotherapy and the neutrophil-to-lymphocyte 
ratio (NLR) [62]. The NLR is defined as the neutrophil count 
in blood divided by the lymphocyte count in blood and is 
a marker for the general immune response to distinct stress 
stimuli. Recently, a meta-analysis concluded that high NLR 
values were correlated with shorter PFS and OS in NSCLC 
patients under ICI treatment [63].

Other elements, such as circulating microRNA (miRNA), 
circulating RNA, platelets, and circulating proteins, have not 
been included in this review because they are at the early 
stages of use for tumor genotyping and more specifically for 
the use in immunotherapy of NSCLC patients [62].
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Conclusion and future perspectives

Liquid biopsy is being incorporated as a useful procedure 
in many situations in oncology due to its minimal inva-
siveness and its great capacity to indicate cancer tumo-
rigenesis. The search for new biomarkers will help us to 
manage our patients in a personalized way, something that 
constitutes a clear objective for the implementation of pre-
cision oncology.

Over the past few years, several integrated biological 
strategies have been used to find noninvasive markers to 
predict response to the administration of immunotherapy 
in NSCLC. The existence of promising results from obser-
vational studies, together with the continued develop-
ment of analysis platforms, has propelled cfDNA-based 
liquid biopsy diagnostics into the next developmental 
phase. Because of its potential to select populations for 
specific immunotherapy (alone or combined) and predict 
responders/nonresponders or the appearance of resistance, 
we foresee that cfDNA analysis will become increasingly 
important. In the case of lung cancer, cfDNA methods 
are particularly useful because they minimize the need for 
tumor tissue biopsy. The capability of cfDNA to guide the 
choice and follow the response to immune therapy is just 
beginning to be assessed. Recently, Chabon et al. estab-
lished the potential of cfDNA for lung cancer screening, 
underlining the importance of risk-matching cases, and 
controls in cfDNA-based screening studies [64]. However, 
we cannot ignore that cfDNA isolation and analysis are 
still a challenge. Plasma cfDNA is a complex mixture of 
DNA from many sources, including germline, fetal, infec-
tious, and malignant [31], but there are also mutations in 
the cfDNA of hematopoietic origin with risk being mis-
taken as tumor-derived mutations [65]. Because a large 
proportion of cfDNA is derived from peripheral blood 
cells, the impact of clonal haematopoiesis represents a 
relevant limitation in the implementation of liquid biopsy 
for analysing cfDNA. Paired plasma–peripheral blood 
cells sequencing should be implemented as the standard 
practice for NGS genomic analysis of cfDNA to prevent 
misinterpretation of results [66]. Moreover, cfDNA is 
not tumor-specific and its measurement is prone to false 
positive results. In fact, the level of cfDNA can increase 
under some conditions, such as inflammation, infection, 
and even exercise [30]. The sensitivity and specificity of 
cfDNA measurement are also affected by the variability 
of ctDNA, which may vary through tumor evolution, have 
different origins (primary tumor vs. metastasis; tumor het-
erogeneity) and be affected by different treatments. We are 
in a situation in which there are rapidly evolving technolo-
gies supporting the use of liquid biopsy, while there is 
a need for standardization procedures for collecting and 

processing cfDNA samples. Another aspect to standard-
ize should be the size of the panels for appraising specific 
cancer mutations and genomic metrics (MRD and TMB), 
since they vary greatly across assays.

On the other hand, CTCs are intact viable cells with 
tumor-specific information and can also enable cancer 
diagnosis and treatment evaluation. Analyses of the pres-
ence or absence of proteins, such as PD-L1 or PD-1 on 
the surface promise to be good options in the future to 
guide and select treatment, but the strategies will need 
to be validated in robust studies [49]. In addition, due to 
methods that allow the preservation and capture of intact 
CTCs, single-cell analyses or cluster analyses are possible. 
Single- or cluster-cell characterization of CTCs will allow 
more precise characterization of the entire cancer in each 
patient. RNA and DNA analyses are possible and could 
show the intertumoral and intratumoral heterogeneity in 
each patient [67]. In contrast, a good and standardized 
platform to capture CTCs and rigorous validation remain 
a challenge. Owing to the effects of EMT, a new marker 
to detect tumor cells undergoing this transition is needed.

Recent studies have focused on the peripheral blood 
T-cell receptor (TCR) repertoire, as an emergent bio-
marker to select the most suitable ICI treatment [68]. The 
analysis of T-cell clonality may reveal the degree of tumor-
antigen driven T-cell expansions and help to understand 
mechanisms underlying T-cell tolerance to cancer anti-
gens. Recently, Reuben et al. showed the heterogeneity of 
tissue T-cell repertoire in localized NSCLC [69], propos-
ing a positive relation between T-cell density and clonality. 
They demonstrated an association between higher T-cell 
density in the blood and improved outcome following sur-
gery. These findings suggest that the peripheral T cell rep-
ertoire in NSCLC patients may be reflective of increased 
systemic immunity. TCR sequencing might be applicable 
for the treatment selection in patients with EGFR muta-
tions by evaluating the proportions of TCRβ clones in the 
tumor. Miyauchi et al. provided relevant information for 
understanding the molecular mechanism behind EGFR-
mutant patients [70], showing that the low clonal T-cell 
expansion in NSCLC with EGFR mutations might be a 
critical factor related to the unfavorable response to ICI. 
T-cell clonality in the circulation may have predictive 
value for antitumor responses from checkpoint inhibition. 
However, since there are very preliminary results, continue 
this line of research is essential in order to know if it has 
practical application in the clinic.

In conclusion, liquid biopsy through CTCs and cfDNA 
analyses could be a promising tool for diagnosis, selection 
of ICI treatment and monitoring of NSCLC patients under 
immunotherapy.
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